Review of the application and mechanism of surface enhanced raman spectroscopy (sers) as biosensor for the study of biological and chemical analyzes

Document Type : Review Paper

Authors

1 Nanoscience and Nanotechnology Research Center, University of Kashan, Kashan, Iran

2 Cellular and Molecular Research Center, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran

Abstract

Raman spectroscopy is an important method for the identification of molecules that is widely used to determine the chemical and structural properties of various materials. Many materials have special Raman spectra so that this phenomenon can it has become an effective tool for studying the structural and chemical properties of molecules. Since Raman spectroscopy can provide accurate information on the chemical and structural properties of biological compounds, this method is used in the field of science. Vital and especially in biological and medical studies is rapidly expanding. Raman is inherently weak and sometimes masked by noise and fluorescence. As a result, the study of low-concentration molecules is not feasible and the need to amplify the Raman scattering signal is clearly felt. . One of the efficient methods for studying low and even single molecular concentrations is the Surface Enhanced Raman Scattering (SERS) method. It uses gold, silver, copper and noble metal nanoparticles to enhance the Raman scattering signal. . SERS has been rapidly expanding over the past four decades, as applications for recognition in the fields of chemistry, materials sciences, biochemistry and biosciences are rapidly expanding. Advances in the manufacture of SERS-based biosensors are a major breakthrough in the detection of biological materials in which the electromagnetic field (effect) molecule is affected by the external field, this larger substitute field due to electromagnetic resonance near the metal surface is formed. Mechanisms of electromagnetic field (field effect) amplifiers mainly contribute to the development of SERS, which includes the study of detection performance, direct and indirect fabrication methods for the identification of biological and chemical analytes, Applications of biosensors, amplifiers, and SERS-based biosensor structures to detect biomolecules are briefly described.

