[1] S. Iijima, Helical microtubules of graphitic carbon,
Nature, Vol. 354, No. 6348, pp. 56-58, 1991/11/01, 1991.
[2] S. Norouzi, M. M. S. Fakhrabadi, Nanomechanical properties of single- and double-layer graphene spirals: a molecular dynamics simulation,
Applied Physics A, Vol. 125, No. 5, pp. 321, 2019/04/11, 2019.
[3] S. Norouzi, M. M. S. Fakhrabadi, Anisotropic nature of thermal conductivity in graphene spirals revealed by molecular dynamics simulations,
Journal of Physics and Chemistry of Solids, Vol. 137, pp. 109228, 2020/02/01/, 2020.
[4] F. Ebrahimi, A. Dabbagh, 2020,
Mechanics of Nanocomposites: Homogenization and Analysis, CRC Press, Boca Raton, 1sted.
[5] S. Norouzi, A. Kianfar, M. M. S. Fakhrabadi, Multiscale simulation study of anisotropic nanomechanical properties of graphene spirals and their polymer nanocomposites,
Mechanics of Materials, Vol. 145, pp. 103376, 2020/06/01/, 2020.
[6] B. I. Yakobson, C. J. Brabec, J. Bernholc, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response,
Physical Review Letters, Vol. 76, No. 14, pp. 2511-2514, 04/01/, 1996.
[7] M. S. P. Shaffer, A. H. Windle, Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites,
Advanced Materials, Vol. 11, No. 11, pp. 937-941, 1999.
[8] R. A. Vaia, H. D. Wagner, Framework for nanocomposites,
Materials Today, Vol. 7, No. 11, pp. 32-37, 2004/11/01/, 2004.
[9] F. H. Gojny, M. H. G. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study,
Composites Science and Technology, Vol. 65, No. 15, pp. 2300-2313, 2005/12/01/, 2005.
[10] Y. S. Song, J. R. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,
Carbon, Vol. 43, No. 7, pp. 1378-1385, 2005/06/01/, 2005.
[11] M.-K. Yeh, N.-H. Tai, J.-H. Liu, Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes,
Carbon, Vol. 44, No. 1, pp. 1-9, 2006/01/01/, 2006.
[12] N.-H. Tai, M.-K. Yeh, T.-H. Peng, Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites,
Composites Part B: Engineering, Vol. 39, No. 6, pp. 926-932, 2008/09/01/, 2008.
[13] H. Tan, L. Y. Jiang, Y. Huang, B. Liu, K. C. Hwang, The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials,
Composites Science and Technology, Vol. 67, No. 14, pp. 2941-2946, 2007/11/01/, 2007.
[14] L. H. Shao, R. Y. Luo, S. L. Bai, J. Wang, Prediction of effective moduli of carbon nanotube–reinforced composites with waviness and debonding,
Composite Structures, Vol. 87, No. 3, pp. 274-281, 2009/02/01/, 2009.
[15] T. H. Hsieh, A. J. Kinloch, A. C. Taylor, I. A. Kinloch, The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer,
Journal of Materials Science, Vol. 46, No. 23, pp. 7525, 2011/06/29, 2011.
[16] S. Yang, S. Yu, W. Kyoung, D.-S. Han, M. Cho, Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections,
Polymer, Vol. 53, No. 2, pp. 623-633, 2012/01/24/, 2012.
[17] D. Weidt, Ł. Figiel, Effect of CNT waviness and van der Waals interaction on the nonlinear compressive behaviour of epoxy/CNT nanocomposites,
Composites Science and Technology, Vol. 115, pp. 52-59, 2015/08/12/, 2015.
[18] M. M. Shokrieh, A. Zeinedini, Effect of CNTs debonding on mode I fracture toughness of polymeric nanocomposites,
Materials & Design, Vol. 101, pp. 56-65, 2016/07/05/, 2016.
[19] B. Chen, J. Shen, X. Ye, H. Imai, J. Umeda, M. Takahashi, K. Kondoh, Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites,
Carbon, Vol. 114, pp. 198-208, 2017/04/01/, 2017.
[20] R. Rafiee, M. Sharaei, Investigating the influence of bonded and non-bonded interactions on the interfacial bonding between carbon nanotube and polymer,
Composite Structures, Vol. 238, pp. 111996, 2020/01/30, 2020.
[21] F. Ebrahimi, A. Dabbagh, A comprehensive review on modeling of nanocomposite materials and structures,
Journal of Computational Applied Mechanics, Vol. 50, No. 1, pp. 197-209, 2019.
[22] S. Norouzi, A. Barati, R. Noroozi, Computational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites,
Journal of Computational Applied Mechanics, Vol. 50, No. 2, pp. 413-419, 2019.
[23] F. Ebrahimi, A. Dabbagh, A. Rastgoo, T. Rabczuk, Agglomeration effects on static stability analysis of multi-scale hybrid nanocomposite plates,
Computers, Materials & Continua, Vol. 63, No. 1, pp. 41-64, 2020/5/11, 2020.
