[1] S. Boehringer, P. Ruzgys, L. Tamò, S. Šatkauskas, T. Geiser, A. Gazdhar, D. Hradetzky, A new electrospray method for targeted gene delivery, Scientific reports, Vol. 8, No. 1, pp. 1-12, 2018.
[2] J. B. Fenn, Electrospray wings for molecular elephants (Nobel lecture), Angewandte Chemie International Edition, Vol. 42, No. 33, pp. 3871-3894, 2003.
[3] X. Hou, K.-L. Choy, Synthesis and characteristics of CuInS2 films for photovoltaic application, Thin Solid Films, Vol. 480, pp. 13-18, 2005.
[4] R. Y. Hsu, J. H. Liao, H. W. Tien, G. R. Her, Gas chromatography electrospray ionization mass spectrometry analysis of trimethylsilyl derivatives, Journal of Mass Spectrometry, Vol. 51, No. 10, pp. 883-888, 2016.
[5] M. K. I. Khan, A. Nazir, A. A. Maan, Electrospraying: a novel technique for efficient coating of foods, Food Engineering Reviews, Vol. 9, No. 2, pp. 112-119, 2017.
[6] S. Martin, P. Garcia-Ybarra, J. Castillo, Electrospray deposition of catalyst layers with ultra-low Pt loadings for PEM fuel cells cathodes, Journal of Power Sources, Vol. 195, No. 9, pp. 2443-2449, 2010.
[7] K. Mohammadi, M. R. Movahhedy, S. Khodaygan, A multiphysics model for analysis of droplet formation in electrohydrodynamic 3D printing process, Journal of Aerosol Science, Vol. 135, pp. 72-85, 2019.
[8] A. M. Gañán-Calvo, J. M. López-Herrera, N. Rebollo-Muñoz, J. Montanero, The onset of electrospray: the universal scaling laws of the first ejection, Scientific reports, Vol. 6, pp. 32357, 2016.
[9] M. Cloupeau, B. Prunet-Foch, Electrohydrodynamic spraying functioning modes: a critical review, Journal of Aerosol Science, Vol. 25, No. 6, pp. 1021-1036, 1994.
[10] J.-P. Borra, Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for High Efficiency Air Filtration by wet electro-scrubbing of aerosols, Journal of Aerosol Science, Vol. 125, pp. 208-236, 2018.
[11] A. Ganan-Calvo, J. Lasheras, J. Dávila, A. Barrero, The electrostatic spray emitted from an electrified conical meniscus, Journal of aerosol science, Vol. 25, No. 6, pp. 1121-1142, 1994.
[12] O. Wilhelm, L. Mädler, S. E. Pratsinis, Electrospray evaporation and deposition, Journal of Aerosol Science, Vol. 34, No. 7, pp. 815-836, 2003.
[13] H. Oh, K. Kim, S. Kim, Characterization of deposition patterns produced by twin-nozzle electrospray, Journal of Aerosol Science, Vol. 39, No. 9, pp. 801-813, 2008.
[14] J. H. Jung, H. Oh, S. S. Kim, Numerical simulation of the deposition pattern in multiple electrohydrodynamic spraying, Powder Technology, Vol. 198, No. 3, pp. 439-444, 2010.
[15] W. Yang, B. Lojewski, Y. Wei, W. Deng, Interactions and deposition patterns of multiplexed electrosprays, Journal of Aerosol Science, Vol. 46, pp. 20-33, 2012.
[16] Z. Jiang, Y. Gan, Y. Shi, An improved model for prediction of the cone-jet formation in electrospray with the effect of space charge, Journal of Aerosol Science, Vol. 139, pp. 105463, 2020.
[17] J. Grifoll, J. Rosell-Llompart, Efficient Lagrangian simulation of electrospray droplets dynamics, Journal of aerosol science, Vol. 47, pp. 78-93, 2012.
[18] J. Grifoll, J. Rosell-Llompart, Continuous droplets' charge method for the Lagrangian simulation of electrostatic sprays, Journal of Electrostatics, Vol. 72, No. 5, pp. 357-364, 2014.