Keywords

Main Subjects

1. Butler, H. J., et al. (2016). “Using Raman spectroscopy to characterize biological materials.” Nature Protocols 11: 664.
2. Wang LR, Fang Y. Molecular and Biomolecular Spectroscopy, Spctrochimica Acta Part A, 2006; 63: 614-8.
3. Vo-Dinh T.Surface-enhanced Ramanspectroscopy using metallic nanostructures, Trends in Analytical Chemistry, 1998; 17: 557.
4. Canamares MV, Ramos JVG., Sanchez S, Cortes SS, Castillejo M, Qujja M. Comparative SERS effectiveness of silver nanoparticles prepared by different methods: a study of the enhancement factor and the interfacial properties, Journal of Colloid and Interface Science, 2008; 326: 103-9.
5. Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B: Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 2018, 118:4946–4980.
6. Downes, A. and A. Elfick (2010). “Raman spectroscopy and related techniques in biomedicine.” Sensors (Basel) 10 (3): 1871-1889.
7. Nemecek, D., et al. (2013). “Raman Spectroscopy of Proteins and Nucleoproteins.” Current Protocols in Protein
Science, 71(1): 11-17.
8. R. Loudon, Adv. Phys. 1964, 13, 423.
9. A. P. Parixit Prajapati, "Raman Spectroscopy: A Versatile Tool in Pharmaceutical Analysis," International Journal of Pharmaceutical Sciences Review and Research, vol. 9, no. 1, pp. 57-64, 2011.
10. e. a. Steven EJ Bell, "Composition profiling of seized ecstasy tablets by Raman spectroscopy," Analyst, vol. 125, no. 10, pp. 1811-1815, 2000.
11. M. A. Ziemann, "In situ micro-Raman spectroscopy on minerals on-site in the Grotto Hall of the New Palace, Park Sanssouci in Potsdam," Journal of Raman Spectroscopy, vol. 37, no. 10, pp. 1019-1025, 2006.
12. C. Sandalinas, "Experimental confirmation by Raman spectroscopy of a Pb–Sn–Sb triple oxide yellow pigment in sixteenth-century Italian pottery," Journal of Raman Spectroscopy, vol. 37, no. 10, pp. 1146-1153, 2006.
13. U. S. s. ,. W. K. N. Welter, "Characterisation of inorganic pigments in ancient glass beads by means of Raman microspectroscopy, microprobe analysis and X-ray diffractometry," Journal of Raman Spectroscopy, vol. 38, no. 1, pp. 113-121, 2007.
14. R. E. Kast, "Raman spectroscopy can differentiate malignant tumors from normal breast tissue and detect early neoplastic changes in a mouse model," Biopolymers, vol. 89, no. 3, pp. 235-241, 2008.
15. T.Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures”, trends in analytical chemistry, vol. 17,(1998)557.
16. Gui-Na Xiao, “Shi-Qing Man, Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles”, Chemical Physics Letters 447 (2007) 305.
17. Ewen Smith, Geoffrey Dent,” Modern Raman Spectroscopy– A Practical Approach”, John Wiley & Sons, (2005).
18. Cuiyu Jing, Yan Fang , “Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of L-cysteine on gold/silver nanoparticles”, Chemical Physics 332 (2007) 27.
19. Li-Ran Wang, Yan Fang,” IR-SERS study and theoretical analogue on the adsorption behavior of pyridine carboxylic acid on silver nanoparticles”, Spectrochimica Acta Part A 63 (2006) 614.
20. Dieringer JA, Mcfarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, et al. Introductory Lecture Surface enhanced Raman spectroscopy: New materials concepts characterization tools and applications. Faraday Discuss, 2006; 132: 9–26.
21. Virga A, Rivolo P, Frascella F, Angelini A, Descrovi E, Geobaldo F, et al. Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS Regime. J. Phys. Chem. C, 2013; 117: 20139–20145.
22. Otto A.The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc, 2005; 36: 497–509.
23. Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 2008; 37: 912–920.
24. Stranahan SM, Willets KA. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett, 2010; 10: 3777–3784.
25. Wang, L.R.; Fang, Y. Spctrochimica Acta Part A, 2006,63,614-618.
26. Vo-Dinh, T. Trends in Analytical Chemistry, 1998,17,557.
27. Ren, B.; Liu, G.K.; Lian, X.B.; Yang Z.L.; Tian Z.Q. Raman Spectroscopy onTransition Metals. Anal. Bioanal. Chem 2007,388, 29-45.
