[1] M. Biot, Thermoelasticity and Irreversible Thermodynamics, Journal of Applied Physics Vol. 27, No. 3, pp. 240-253, 1956.
[2] H. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, pp. 299-309, 1967.
[3] A. E. Green, K. A. Lindsay, Thermoelasticity, Journal of Elasticity, Vol. 2, pp. 1-7, 1972.
[4] A. E. Green, P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, proceedings of the Royal Society of London. Series A, Vol. 432, pp. 171-194, 1991.
[5] A. E. Green, P. M. Naghdi, Thermoelasticity without energy dissipation, Journal of Elasticity, Vol. 31, pp. 189-208, 1993.
[6] D. Y. Tzou, Thermal Shock Phenomena in Solids Under High-Rate Response, Annual Review of Heat Transfer, Vol. 4, pp. 111-185, 1992.
[7] D. Y. Tzou, A unified field approach for heat conduction from macro-to micro-scales, Journal of Heat Transfer, Vol. 117, No. 1, pp. 8-16, 1995.
[8] D. Y. Tzou, The generalized lagging response in small-scale and high-rate heating, International Journal of Heat and Mass Transfer, Vol. 38, No. 17, pp. 3231-3240, 1995.
[9] D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature, Applied Mechanics Reviews, Vol. 51, No. 12, pp. 705-729, 1998.
[10] R. B. Hetnarski, J. Ignaczak, Generalized thermoelasticity, Journal of Thermal Stresses, Vol. 22, No. 4-5, pp. 451-476, 1999.
[11] J. Ignaczak, Generalized thermoelasticity and its applications, in: R. B. Hetnarski, Mechanics and Mathematical Methods, Eds., pp. 279-354, North Holland: Elsevier Science Publications B. v., 1989.
[12] R. Quintanilla, R. Racke, A note on stability in dual-phase-lag heat conduction, International Journal of Heat and Mass Transfer, Vol. 49, No. 7-8, pp. 1209-1213, 2006.
[13] R. Quintanilla, R. Racke, Qualitative Aspects in Dual Phase-Lag Heat Conduction, proceedings of the Royal Society of London. Series A, Vol. 463, pp. 659-674, 2007.
[14] A. M. Zenkour, A.E. Abouelregal, Effects of phase-lags in a thermoviscoelastic orthotropic continuum with a cylindrical hole and variable thermal conductivity, Archives of Mechanics, Vol. 67, No. 6, pp. 457-475, 2015.
[15] A. M. Zenkour, D.S. Mashat, A.E. Abouelregal, The Effect of Dual-Phase-Lag Model on Reflection of Thermoelastic Waves in a Solid Half Space with Variable Material Properties, Acta Mechanica Solida Sinica, Vol. 26, pp. 659–670, 2013.
[16] S. Kant, S. Mukhopadhyay, Investigation on effects of stochastic loading at the boundary under thermoelasticity with two relaxation parameters, Applied Mathematical Modelling, Vol. 54, pp. 648-669, 2018.
[17] K. Borgmeyer, R. Quintanilla, R. Racke, Phase-Lag Heat Condition: Decay Rates for Limit Problems and Well-Posedness, Journal of Evolution Equations, Vol. 14, pp. 863–884, 2014.
[18] Z. Liu, R. Quintanilla, Time Decay in Dual-Phase-Lag Thermoelasticity: Critical Case, Communications on Pure & Applied Analysis, Vol. 17, No. 1, pp. 177-190, 2018.
[19] F. L. Guo, G. Q. Wang, G. A. Rogerson, Analysis of thermoelastic damping in micro- and nanomechanical resonators based on dual-phase-lagging generalized thermoelasticity theory, International Journal of Engineering Science, Vol. 60, pp. 59-65, 2012.
[20] B. N. Banerjee, R. A. Burton, Thermoelastic instability in lubricated sliding between solid surfaces, Nature, Vol. 261, pp. 399–400, 1976.
[21] A. K. Wong, S. A. Dunn, J. G. Sparrow, Residual stress measurement by means of the thermoelastic effect, Nature, Vol. 332, pp. 613–615, 1988.
