A brief review on the influences of nanotubes' entanglement and waviness on the mechanical behaviors of CNTR polymer nanocomposites

Document Type: Review Paper

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

2 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Invention of carbon nanotube (CNT) in the 1990s introduced a new class of materials whose extraordinary mechanical, thermal, and electrical properties seemed appealing enough to the research community to devote their time and effort for the purpose of analyzing composite materials reinforced by CNTs. Particularly, the marvelous stiffness of CNTs has made it possible to reach a high-modulus composite once such a nanomaterial is dispersed into various types of matrices. Among all of these products, CNT-reinforced (CNTR) polymer nanocomposites (PNCs) are used more than the others due to their incredible specific stiffness and fracture toughness. Although PNCs can bring a lot for the designer due to their inherent merits, it must be pointed out that some practical phenomena take place in the microstructure of such advanced materials whose neglecting can be resulted in negative outcomes. Motivated by this reality and based upon the authors broad researches in this area, present review is organized to show how can the mechanical behaviors of PNCs be affected by entanglement of the CNTs inside the inclusions and their wavy shape.

Keywords


[1]           S. Iijima, Helical microtubules of graphitic carbon, Nature, Vol. 354, No. 6348, pp. 56-58, 1991/11/01, 1991.

[2]           S. Norouzi, M. M. S. Fakhrabadi, Nanomechanical properties of single- and double-layer graphene spirals: a molecular dynamics simulation, Applied Physics A, Vol. 125, No. 5, pp. 321, 2019/04/11, 2019.

[3]           S. Norouzi, M. M. S. Fakhrabadi, Anisotropic nature of thermal conductivity in graphene spirals revealed by molecular dynamics simulations, Journal of Physics and Chemistry of Solids, Vol. 137, pp. 109228, 2020/02/01/, 2020.

[4]           F. Ebrahimi, A. Dabbagh, 2020, Mechanics of Nanocomposites: Homogenization and Analysis, CRC Press, Boca Raton, 1sted.

[5]           S. Norouzi, A. Kianfar, M. M. S. Fakhrabadi, Multiscale simulation study of anisotropic nanomechanical properties of graphene spirals and their polymer nanocomposites, Mechanics of Materials, Vol. 145, pp. 103376, 2020/06/01/, 2020.

[6]           B. I. Yakobson, C. J. Brabec, J. Bernholc, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response, Physical Review Letters, Vol. 76, No. 14, pp. 2511-2514, 04/01/, 1996.

[7]           M. S. P. Shaffer, A. H. Windle, Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites, Advanced Materials, Vol. 11, No. 11, pp. 937-941, 1999.

[8]           R. A. Vaia, H. D. Wagner, Framework for nanocomposites, Materials Today, Vol. 7, No. 11, pp. 32-37, 2004/11/01/, 2004.

[9]           F. H. Gojny, M. H. G. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study, Composites Science and Technology, Vol. 65, No. 15, pp. 2300-2313, 2005/12/01/, 2005.

[10]         Y. S. Song, J. R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon, Vol. 43, No. 7, pp. 1378-1385, 2005/06/01/, 2005.

[11]         M.-K. Yeh, N.-H. Tai, J.-H. Liu, Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes, Carbon, Vol. 44, No. 1, pp. 1-9, 2006/01/01/, 2006.

[12]         N.-H. Tai, M.-K. Yeh, T.-H. Peng, Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites, Composites Part B: Engineering, Vol. 39, No. 6, pp. 926-932, 2008/09/01/, 2008.

[13]         H. Tan, L. Y. Jiang, Y. Huang, B. Liu, K. C. Hwang, The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials, Composites Science and Technology, Vol. 67, No. 14, pp. 2941-2946, 2007/11/01/, 2007.

[14]         L. H. Shao, R. Y. Luo, S. L. Bai, J. Wang, Prediction of effective moduli of carbon nanotube–reinforced composites with waviness and debonding, Composite Structures, Vol. 87, No. 3, pp. 274-281, 2009/02/01/, 2009.