28. Aroca, R. Surfaced enhanced vibrational spectroscopy, John Wiley, England, 2006.
29. Liz-Marzán, L.M. Nanomaterials: Formation and Color. Mater. Today 2004, 7, 26-31.
30. Kumar, A. Raman Spectroscopy of Carbon Nanotubes Under Axial Strain and Surface-Enhanced Raman Spectroscopy of Individiual Carbon Nanotubes, University of Southern California, phD thesis, 2008.
31. Muniz-Miranda, M; Pagliai, M.; Cardini, G.; Schettino, V.; J.Phys.Chem.C, 2008,112,762-767.
32. Barhoumi, A.; Zhang, D.; Tam, F.; Halas, N.J.; J.Am.Chem.Soc, 2008, 130, 5523- 5529.
33. Kneipp, K,; Moskovits, M.; Kneipp, H. Surfaced-Enhanced Raman Scattering, Springer, Germany, 2006.
34. Michaels, A.M. Surfaced-Enhanced Raman Spectroscopy at The Single Molecule Level, Columbia University, PHD thesis, 2000.
35. Aroca, R. Surfaced enhanced vibrational spectroscopy, John Wiley, England, 2006.
36. Campion, A.; Patanjali, K.; Chemical Society Reveiws, 1998, 27, 241-250.
37. Dieringer JA, Mcfarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, et al. Introductory Lecture Surface enhanced Raman spectroscopy: New materials concepts characterization tools and applications. Faraday Discuss, 2006; 132: 9–26.
38. Virga A, Rivolo P, Frascella F, Angelini A, Descrovi E, Geobaldo F, et al. Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS Regime. J. Phys. Chem. C, 2013; 117: 20139–20145.
39. Otto A.The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc, 2005; 36: 497–509.
40. Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 2008; 37: 912–920.
41. Stranahan SM, Willets KA. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett, 2010; 10: 3777–3784.
42. Qiu C, Bennet KE, Tomshine JR, Hara S, Ciubuc JD, Schmidt U, et al. Ultrasensitive Detection of Neurotransmitters by Surface Enhanced Raman Spectroscopy for Biosensing Applications. Bionterface Res. Appl. Chem. 2017; 1: 1921–1926.
43. Le Ru EC, Meyer M, Etchegoin PG. Proof of single-molecule sensitivity in Surface Enhanced Raman Scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B. 2006; 110: 1944–1948.
44. Li H, Wang X, Yu Z. Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenosine based on poly-melamine and nano Ag hybridized film-modified electrode. J. Solid State Electrochem. 2014; 18: 105–113.
45. Heidbreder CA, Lacroix L, Atkins AR, Organ AJ, Murray S, West A, Shah AJ. Development and application of a sensitive high performance ion-exchange chromatography method for the simultaneous measurement of dopamine, 5-hydroxytryptamine and norepinephrine in microdialysates from the rat brain. J. Neurosci. Methods 2001; 112: 135–144.
46. Fourati N, Seydou M, Zerrouki C, Singh A, Samanta S, Maurel F, et al. Ultrasensitive and Selective Detection of Dopamine Using Cobalt-Phthalocyanine Nanopillar-Based Surface Acoustic Wave Sensor. ACS Appl. Mater. Interfaces. 2014; 6: 22378–22386.
47. Maouche N, Ktari N, Bakas I, Fourati N, Zerrouki C, Seydou M, et al. surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection. J. Mol. Recognit. 2015; 28: 667–678.
48. Ivanov AN, Evtyugin GA, Brainina KZ, Budnikov GK, Stenina LE. Cholinesterase Sensors Based on Thick-Film Graphite Electrodes for the Flow-Injection Determination of Organophosphorus Pesticides. Journal of Analytical Chemistry. 2002; 57: 1042-1048.
49. Alizadeh T. HighSelective Parathion Voltammetric Sensor Development by Using an Acrylic Based Molecularly Imprinted Polymer-Carbon Paste Electrode. Electroanalysis. 2009; 21: 1490-1498.
50. Duan N, Chang B, Zhang H, Wang Z, Wu S. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. International Journal Food Microbiology. 2016; 218: 38-43.
51. Wang LR, Fang Y. IR-SERS study and theoretical analogue on the adsorption behavior of pyridine carboxylic acid on silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2006; 63: 614-618.
52. Ren B, Liu GK, Lian XB, Yang ZL, Tian ZQ. Raman spectroscopy on transition metals. Analytical and bioanalytical chemistry. 2007; 388: 29-45.