[24] N. A. Siddiqui, E. L. Li, M.-L. Sham, B. Z. Tang, S. L. Gao, E. Mäder, J.-K. Kim, Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: Effects of CNT morphology and dispersion state,
Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 4, pp. 539-548, 2010/04/01/, 2010.
[25] M. R. Ayatollahi, S. Shadlou, M. M. Shokrieh, Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions,
Materials & Design, Vol. 32, No. 4, pp. 2115-2124, 2011/04/01/, 2011.
[26] V. J. Cruz-Delgado, B. L. España-Sánchez, C. A. Avila-Orta, F. J. Medellín-Rodríguez, Nanocomposites based on plasma-polymerized carbon nanotubes and Nylon-6,
Polymer Journal, Vol. 44, No. 9, pp. 952-958, 2012/09/01, 2012.
[27] M. M. Shokrieh, R. Rafiee, Development of a full range multi-scale model to obtain elastic properties of CNT/polymer composites,
Iranian Polymer Journal, Vol. 21, No. 6, pp. 397-402, 2012/06/01, 2012.
[28] S. Jamali, M. C. Paiva, J. A. Covas, Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes,
Polymer Testing, Vol. 32, No. 4, pp. 701-707, 2013/06/01/, 2013.
[29] R. Rafiee, V. Firouzbakht, Multi-scale modeling of carbon nanotube reinforced polymers using irregular tessellation technique,
Mechanics of Materials, Vol. 78, pp. 74-84, 2014/11/01/, 2014.
[30] Y. Han, X. Zhang, X. Yu, J. Zhao, S. Li, F. Liu, P. Gao, Y. Zhang, T. Zhao, Q. Li, Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites,
Scientific Reports, Vol. 5, No. 1, pp. 11533, 2015/06/22, 2015.
[31] B. K. Shrestha, R. Ahmad, S. Shrestha, C. H. Park, C. S. Kim, Globular Shaped Polypyrrole Doped Well-Dispersed Functionalized Multiwall Carbon Nanotubes/Nafion Composite for Enzymatic Glucose Biosensor Application,
Scientific Reports, Vol. 7, No. 1, pp. 16191, 2017/11/23, 2017.
[32] A. Zeinedini, M. M. Shokrieh, A. Ebrahimi, The effect of agglomeration on the fracture toughness of CNTs-reinforced nanocomposites,
Theoretical and Applied Fracture Mechanics, Vol. 94, pp. 84-94, 2018/04/01/, 2018.
[33] R. O. Medupin, O. K. Abubakre, A. S. Abdulkareem, R. A. Muriana, A. S. Abdulrahman, Carbon Nanotube Reinforced Natural Rubber Nanocomposite for Anthropomorphic Prosthetic Foot Purpose,
Scientific Reports, Vol. 9, No. 1, pp. 20146, 2019/12/27, 2019.
[34] H. Jung, H. K. Choi, Y. Oh, H. Hong, J. Yu, Enhancement of thermo-mechanical stability for nanocomposites containing plasma treated carbon nanotubes with an experimental study and molecular dynamics simulations,
Scientific Reports, Vol. 10, No. 1, pp. 405, 2020/01/15, 2020.
[35] X. Y. Guo, W. Zhang, Nonlinear vibrations of a reinforced composite plate with carbon nanotubes,
Composite Structures, Vol. 135, pp. 96-108, 2016/01/01/, 2016.
[36] F. Tornabene, N. Fantuzzi, M. Bacciocchi, E. Viola, Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells,
Composites Part B: Engineering, Vol. 89, pp. 187-218, 2016/03/15/, 2016.
[37] N. Fantuzzi, F. Tornabene, M. Bacciocchi, R. Dimitri, Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates,
Composites Part B: Engineering, Vol. 115, pp. 384-408, 2017/04/15/, 2017.
[38] E. García-Macías, L. Rodríguez-Tembleque, R. Castro-Triguero, A. Sáez, Eshelby-Mori-Tanaka approach for post-buckling analysis of axially compressed functionally graded CNT/polymer composite cylindrical panels,
Composites Part B: Engineering, Vol. 128, pp. 208-224, 2017/11/01/, 2017.
[39] F. Tornabene, N. Fantuzzi, M. Bacciocchi, Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes,
Composites Part B: Engineering, Vol. 115, pp. 449-476, 2017/04/15/, 2017.
[40] E. García-Macías, L. Rodríguez-Tembleque, A. Sáez, Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates,
Composite Structures, Vol. 186, pp. 123-138, 2018/02/15/, 2018.
[41] A. Dabbagh, A. Rastgoo, F. Ebrahimi, Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory,
Thin-Walled Structures, Vol. 140, pp. 304-317, 2019/07/01/, 2019.
[42] F. Ebrahimi, A. Dabbagh, A. Rastgoo, Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles,
Mechanics Based Design of Structures and Machines, pp. 1-24, 2019.
[43] A. Dabbagh, A. Rastgoo, F. Ebrahimi, Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory,
Mechanics Based Design of Structures and Machines, pp. 1-27, 2020.