[15]         T. H. Hsieh, A. J. Kinloch, A. C. Taylor, I. A. Kinloch, The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer, Journal of Materials Science, Vol. 46, No. 23, pp. 7525, 2011/06/29, 2011.

[16]         S. Yang, S. Yu, W. Kyoung, D.-S. Han, M. Cho, Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections, Polymer, Vol. 53, No. 2, pp. 623-633, 2012/01/24/, 2012.

[17]         D. Weidt, Ł. Figiel, Effect of CNT waviness and van der Waals interaction on the nonlinear compressive behaviour of epoxy/CNT nanocomposites, Composites Science and Technology, Vol. 115, pp. 52-59, 2015/08/12/, 2015.

[18]         M. M. Shokrieh, A. Zeinedini, Effect of CNTs debonding on mode I fracture toughness of polymeric nanocomposites, Materials & Design, Vol. 101, pp. 56-65, 2016/07/05/, 2016.

[19]         B. Chen, J. Shen, X. Ye, H. Imai, J. Umeda, M. Takahashi, K. Kondoh, Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites, Carbon, Vol. 114, pp. 198-208, 2017/04/01/, 2017.

[20]         R. Rafiee, M. Sharaei, Investigating the influence of bonded and non-bonded interactions on the interfacial bonding between carbon nanotube and polymer, Composite Structures, Vol. 238, pp. 111996, 2020/01/30, 2020.

[21]         F. Ebrahimi, A. Dabbagh, A comprehensive review on modeling of nanocomposite materials and structures, Journal of Computational Applied Mechanics, Vol. 50, No. 1, pp. 197-209, 2019.

[22]         S. Norouzi, A. Barati, R. Noroozi, Computational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites, Journal of Computational Applied Mechanics, Vol. 50, No. 2, pp. 413-419, 2019.

[23]         F. Ebrahimi, A. Dabbagh, A. Rastgoo, T. Rabczuk, Agglomeration effects on static stability analysis of multi-scale hybrid nanocomposite plates, Computers, Materials & Continua, Vol. 63, No. 1, pp. 41-64, 2020/5/11, 2020.

[24]         N. A. Siddiqui, E. L. Li, M.-L. Sham, B. Z. Tang, S. L. Gao, E. Mäder, J.-K. Kim, Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: Effects of CNT morphology and dispersion state, Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 4, pp. 539-548, 2010/04/01/, 2010.

[25]         M. R. Ayatollahi, S. Shadlou, M. M. Shokrieh, Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions, Materials & Design, Vol. 32, No. 4, pp. 2115-2124, 2011/04/01/, 2011.

[26]         V. J. Cruz-Delgado, B. L. España-Sánchez, C. A. Avila-Orta, F. J. Medellín-Rodríguez, Nanocomposites based on plasma-polymerized carbon nanotubes and Nylon-6, Polymer Journal, Vol. 44, No. 9, pp. 952-958, 2012/09/01, 2012.

[27]         M. M. Shokrieh, R. Rafiee, Development of a full range multi-scale model to obtain elastic properties of CNT/polymer composites, Iranian Polymer Journal, Vol. 21, No. 6, pp. 397-402, 2012/06/01, 2012.

[28]         S. Jamali, M. C. Paiva, J. A. Covas, Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes, Polymer Testing, Vol. 32, No. 4, pp. 701-707, 2013/06/01/, 2013.

[29]         R. Rafiee, V. Firouzbakht, Multi-scale modeling of carbon nanotube reinforced polymers using irregular tessellation technique, Mechanics of Materials, Vol. 78, pp. 74-84, 2014/11/01/, 2014.

[30]         Y. Han, X. Zhang, X. Yu, J. Zhao, S. Li, F. Liu, P. Gao, Y. Zhang, T. Zhao, Q. Li, Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites, Scientific Reports, Vol. 5, No. 1, pp. 11533, 2015/06/22, 2015.