53. Matricardi C, Hanske C, Garcia-Pomar JL, Langer J, Mihi A, Liz-Marzan LM. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates. ACS Nano. 2018; vol. 12: 8531-8539.
54. Lin KQ, Yi J, Hu S, Liu BJ, Liu JY, Wang X, Ren B. Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. The Journal of Physical Chemistry C. 2016; 120: 20806-20803.
55. Darya Radziuk D, Moehwald H. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Journal of Physical Chemistry Chemical Physics. 2015; 17: 21072-210793.
56- Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles-Novel Materials for Chemical and Physical Applications. New J. Chem. 1998, 22, 1179-1201.
57- You, C.C.; Chompoosor, A.; Rotello, V.M. The Biomacromolecule-Nanoparticle Interface. Nano Today. 2007, 2, 34-43.
58- Jain,P.K.;El-Sayed,I.H.;El-Sayed,M.A. Au Nanoparticles Target Cancer. Nano Today. 2007, 2, 18-29.
59- Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z.Y.; Zhang, H.; Xia, Y.; Li, X. Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells. Nano Lett. 2007, 7, 1318-1322.
60- Sarkar, P.; Kumar, H.; Bar, H.; Sahoo, G.P.; De, S.P.; Mirsa, A. Journal of Luminescence. 2009, 129, 704-709.
61- Petrova, H.; Lin, C.H.; Hu, M.; Chen, J.; Siekkinen, A.R.; Xia, Y.; Sader, J.E.; Hartland, G.V. Vibrational Response of Au-Ag Nanoboxes and Nanocages to Ultrafast Laser-Induced Heating. Nano Lett. 2007, 7, 1059-1063.
62. Shrivastava S, Dash D. Label-free colorimetric estimation of proteins using nanoparticles of silver: NANO-Micro Letters 2010; 2: 164-8.
63. Krasteva N, Besnard I, Guse B, E. Bauer R, Mullen K, Yasuda A, et al. Self-Assembled Gold Nanoparticle/ Dendrimer Composite Films for Vapor Sensing Applications: NANO Letters 2002; 2: 551-5.
64. Wu J, Mangham SC, Reddy VR, Manasreh MO, Weaver BD. Surface plasmon enhanced intermediate-band based quantum dots solar cell: Solar Energy Materials & Solar Cells 2012; 102: 44-9.
65. McLellan MJ, Li ZY, Andrew RS, Xia Y. The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization: NANO Letters 2007; 4: 1013-7.
66. Yu X, Wang L, Di J. Electrochemical Deposition of High Density Gold Nanoparticles on Indium/Tin Oxide Electrode for Fabrication of Biosensors: Nanoscience and Nanotechnology 2011; 11: 11084-8.
67. Wang LR, Fang Y. IR-SERS study and theoretical analogue on the adsorption behavior of pyridine carboxylic acid on silver nanoparticles: Spectrochim. Acta. Part. A. Mol. Biomol. Spectrosc 2006; 63 (3): 614-8.
68. Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163-166.
69. Michaels, A.M. Surfaced-Enhanced Raman Spectroscopy at The Single Molecule Level, Columbia University, PHD thesis, 2000.
70. Zhang, X.Y.; Hicks, E.M.; Zhao, J.; Schatz, G.C.; Van Duyne, R.P. Electrochemical Tuning of Silver Nanoparticles Fabricated by Nanosphere Lithography. Nano Lett. 2005, 5, 1503-1507.
71. L.-R. Wang and Y. Fang, "IR-SERS study and theoretical analogue on the adsorption behavior of pyridine carboxylic acid on silver nanoparticles," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 63, pp. 614-618, 2006.
72. B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, "SERS: Materials, applications, and the future," Materials today, vol. 15, pp. 16-25, 2012.
73. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, et al., "Shell-isolated nanoparticle-enhanced Raman spectroscopy," nature, vol. 464, p. 392, 2010.
74. J. F. Betz, W. Y. Wei, Y. Cheng, I. M. White, and G. W. Rubloff, "Simple SERS substrates: powerful, portable, and full of potential," Physical Chemistry Chemical Physics, vol. 16, pp. 2224-2239, 2014.
75. Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles: Analytical. Chemistry 2014; 86(3): 1525-33.
76. Cheng M L, Tsai BC, Yang J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution: Analytica. Chimica. Acta 2011; 708: 89-96.