[19] A. M. Gañán-Calvo, N. Rebollo-Muñoz, J. Montanero, The minimum or natural rate of flow and droplet size ejected by Taylor cone–jets: physical symmetries and scaling laws, New Journal of Physics, Vol. 15, No. 3, pp. 033035, 2013.
[20] D. C. Taflin, T. L. Ward, E. J. Davis, Electrified droplet fission and the Rayleigh limit, Langmuir, Vol. 5, No. 2, pp. 376-384, 1989.
[21] W. Gu, P. E. Heil, H. Choi, K. Kim, Comprehensive model for fine Coulomb fission of liquid droplets charged to Rayleigh limit, Applied physics letters, Vol. 91, No. 6, pp. 064104, 2007.
[22] L. Rayleigh, XX. On the equilibrium of liquid conducting masses charged with electricity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 14, No. 87, pp. 184-186, 1882.
[23] A. Gomez, K. Tang, Charge and fission of droplets in electrostatic sprays, Physics of Fluids, Vol. 6, No. 1, pp. 404-414, 1994.
[24] J. Shrimpton, Dielectric charged drop break-up at sub-Rayleigh limit conditions, IEEE Transactions on Dielectrics and Electrical insulation, Vol. 12, No. 3, pp. 573-578, 2005.
[25] J. Shrimpton, Modeling dielectric charged drop break up using an energy conservation method, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 5, pp. 1471-1477, 2008.
[26] D. G. Roth, A. J. Kelly, Analysis of the disruption of evaporating charged droplets, IEEE transactions on industry applications, No. 5, pp. 771-775, 1983.
[27] R. Clift, J. R. Grace, M. E. Weber, 2005, Bubbles, drops, and particles, Courier Corporation,
[28] M. Rahmanpour, R. Ebrahimi, Numerical Simulation of Heat and Mass Transfer and Fission of Charged Droplets in an Electrohydrodynamic spray, Thesis, K. N. Toosi University of Technology, Iran, 2017.
[29] A. H. Lefebvre, V. G. McDonell, 2017, Atomization and sprays, CRC press,
[30] Y. Mori, K. Hijikata, T. Nagasaki, Electrostatic atomization for small droplets of uniform diameter, Trans. Jpn. Soc. Mech. Eng. Ser. B, Vol. 47, pp. 1881-1890, 1981.
[31] H. Liu, M. Altan, Science and engineering of droplets: fundamentals and applications, Appl. Mech. Rev., Vol. 55, No. 1, pp. B16-B17, 2002.
[32] S. R. Turns, 1996, Introduction to combustion, McGraw-Hill Companies,
[33] M. Rahmanpour, R. Ebrahimi, Numerical simulation of electrohydrodynamic spray with stable Taylor cone–jet, Heat and Mass Transfer, Vol. 52, No. 8, pp. 1595-1603, 2016.
[34] J. B. Fenn, Ion formation from charged droplets: roles of geometry, energy, and time, Journal of the American Society for Mass Spectrometry, Vol. 4, No. 7, pp. 524-535, 1993.
[35] R. B. Cole, 2011, Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications, John Wiley & Sons,
[36] P. Kebarle, M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions, Analytica Chimica Acta, Vol. 406, No. 1, pp. 11-35, 2000.
[37] S. Banerjee, S. Mazumdar, Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte, International journal of analytical chemistry, Vol. 2012, 2012.
[38] Q. He, D. Fu, The improvement of genetic algorithm and its applications for the inversion of orthorhombic anisotropic media, in: SEG Technical Program Expanded Abstracts 1999, Eds., pp. 1791-1792: Society of Exploration Geophysicists, 1999.
[39] H. C. Hunter III, Studies Related to Coulombic Fissions of Charged Droplets and Hygroscopic Behavior of Mixed Particles, 2011.
[40] P. Kebarle, U. H. Verkerk, Electrospray: from ions in solution to ions in the gas phase, what we know now, Mass spectrometry reviews, Vol. 28, No. 6, pp. 898-917, 2009.