[22] M. Z. Nejad, M. Jabbari, A. Hadi, A review of functionally graded thick cylindrical and conical shells, Journal of Computational Applied Mechanics, Vol. 48, No. 2, pp. 357-370, 2017.
[23] M. Hosseini, M. Shishesaz, A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness, Thin-Walled Structures, Vol. 134, pp. 508-523, 2019.
[24] M. Z. Nejad, N. Alamzadeh, A. Hadi, Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition, Composites Part B: Engineering, Vol. 154, pp. 410-422, 2018.
[25] A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, Numerical modelling of a spheroid living cell membrane under hydrostatic pressure, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 8, pp. 083501, 2018.
[26] M. Gharibi, M. Z. Nejad, A. Hadi, Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius, Journal of Computational Applied Mechanics, Vol. 48, No. 1, pp. 89-98, 2017.
[27] S. Chiriţă, High-order effects of thermal lagging in deformable conductors, International Journal of Heat and Mass Transfer, Vol. 127, No. Part C, pp. 965-974, 2018.
[28] S. Chiriţă, On the time differential dual-phase-lag thermoelastic model, Meccanica, Vol. 52, pp. 349–361, 2017.
[29] A. E. Abouelregal, Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat, Waves in Random and Complex Media, 17 Jun, 2019.
[30] A. E. Abouelregal, M. A. Elhagary, A. Soleiman, K. M. Khalil, Generalized thermoelastic-diffusion model with higher-order fractional time-derivatives and four-phase-lags, Mechanics Based Design of Structures and Machines, pp. 1-18, 2020.
[31] C. Cattaneo, A Form of Heat-Conduction Equations Which Eliminates the Paradox of Instantaneous Propagation, Comptes Rendus, Vol. 247, pp. 431-433, 1958.
[32] P. Vernotte, Les paradoxes de la theorie continue de l'equation de la chaleur, Comptes Rendus, Vol. 246, pp. 3154-3155, 1958.
[33] N. S. Clarke, J. S. Burdess, Rayleigh Waves on a Rotating Surface, Journal of Applied Mechanics, Vol. 61, No. 3, pp. 724-726, 1994.
[34] M. A. A. Abdou, M. I. A. Othman, R. S. Tantawi, N. T. Mansour, Effect of Rotation and Gravity on Generalized Thermoelastic Medium with Double Porosity under L-S Theory, Journal of Materials Science & Nanotechnology, Vol. 6, No. 3, pp. 304-317, 2018.
[35] A. Gunghas, R. Kumar, S. Deswal, K. K. Kalkal, Influence of Rotation and Magnetic Fields on a Functionally Graded Thermoelastic Solid Subjected to a Mechanical Load, Journal of Mathematics, Vol. 2019, pp. 1-16, 2019.
[36] A. E. Abouelregal, On Green and Naghdi Thermoelasticity Model without Energy Dissipation with Higher Order Time Differential and Phase-Lags, Journal of Applied and Computational Mechanics, Vol. 6, No. 3, pp. 445-456, 2020.
[37] A. E. Abouelregal, Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags, Materials Research Express, Vol. 6:116535, No. 11, 2019.
[38] A. M. Zenkour, A. E. Abouelregal, Nonlocal thermoelastic vibrations for variable thermal conductivity nanobeams due to harmonically varying heat, Journal of Vibroengineering, Vol. 16, No. 8, pp. 3665-3678, 2014.
[39] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace Transform, Journal of Computational and Applied Mathematics, Vol. 10, pp. 113-132, 1984.
[40] D. Y. Tzou, Experimental support for the lagging behavior in heat propagation, Journal of thermophysics and heat transfer, Vol. 9, No. 4, pp. 686-693, 1995.
[41] M. I. A. Othman, A. E. Abouelregal, Magnetothermoelstic analysis for an infinite solid cylinder with variable thermal conductivity due to harmonically varying heat, Microsystem Technologies, Vol. 23, No. 12, pp. 5635–5644, 2017.