77. B anta-wright S, Steiner R. Tandem Mass Spectrometry in Newborn Screening Tandem Mass Spectrometry in Newborn Screening: A. Primer. for. Neonatal. and. Nurses 2004; 18: 41-7.
78. Escobar-Morreale HF, Samino S, Insenser M, Vinaixa M, Luque-Ramı´rez M, Lasuncion, MA, Correig X. Metabolic Heterogeneity in Polycystic Ovary Syndrome Is Determined by Obesity: Plasma Metabolomic Approach Using GC-MS: Clinical. Chemistry 2012; 58: 999-1005.
79. Njagi J, Chernov MM, Leiter JC, Andreescu S. Amperometric Detection of Dopamine in Vivo with an Enzyme Based Carbon Fiber Microbiosensor: American Chemical Society- Analytical Chemistry 2010; 82: 989-97.
80. Phillips TM. Measurement of Bioactive Neuropeptides Using a Chromatographic Immunosensor Cartridge: BIOMEDICAL CHROMATOGRAPHY 1996; 10: 331-6.
81. Kondo DG, Hellem TL, Sung YH, Kim N, Jeong EK, DelMastro K, et al. Review:Magnetic Resonance Spectroscopy Studies of PediatricMajor Depressive Disorder: Hindawi Publishing Corporation Depression Research and Treatment 2011; 14: 13.
82. Bennet B, Tomshine J, Hara S, Ciubuc J. Ultrasensitive detection of neurotransmitters by surface enhanced raman spectroscopy for biosensing applications: Bulletin of the American Physical Society 2017; 7: 1921-8.
83. Wang C, Meloni MM, Wu X, Zhuo M, He T, Wang J, Dong P. Magnetic plasmonic particles for SERS-based bacteria sensing A review: A.I.P. Advances 2019; 9: 010701.
84. Su SR, Chen YY, Li KY, Fang YC, Wang CH, Yang CY, Chau LK, Wang SC. Electrohydrodynamically enhanced drying droplets for concentration of Salmonella bacteria prior to their detections using antibody-functionalized SERS-reporter submicron beads: Sensors and Actuators. B. Chemical 2019; 283: 384-9.
85. Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles: Analytical. Chemistry 2014; 86(3): 1525-33.
86. M. V. Canamares, J. V. Garica-Ramos, S. Sanchez-Cortez, M. Castillejo, M. Oujja, Journal of Colloidal and
Interface Science, 326 (2008) 103-109.
87. I. Pavel, E. McCarney, A. Elkhaled, A. Morrill, K. Plaxco, M. Moskovits, J. Phys. Chem. C, 112 (2008) 4880-4883
88. J. I. Jerez-Rozo, Enhanced Raman Scattering of TNT on Nanoparticles Substrates:Ag, Au and Au/Ag Bimetallic Colloids Prepared by Reduction whit Sodium Citrate and Hydroxylamine Hydrochloride, University of Puerto Rico, MS thesis, (2007).
89. P. W. Li, J. Zhang, L. Zhang, Y. J. Mo, Vibrational Spectroscopy, 49 (2009) 2-6.
90. M. S. Kim, J. S. Kang, S. B. Park, M. S. Lee, Bull. Korean Chem. Soc, 24 (2003) 633.
91. M. Muniz-Miranda, C. Gellini, L. Bindi, Spectrochimica Acta Patr A, 73 (2009) 456-459.
92. Fikeit. M.A, Khandasammy. S.R, Mistek . E, Ahmed. Y, Halámková. L, Bueno. J, Lednev. L.K. Review Article Surface enhanced Raman spectroscopy: A review of recent applications in forensic science. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 197; 2018: 255-260.
93. P. Rostron, S. Gaber, and D. Gaber, "Raman spectroscopy, review," laser, vol. 21, p. 24, 2016
1. Butler, H. J., et al. (2016). “Using Raman spectroscopy to characterize biological materials.” Nature Protocols 11: 664.
2. Wang LR, Fang Y. Molecular and Biomolecular Spectroscopy, Spctrochimica Acta Part A, 2006; 63: 614-8.
3. Vo-Dinh T.Surface-enhanced Ramanspectroscopy using metallic nanostructures, Trends in Analytical Chemistry, 1998; 17: 557.
4. Canamares MV, Ramos JVG., Sanchez S, Cortes SS, Castillejo M, Qujja M. Comparative SERS effectiveness of silver nanoparticles prepared by different methods: a study of the enhancement factor and the interfacial properties, Journal of Colloid and Interface Science, 2008; 326: 103-9.
5. Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren B: Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 2018, 118:4946–4980.
6. Downes, A. and A. Elfick (2010). “Raman spectroscopy and related techniques in biomedicine.” Sensors (Basel) 10 (3): 1871-1889.
7. Nemecek, D., et al. (2013). “Raman Spectroscopy of Proteins and Nucleoproteins.” Current Protocols in Protein
Science, 71(1): 11-17.