[1] S. Boehringer, P. Ruzgys, L. Tamò, S. Šatkauskas, T. Geiser, A. Gazdhar, D. Hradetzky, A new electrospray method for targeted gene delivery, Scientific reports, Vol. 8, No. 1, pp. 1-12, 2018.
[2] J. B. Fenn, Electrospray wings for molecular elephants (Nobel lecture), Angewandte Chemie International Edition, Vol. 42, No. 33, pp. 3871-3894, 2003.
[3] X. Hou, K.-L. Choy, Synthesis and characteristics of CuInS2 films for photovoltaic application, Thin Solid Films, Vol. 480, pp. 13-18, 2005.
[4] R. Y. Hsu, J. H. Liao, H. W. Tien, G. R. Her, Gas chromatography electrospray ionization mass spectrometry analysis of trimethylsilyl derivatives, Journal of Mass Spectrometry, Vol. 51, No. 10, pp. 883-888, 2016.
[5] M. K. I. Khan, A. Nazir, A. A. Maan, Electrospraying: a novel technique for efficient coating of foods, Food Engineering Reviews, Vol. 9, No. 2, pp. 112-119, 2017.
[6] S. Martin, P. Garcia-Ybarra, J. Castillo, Electrospray deposition of catalyst layers with ultra-low Pt loadings for PEM fuel cells cathodes, Journal of Power Sources, Vol. 195, No. 9, pp. 2443-2449, 2010.
[7] K. Mohammadi, M. R. Movahhedy, S. Khodaygan, A multiphysics model for analysis of droplet formation in electrohydrodynamic 3D printing process, Journal of Aerosol Science, Vol. 135, pp. 72-85, 2019.
[8] A. M. Gañán-Calvo, J. M. López-Herrera, N. Rebollo-Muñoz, J. Montanero, The onset of electrospray: the universal scaling laws of the first ejection, Scientific reports, Vol. 6, pp. 32357, 2016.
[9] M. Cloupeau, B. Prunet-Foch, Electrohydrodynamic spraying functioning modes: a critical review, Journal of Aerosol Science, Vol. 25, No. 6, pp. 1021-1036, 1994.
[10] J.-P. Borra, Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for High Efficiency Air Filtration by wet electro-scrubbing of aerosols, Journal of Aerosol Science, Vol. 125, pp. 208-236, 2018.
[11] A. Ganan-Calvo, J. Lasheras, J. Dávila, A. Barrero, The electrostatic spray emitted from an electrified conical meniscus, Journal of aerosol science, Vol. 25, No. 6, pp. 1121-1142, 1994.
[12] O. Wilhelm, L. Mädler, S. E. Pratsinis, Electrospray evaporation and deposition, Journal of Aerosol Science, Vol. 34, No. 7, pp. 815-836, 2003.
[13] H. Oh, K. Kim, S. Kim, Characterization of deposition patterns produced by twin-nozzle electrospray, Journal of Aerosol Science, Vol. 39, No. 9, pp. 801-813, 2008.
[14] J. H. Jung, H. Oh, S. S. Kim, Numerical simulation of the deposition pattern in multiple electrohydrodynamic spraying, Powder Technology, Vol. 198, No. 3, pp. 439-444, 2010.
[15] W. Yang, B. Lojewski, Y. Wei, W. Deng, Interactions and deposition patterns of multiplexed electrosprays, Journal of Aerosol Science, Vol. 46, pp. 20-33, 2012.
[16] Z. Jiang, Y. Gan, Y. Shi, An improved model for prediction of the cone-jet formation in electrospray with the effect of space charge, Journal of Aerosol Science, Vol. 139, pp. 105463, 2020.
[17] J. Grifoll, J. Rosell-Llompart, Efficient Lagrangian simulation of electrospray droplets dynamics, Journal of aerosol science, Vol. 47, pp. 78-93, 2012.
[18] J. Grifoll, J. Rosell-Llompart, Continuous droplets' charge method for the Lagrangian simulation of electrostatic sprays, Journal of Electrostatics, Vol. 72, No. 5, pp. 357-364, 2014.