[31]         B. K. Shrestha, R. Ahmad, S. Shrestha, C. H. Park, C. S. Kim, Globular Shaped Polypyrrole Doped Well-Dispersed Functionalized Multiwall Carbon Nanotubes/Nafion Composite for Enzymatic Glucose Biosensor Application, Scientific Reports, Vol. 7, No. 1, pp. 16191, 2017/11/23, 2017.

[32]         A. Zeinedini, M. M. Shokrieh, A. Ebrahimi, The effect of agglomeration on the fracture toughness of CNTs-reinforced nanocomposites, Theoretical and Applied Fracture Mechanics, Vol. 94, pp. 84-94, 2018/04/01/, 2018.

[33]         R. O. Medupin, O. K. Abubakre, A. S. Abdulkareem, R. A. Muriana, A. S. Abdulrahman, Carbon Nanotube Reinforced Natural Rubber Nanocomposite for Anthropomorphic Prosthetic Foot Purpose, Scientific Reports, Vol. 9, No. 1, pp. 20146, 2019/12/27, 2019.

[34]         H. Jung, H. K. Choi, Y. Oh, H. Hong, J. Yu, Enhancement of thermo-mechanical stability for nanocomposites containing plasma treated carbon nanotubes with an experimental study and molecular dynamics simulations, Scientific Reports, Vol. 10, No. 1, pp. 405, 2020/01/15, 2020.

[35]         X. Y. Guo, W. Zhang, Nonlinear vibrations of a reinforced composite plate with carbon nanotubes, Composite Structures, Vol. 135, pp. 96-108, 2016/01/01/, 2016.

[36]         F. Tornabene, N. Fantuzzi, M. Bacciocchi, E. Viola, Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells, Composites Part B: Engineering, Vol. 89, pp. 187-218, 2016/03/15/, 2016.

[37]         N. Fantuzzi, F. Tornabene, M. Bacciocchi, R. Dimitri, Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates, Composites Part B: Engineering, Vol. 115, pp. 384-408, 2017/04/15/, 2017.

[38]         E. García-Macías, L. Rodríguez-Tembleque, R. Castro-Triguero, A. Sáez, Eshelby-Mori-Tanaka approach for post-buckling analysis of axially compressed functionally graded CNT/polymer composite cylindrical panels, Composites Part B: Engineering, Vol. 128, pp. 208-224, 2017/11/01/, 2017.

[39]         F. Tornabene, N. Fantuzzi, M. Bacciocchi, Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes, Composites Part B: Engineering, Vol. 115, pp. 449-476, 2017/04/15/, 2017.

[40]         E. García-Macías, L. Rodríguez-Tembleque, A. Sáez, Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates, Composite Structures, Vol. 186, pp. 123-138, 2018/02/15/, 2018.

[41]         A. Dabbagh, A. Rastgoo, F. Ebrahimi, Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory, Thin-Walled Structures, Vol. 140, pp. 304-317, 2019/07/01/, 2019.

[42]         F. Ebrahimi, A. Dabbagh, A. Rastgoo, Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles, Mechanics Based Design of Structures and Machines, pp. 1-24, 2019.

[43]         A. Dabbagh, A. Rastgoo, F. Ebrahimi, Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory, Mechanics Based Design of Structures and Machines, pp. 1-27, 2020.

[44]         A. Dabbagh, A. Rastgoo, F. Ebrahimi, Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory, Engineering with Computers, 2020/01/19, 2020.

[45]         A. Dabbagh, A. Rastgoo, F. Ebrahimi, Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate, Engineering with Computers, 2020/05/29, 2020.

[46]         F. T. Fisher, R. D. Bradshaw, L. C. Brinson, Effects of nanotube waviness on the modulus of nanotube-reinforced polymers, Applied Physics Letters, Vol. 80, No. 24, pp. 4647-4649, 2002.

[47]         V. Anumandla, R. F. Gibson, A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites, Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 12, pp. 2178-2185, 2006/12/01/, 2006.

[48]         C. Li, T.-W. Chou, Failure of carbon nanotube/polymer composites and the effect of nanotube waviness, Composites Part A: Applied Science and Manufacturing, Vol. 40, No. 10, pp. 1580-1586, 2009/10/01/, 2009.