8. R. Loudon, Adv. Phys. 1964, 13, 423.

9. A. P. Parixit Prajapati, "Raman Spectroscopy: A Versatile Tool in Pharmaceutical Analysis," International Journal of Pharmaceutical Sciences Review and Research, vol. 9, no. 1, pp. 57-64, 2011.
10. e. a. Steven EJ Bell, "Composition profiling of seized ecstasy tablets by Raman spectroscopy," Analyst, vol. 125, no. 10, pp. 1811-1815, 2000.
11. M. A. Ziemann, "In situ micro-Raman spectroscopy on minerals on-site in the Grotto Hall of the New Palace, Park Sanssouci in Potsdam," Journal of Raman Spectroscopy, vol. 37, no. 10, pp. 1019-1025, 2006.
12. C. Sandalinas, "Experimental confirmation by Raman spectroscopy of a Pb–Sn–Sb triple oxide yellow pigment in sixteenth-century Italian pottery," Journal of Raman Spectroscopy, vol. 37, no. 10, pp. 1146-1153, 2006.
13. U. S. s. ,. W. K. N. Welter, "Characterisation of inorganic pigments in ancient glass beads by means of Raman microspectroscopy, microprobe analysis and X-ray diffractometry," Journal of Raman Spectroscopy, vol. 38, no. 1, pp. 113-121, 2007.
14. R. E. Kast, "Raman spectroscopy can differentiate malignant tumors from normal breast tissue and detect early neoplastic changes in a mouse model," Biopolymers, vol. 89, no. 3, pp. 235-241, 2008.
15. T.Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures”, trends in analytical chemistry, vol. 17,(1998)557.
16. Gui-Na Xiao, “Shi-Qing Man, Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles”, Chemical Physics Letters 447 (2007) 305.
17. Ewen Smith, Geoffrey Dent,” Modern Raman Spectroscopy– A Practical Approach”, John Wiley & Sons, (2005).
18. Cuiyu Jing, Yan Fang , “Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of L-cysteine on gold/silver nanoparticles”, Chemical Physics 332 (2007) 27.
19. Li-Ran Wang, Yan Fang,” IR-SERS study and theoretical analogue on the adsorption behavior of pyridine carboxylic acid on silver nanoparticles”, Spectrochimica Acta Part A 63 (2006) 614.
20. Dieringer JA, Mcfarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, et al.  Introductory Lecture Surface enhanced Raman spectroscopy: New materials concepts characterization tools and applications. Faraday Discuss, 2006; 132: 9–26.
21. Virga A, Rivolo P, Frascella F, Angelini A, Descrovi E, Geobaldo F, et al. Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS Regime. J. Phys. Chem. C, 2013; 117: 20139–20145.
22. Otto A.The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc, 2005; 36: 497–509.
23. Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 2008; 37: 912–920.
24. Stranahan SM, Willets KA. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett, 2010; 10: 3777–3784.
25. Wang, L.R.; Fang, Y. Spctrochimica Acta Part A, 2006,63,614-618.
26. Vo-Dinh, T. Trends in Analytical Chemistry, 1998,17,557.
27. Ren, B.; Liu, G.K.; Lian, X.B.; Yang Z.L.; Tian Z.Q. Raman Spectroscopy onTransition Metals. Anal. Bioanal. Chem 2007,388, 29-45.
28. Aroca, R. Surfaced enhanced vibrational spectroscopy, John Wiley, England, 2006.
29. Liz-Marzán, L.M. Nanomaterials: Formation and Color. Mater. Today 2004, 7, 26-31.
30. Kumar, A. Raman Spectroscopy of Carbon Nanotubes Under Axial Strain and Surface-Enhanced Raman Spectroscopy of Individiual Carbon Nanotubes, University of Southern California, phD thesis, 2008.
31. Muniz-Miranda, M; Pagliai, M.; Cardini, G.; Schettino, V.; J.Phys.Chem.C, 2008,112,762-767.
32. Barhoumi, A.; Zhang, D.; Tam, F.; Halas, N.J.; J.Am.Chem.Soc, 2008, 130, 5523- 5529.
33. Kneipp, K,; Moskovits, M.; Kneipp, H. Surfaced-Enhanced Raman Scattering, Springer, Germany, 2006.
34. Michaels, A.M. Surfaced-Enhanced Raman Spectroscopy at The Single Molecule Level, Columbia University, PHD thesis, 2000.
35. Aroca, R. Surfaced enhanced vibrational spectroscopy, John Wiley, England, 2006.
36. Campion, A.; Patanjali, K.; Chemical Society Reveiws, 1998, 27, 241-250.
37. Dieringer JA, Mcfarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, et al.  Introductory Lecture Surface enhanced Raman spectroscopy: New materials concepts characterization tools and applications. Faraday Discuss, 2006; 132: 9–26.
38. Virga A, Rivolo P, Frascella F, Angelini A, Descrovi E, Geobaldo F, et al. Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS Regime. J. Phys. Chem. C, 2013; 117: 20139–20145.
39. Otto A.The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc, 2005; 36: 497–509.
40. Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 2008; 37: 912–920.
41. Stranahan SM, Willets KA. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett, 2010; 10: 3777–3784.
42. Qiu C, Bennet KE, Tomshine JR, Hara S, Ciubuc JD, Schmidt U, et al. Ultrasensitive Detection of Neurotransmitters by Surface Enhanced Raman Spectroscopy for Biosensing Applications. Bionterface Res. Appl. Chem. 2017; 1: 1921–1926.
43. Le Ru EC, Meyer M, Etchegoin PG. Proof of single-molecule sensitivity in Surface Enhanced Raman Scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B. 2006; 110: 1944–1948.
44. Li H, Wang X, Yu Z. Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenosine based on poly-melamine and nano Ag hybridized film-modified electrode. J. Solid State Electrochem. 2014; 18: 105–113.
45. Heidbreder CA, Lacroix L, Atkins AR, Organ AJ, Murray S, West A, Shah AJ. Development and application of a sensitive high performance ion-exchange chromatography method for the simultaneous measurement of dopamine, 5-hydroxytryptamine and norepinephrine in microdialysates from the rat brain. J. Neurosci. Methods 2001; 112: 135–144.
46. Fourati N, Seydou M, Zerrouki C, Singh A, Samanta S, Maurel F, et al. Ultrasensitive and Selective Detection of Dopamine Using Cobalt-Phthalocyanine Nanopillar-Based Surface Acoustic Wave Sensor. ACS Appl. Mater. Interfaces. 2014; 6: 22378–22386.
47. Maouche N, Ktari N, Bakas I, Fourati N, Zerrouki C, Seydou M, et al. surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection. J. Mol. Recognit. 2015; 28: 667–678.

48. Ivanov AN, Evtyugin GA, Brainina KZ, Budnikov GK, Stenina LE. Cholinesterase Sensors Based on Thick-Film Graphite Electrodes for the Flow-Injection Determination of Organophosphorus Pesticides. Journal of Analytical Chemistry. 2002; 57: 1042-1048.