[44] A. Dabbagh, A. Rastgoo, F. Ebrahimi, Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory,
Engineering with Computers, 2020/01/19, 2020.
[45] A. Dabbagh, A. Rastgoo, F. Ebrahimi, Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate,
Engineering with Computers, 2020/05/29, 2020.
[46] F. T. Fisher, R. D. Bradshaw, L. C. Brinson, Effects of nanotube waviness on the modulus of nanotube-reinforced polymers,
Applied Physics Letters, Vol. 80, No. 24, pp. 4647-4649, 2002.
[47] V. Anumandla, R. F. Gibson, A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites,
Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 12, pp. 2178-2185, 2006/12/01/, 2006.
[48] C. Li, T.-W. Chou, Failure of carbon nanotube/polymer composites and the effect of nanotube waviness,
Composites Part A: Applied Science and Manufacturing, Vol. 40, No. 10, pp. 1580-1586, 2009/10/01/, 2009.
[49] C.-h. Tsai, C. Zhang, D. A. Jack, R. Liang, B. Wang, The effect of inclusion waviness and waviness distribution on elastic properties of fiber-reinforced composites,
Composites Part B: Engineering, Vol. 42, No. 1, pp. 62-70, 2011/01/01/, 2011.
[50] D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,
Applied Physics Letters, Vol. 76, No. 20, pp. 2868-2870, 2000.
[51] M. Zhang, J. Li, Carbon nanotube in different shapes,
Materials Today, Vol. 12, No. 6, pp. 12-18, 2009/06/01/, 2009.
[52] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes,
Science, Vol. 265, No. 5172, pp. 635-639, 1994.
[53] M. M. Shokrieh, R. Rafiee, Stochastic multi-scale modeling of CNT/polymer composites,
Computational Materials Science, Vol. 50, No. 2, pp. 437-446, 2010/12/01/, 2010.
[54] J. Nafar Dastgerdi, G. Marquis, M. Salimi, The effect of nanotubes waviness on mechanical properties of CNT/SMP composites,
Composites Science and Technology, Vol. 86, pp. 164-169, 2013/09/24/, 2013.
[55] F. T. Fisher, R. D. Bradshaw, L. C. Brinson, Fiber waviness in nanotube-reinforced polymer composites—I: Modulus predictions using effective nanotube properties,
Composites Science and Technology, Vol. 63, No. 11, pp. 1689-1703, 2003/08/01/, 2003.
[56] R. Rafiee, Influence of carbon nanotube waviness on the stiffness reduction of CNT/polymer composites,
Composite Structures, Vol. 97, pp. 304-309, 2013/03/01/, 2013.
[57] N. J. Ginga, S. K. Sitaraman, The experimental measurement of effective compressive modulus of carbon nanotube forests and the nature of deformation,
Carbon, Vol. 53, pp. 237-244, 2013/03/01/, 2013.
[58] N. J. Ginga, W. Chen, S. K. Sitaraman, Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude,
Carbon, Vol. 66, pp. 57-66, 2014/01/01/, 2014.
[59] S. I. Kundalwal, M. C. Ray, Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite,
Composites Part B: Engineering, Vol. 57, pp. 199-209, 2014/02/01/, 2014.
[60] K. Yazdchi, M. Salehi, The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites,
Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 10, pp. 1301-1309, 2011/10/01/, 2011.
[61] U. A. Joshi, S. C. Sharma, S. P. Harsha, Effect of carbon nanotube orientation on the mechanical properties of nanocomposites,
Composites Part B: Engineering, Vol. 43, No. 4, pp. 2063-2071, 2012/06/01/, 2012.
[62] J. Pan, L. Bian, H. Zhao, Y. Zhao, A new micromechanics model and effective elastic modulus of nanotube reinforced composites,
Computational Materials Science, Vol. 113, pp. 21-26, 2016/02/15/, 2016.
[63] E. García-Macías, R. Castro-Triguero, Coupled effect of CNT waviness and agglomeration: A case study of vibrational analysis of CNT/polymer skew plates,
Composite Structures, Vol. 193, pp. 87-102, 2018/06/01/, 2018.
[64] L. Rodríguez-Tembleque, E. García-Macías, A. Sáez, CNT-polymer nanocomposites under frictional contact conditions,
Composites Part B: Engineering, Vol. 154, pp. 114-127, 2018/12/01/, 2018.
[65] M. Hasanzadeh, R. Ansari, M. K. Hassanzadeh-Aghdam, Micromechanical elastoplastic analysis of randomly oriented nonstraight carbon nanotube-reinforced polymer nanocomposites,
Mechanics of Advanced Materials and Structures, Vol. 26, No. 20, pp. 1700-1710, 2019/10/18, 2019.
[66] M. K. Hassanzadeh-Aghdam, R. Ansari, A. Darvizeh, Thermal expanding behavior of carbon nanotube-shape memory polymer nanocomposites,
Mechanics of Advanced Materials and Structures, Vol. 26, No. 22, pp. 1858-1869, 2019/11/17, 2019.