[49]         C.-h. Tsai, C. Zhang, D. A. Jack, R. Liang, B. Wang, The effect of inclusion waviness and waviness distribution on elastic properties of fiber-reinforced composites, Composites Part B: Engineering, Vol. 42, No. 1, pp. 62-70, 2011/01/01/, 2011.

[50]         D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Applied Physics Letters, Vol. 76, No. 20, pp. 2868-2870, 2000.

[51]         M. Zhang, J. Li, Carbon nanotube in different shapes, Materials Today, Vol. 12, No. 6, pp. 12-18, 2009/06/01/, 2009.

[52]         S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes, Science, Vol. 265, No. 5172, pp. 635-639, 1994.

[53]         M. M. Shokrieh, R. Rafiee, Stochastic multi-scale modeling of CNT/polymer composites, Computational Materials Science, Vol. 50, No. 2, pp. 437-446, 2010/12/01/, 2010.

[54]         J. Nafar Dastgerdi, G. Marquis, M. Salimi, The effect of nanotubes waviness on mechanical properties of CNT/SMP composites, Composites Science and Technology, Vol. 86, pp. 164-169, 2013/09/24/, 2013.

[55]         F. T. Fisher, R. D. Bradshaw, L. C. Brinson, Fiber waviness in nanotube-reinforced polymer composites—I: Modulus predictions using effective nanotube properties, Composites Science and Technology, Vol. 63, No. 11, pp. 1689-1703, 2003/08/01/, 2003.

[56]         R. Rafiee, Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites, Composite Structures, Vol. 97, pp. 304-309, 2013/03/01/, 2013.

[57]         N. J. Ginga, S. K. Sitaraman, The experimental measurement of effective compressive modulus of carbon nanotube forests and the nature of deformation, Carbon, Vol. 53, pp. 237-244, 2013/03/01/, 2013.

[58]         N. J. Ginga, W. Chen, S. K. Sitaraman, Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude, Carbon, Vol. 66, pp. 57-66, 2014/01/01/, 2014.

[59]         S. I. Kundalwal, M. C. Ray, Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite, Composites Part B: Engineering, Vol. 57, pp. 199-209, 2014/02/01/, 2014.

[60]         K. Yazdchi, M. Salehi, The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites, Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 10, pp. 1301-1309, 2011/10/01/, 2011.

[61]         U. A. Joshi, S. C. Sharma, S. P. Harsha, Effect of carbon nanotube orientation on the mechanical properties of nanocomposites, Composites Part B: Engineering, Vol. 43, No. 4, pp. 2063-2071, 2012/06/01/, 2012.

[62]         J. Pan, L. Bian, H. Zhao, Y. Zhao, A new micromechanics model and effective elastic modulus of nanotube reinforced composites, Computational Materials Science, Vol. 113, pp. 21-26, 2016/02/15/, 2016.

[63]         E. García-Macías, R. Castro-Triguero, Coupled effect of CNT waviness and agglomeration: A case study of vibrational analysis of CNT/polymer skew plates, Composite Structures, Vol. 193, pp. 87-102, 2018/06/01/, 2018.

[64]         L. Rodríguez-Tembleque, E. García-Macías, A. Sáez, CNT-polymer nanocomposites under frictional contact conditions, Composites Part B: Engineering, Vol. 154, pp. 114-127, 2018/12/01/, 2018.

[65]         M. Hasanzadeh, R. Ansari, M. K. Hassanzadeh-Aghdam, Micromechanical elastoplastic analysis of randomly oriented nonstraight carbon nanotube-reinforced polymer nanocomposites, Mechanics of Advanced Materials and Structures, Vol. 26, No. 20, pp. 1700-1710, 2019/10/18, 2019.

[66]         M. K. Hassanzadeh-Aghdam, R. Ansari, A. Darvizeh, Thermal expanding behavior of carbon nanotube-shape memory polymer nanocomposites, Mechanics of Advanced Materials and Structures, Vol. 26, No. 22, pp. 1858-1869, 2019/11/17, 2019.