49. Alizadeh T. HighSelective Parathion Voltammetric Sensor Development by Using an Acrylic Based Molecularly Imprinted Polymer-Carbon Paste Electrode. Electroanalysis. 2009; 21: 1490-1498.

50. Duan N, Chang B, Zhang H, Wang Z, Wu S.  Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. International Journal Food Microbiology. 2016; 218: 38-43.
51. Wang LR, Fang Y. IR-SERS study and theoretical analogue on the adsorption behavior of pyridine carboxylic acid on silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2006; 63: 614-618.
52. Ren B, Liu GK, Lian XB, Yang ZL, Tian ZQ. Raman spectroscopy on transition metals.  Analytical and bioanalytical chemistry. 2007; 388: 29-45.
53. Matricardi C, Hanske C, Garcia-Pomar JL, Langer J, Mihi A, Liz-Marzan LM. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates. ACS Nano. 2018; vol. 12: 8531-8539.
54.  Lin KQ, Yi J, Hu S, Liu BJ, Liu JY, Wang X, Ren B. Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. The Journal of Physical Chemistry C. 2016; 120: 20806-20803.

55. Darya Radziuk D, Moehwald H. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Journal of Physical Chemistry Chemical Physics. 2015; 17: 21072-210793.

56- Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles-Novel Materials for Chemical and Physical Applications. New J. Chem. 1998, 22, 1179-1201.
57- You, C.C.; Chompoosor, A.; Rotello, V.M. The Biomacromolecule-Nanoparticle Interface. Nano Today. 2007, 2, 34-43.
58- Jain,P.K.;El-Sayed,I.H.;El-Sayed,M.A. Au Nanoparticles Target Cancer. Nano Today. 2007, 2, 18-29.
59- Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z.Y.; Zhang, H.; Xia, Y.; Li, X. Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells. Nano Lett. 2007, 7, 1318-1322.
60- Sarkar, P.; Kumar, H.; Bar, H.; Sahoo, G.P.; De, S.P.; Mirsa, A. Journal of Luminescence. 2009, 129, 704-709.
61- Petrova, H.; Lin, C.H.; Hu, M.; Chen, J.; Siekkinen, A.R.; Xia, Y.; Sader, J.E.; Hartland, G.V. Vibrational Response of Au-Ag Nanoboxes and Nanocages to Ultrafast Laser-Induced Heating. Nano Lett. 2007, 7, 1059-1063.
62. Shrivastava S, Dash D. Label-free colorimetric estimation of proteins using nanoparticles of silver: NANO-Micro Letters 2010; 2: 164-8.
 
63. Krasteva N, Besnard I, Guse B, E. Bauer R, Mullen K, Yasuda A, et al. Self-Assembled Gold Nanoparticle/ Dendrimer Composite Films for Vapor Sensing Applications: NANO Letters 2002; 2: 551-5. 
64. Wu J, Mangham SC, Reddy VR, Manasreh MO, Weaver BD. Surface plasmon enhanced intermediate-band based quantum dots solar cell: Solar Energy Materials & Solar Cells 2012; 102: 44-9.
65. McLellan MJ, Li ZY, Andrew RS, Xia Y. The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization: NANO Letters 2007; 4: 1013-7.
66. Yu X, Wang L, Di J. Electrochemical Deposition of High Density Gold Nanoparticles on Indium/Tin Oxide Electrode for Fabrication of Biosensors: Nanoscience and Nanotechnology 2011; 11: 11084-8.
67. Wang LR, Fang Y. IR-SERS study and theoretical analogue on the adsorption behavior of pyridine carboxylic acid on silver nanoparticles: Spectrochim. Acta. Part. A. Mol. Biomol. Spectrosc 2006; 63 (3): 614-8.
68. Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163-166.
69. Michaels, A.M. Surfaced-Enhanced Raman Spectroscopy at The Single Molecule Level, Columbia University, PHD thesis, 2000.
70. Zhang, X.Y.; Hicks, E.M.; Zhao, J.; Schatz, G.C.; Van Duyne, R.P. Electrochemical Tuning of Silver Nanoparticles Fabricated by Nanosphere Lithography. Nano Lett. 2005, 5, 1503-1507.
71. L.-R. Wang and Y. Fang, "IR-SERS study and theoretical analogue on the adsorption behavior of pyridine carboxylic acid on silver nanoparticles," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 63, pp. 614-618, 2006.
72. B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, "SERS: Materials, applications, and the future," Materials today, vol. 15, pp. 16-25, 2012.
73. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, et al., "Shell-isolated nanoparticle-enhanced Raman spectroscopy," nature, vol. 464, p. 392, 2010.
74. J. F. Betz, W. Y. Wei, Y. Cheng, I. M. White, and G. W. Rubloff, "Simple SERS substrates: powerful, portable, and full of potential," Physical Chemistry Chemical Physics, vol. 16, pp. 2224-2239, 2014.
75.  Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles: Analytical. Chemistry 2014; 86(3): 1525-33.
76. Cheng M L, Tsai BC, Yang J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution: Analytica. Chimica. Acta 2011; 708: 89-96.
77.  B anta-wright S, Steiner R. Tandem Mass Spectrometry in Newborn Screening Tandem Mass Spectrometry in Newborn Screening: A. Primer. for. Neonatal. and. Nurses 2004; 18: 41-7.
78. Escobar-Morreale HF, Samino S, Insenser M, Vinaixa M, Luque-Ramı´rez M, Lasuncion, MA, Correig X. Metabolic Heterogeneity in Polycystic Ovary Syndrome Is Determined by Obesity: Plasma Metabolomic Approach Using GC-MS: Clinical. Chemistry 2012; 58: 999-1005.
79. Njagi J, Chernov MM, Leiter JC, Andreescu S. Amperometric Detection of Dopamine in Vivo with an Enzyme Based Carbon Fiber Microbiosensor: American Chemical Society- Analytical Chemistry 2010; 82: 989-97.
80. Phillips TM. Measurement of Bioactive Neuropeptides Using a Chromatographic Immunosensor Cartridge: BIOMEDICAL CHROMATOGRAPHY 1996; 10: 331-6.
 