[19] A. M. Gañán-Calvo, N. Rebollo-Muñoz, J. Montanero, The minimum or natural rate of flow and droplet size ejected by Taylor cone–jets: physical symmetries and scaling laws, New Journal of Physics, Vol. 15, No. 3, pp. 033035, 2013.
[20] D. C. Taflin, T. L. Ward, E. J. Davis, Electrified droplet fission and the Rayleigh limit, Langmuir, Vol. 5, No. 2, pp. 376-384, 1989.
[21] W. Gu, P. E. Heil, H. Choi, K. Kim, Comprehensive model for fine Coulomb fission of liquid droplets charged to Rayleigh limit, Applied physics letters, Vol. 91, No. 6, pp. 064104, 2007.
[22] L. Rayleigh, XX. On the equilibrium of liquid conducting masses charged with electricity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 14, No. 87, pp. 184-186, 1882.
[23] A. Gomez, K. Tang, Charge and fission of droplets in electrostatic sprays, Physics of Fluids, Vol. 6, No. 1, pp. 404-414, 1994.
[24] J. Shrimpton, Dielectric charged drop break-up at sub-Rayleigh limit conditions, IEEE Transactions on Dielectrics and Electrical insulation, Vol. 12, No. 3, pp. 573-578, 2005.
[25] J. Shrimpton, Modeling dielectric charged drop break up using an energy conservation method, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 5, pp. 1471-1477, 2008.
[26] D. G. Roth, A. J. Kelly, Analysis of the disruption of evaporating charged droplets, IEEE transactions on industry applications, No. 5, pp. 771-775, 1983.
[27] R. Clift, J. R. Grace, M. E. Weber, 2005, Bubbles, drops, and particles, Courier Corporation,
[28] M. Rahmanpour, R. Ebrahimi, Numerical Simulation of Heat and Mass Transfer and Fission of Charged Droplets in an Electrohydrodynamic spray, Thesis, K. N. Toosi University of Technology, Iran, 2017.
[29] A. H. Lefebvre, V. G. McDonell, 2017, Atomization and sprays, CRC press,
[30] Y. Mori, K. Hijikata, T. Nagasaki, Electrostatic atomization for small droplets of uniform diameter, Trans. Jpn. Soc. Mech. Eng. Ser. B, Vol. 47, pp. 1881-1890, 1981.
[31] H. Liu, M. Altan, Science and engineering of droplets: fundamentals and applications, Appl. Mech. Rev., Vol. 55, No. 1, pp. B16-B17, 2002.
[32] S. R. Turns, 1996, Introduction to combustion, McGraw-Hill Companies,
[33] M. Rahmanpour, R. Ebrahimi, Numerical simulation of electrohydrodynamic spray with stable Taylor cone–jet, Heat and Mass Transfer, Vol. 52, No. 8, pp. 1595-1603, 2016.
[34] J. B. Fenn, Ion formation from charged droplets: roles of geometry, energy, and time, Journal of the American Society for Mass Spectrometry, Vol. 4, No. 7, pp. 524-535, 1993.
[35] R. B. Cole, 2011, Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications, John Wiley & Sons,
[36] P. Kebarle, M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions, Analytica Chimica Acta, Vol. 406, No. 1, pp. 11-35, 2000.
[37] S. Banerjee, S. Mazumdar, Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte, International journal of analytical chemistry, Vol. 2012, 2012.
[38] Q. He, D. Fu, The improvement of genetic algorithm and its applications for the inversion of orthorhombic anisotropic media, in: SEG Technical Program Expanded Abstracts 1999, Eds., pp. 1791-1792: Society of Exploration Geophysicists, 1999.
[39] H. C. Hunter III, Studies Related to Coulombic Fissions of Charged Droplets and Hygroscopic Behavior of Mixed Particles, 2011.
[40] P. Kebarle, U. H. Verkerk, Electrospray: from ions in solution to ions in the gas phase, what we know now, Mass spectrometry reviews, Vol. 28, No. 6, pp. 898-917, 2009.