81. Kondo DG, Hellem TL, Sung YH, Kim N, Jeong EK, DelMastro K, et al. Review:Magnetic Resonance Spectroscopy Studies of PediatricMajor Depressive Disorder: Hindawi Publishing Corporation Depression Research and Treatment 2011; 14: 13.
82. Bennet B, Tomshine J, Hara S, Ciubuc J. Ultrasensitive detection of neurotransmitters by surface enhanced raman spectroscopy for biosensing applications: Bulletin of the American Physical Society 2017; 7: 1921-8.
83. Wang C, Meloni MM, Wu X, Zhuo M, He T, Wang J, Dong P. Magnetic plasmonic particles for SERS-based bacteria sensing A review: A.I.P. Advances 2019; 9: 010701.
84. Su SR, Chen YY, Li KY, Fang YC, Wang CH, Yang CY, Chau LK, Wang SC. Electrohydrodynamically enhanced drying droplets for concentration of Salmonella bacteria prior to their detections using antibody-functionalized SERS-reporter submicron beads: Sensors and Actuators. B. Chemical 2019; 283: 384-9.
85.  Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles: Analytical. Chemistry 2014; 86(3): 1525-33.
86. M. V. Canamares, J. V. Garica-Ramos, S. Sanchez-Cortez, M. Castillejo, M. Oujja, Journal of Colloidal and
Interface Science, 326 (2008) 103-109.
87. I. Pavel, E. McCarney, A. Elkhaled, A. Morrill, K. Plaxco, M. Moskovits, J. Phys. Chem. C, 112 (2008) 4880-4883
88. J. I. Jerez-Rozo, Enhanced Raman Scattering of TNT on Nanoparticles Substrates:Ag, Au and Au/Ag Bimetallic Colloids Prepared by Reduction whit Sodium Citrate and Hydroxylamine Hydrochloride, University of Puerto Rico, MS thesis, (2007).
89. P. W. Li, J. Zhang, L. Zhang, Y. J. Mo, Vibrational Spectroscopy, 49 (2009) 2-6.
90. M. S. Kim, J. S. Kang, S. B. Park, M. S. Lee, Bull. Korean Chem. Soc, 24 (2003) 633.
91. M. Muniz-Miranda, C. Gellini, L. Bindi, Spectrochimica Acta Patr A, 73 (2009) 456-459.

92. Fikeit. M.A, Khandasammy. S.R, Mistek . E, Ahmed. Y, Halámková. L, Bueno. J, Lednev. L.K. Review Article Surface enhanced Raman spectroscopy: A review of recent applications in forensic science. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 197; 2018: 255-260.

93. P. Rostron, S. Gaber, and D. Gaber, "Raman spectroscopy, review," laser, vol. 21, p. 24, 2016
 
Volume 51, Issue 2
December 2020
Pages 501-509
  • Receive Date: 31 July 2020
  • Accept Date: 15 August 2020