[1] E. P. Carden, P. Fanning, Vibration based condition monitoring: a review, Structural health monitoring, Vol. 3, No. 4, pp. 355-377, 2004.
[2] J. K. Sinha, K. Elbhbah, A future possibility of vibration based condition monitoring of rotating machines, Mechanical Systems and Signal Processing, Vol. 34, No. 1-2, pp. 231-240, 2013.
[3] A. Zabihi-Hesari, S. Ansari-Rad, F. A. Shirazi, M. Ayati, Fault detection and diagnosis of a 12-cylinder trainset diesel engine based on vibration signature analysis and neural network, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 233, No. 6, pp. 1910-1923, 2019.
[4] F. A. Shirazi, M. Ayati, A. Zabihi-Hesari, S. Ansari-Rad, Fuel Injection Fault Detection in a Diesel Engine Based on Vibration Signature Analysis, in Proceeding of, The 5th Iranian International NDT Conference, pp. 1-7.
[5] M. Ayati, F. A. Shirazi, S. Ansari-Rad, A. Zabihihesari, Classification-Based Fuel Injection Fault Detection of a Trainset Diesel Engine Using Vibration Signature Analysis, Journal of Dynamic Systems, Measurement, and Control, Vol. 142, No. 5, 2020.
[6] R. Isermann, 2011, Fault-diagnosis applications: model-based condition monitoring: actuators, drives, machinery, plants, sensors, and fault-tolerant systems, Springer Science & Business Media,
[7] S. Orhan, N. Aktürk, V. Celik, Vibration monitoring for defect diagnosis of rolling element bearings as a predictive maintenance tool: Comprehensive case studies, Ndt & E International, Vol. 39, No. 4, pp. 293-298, 2006.
[8] Z. Peng, F. Chu, Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography, Mechanical systems and signal processing, Vol. 18, No. 2, pp. 199-221, 2004.
[9] A. Jami, Impeller fault detection under fluctuating flow conditions using artificial neural networks, Thesis, University of Pretoria, 2016.
[10] M. Saberi, A. Azadeh, A. Nourmohammadzadeh, P. Pazhoheshfar, Comparing performance and robustness of SVM and ANN for fault diagnosis in a centrifugal pump, in Proceeding of.
[11] N. Sakthivel, B. B. Nair, M. Elangovan, V. Sugumaran, S. Saravanmurugan, Comparison of dimensionality reduction techniques for the fault diagnosis of mono block centrifugal pump using vibration signals, Engineering Science and Technology, an International Journal, Vol. 17, No. 1, pp. 30-38, 2014.
[12] M. Nasiri, M. Mahjoob, H. Vahid-Alizadeh, Vibration signature analysis for detecting cavitation in centrifugal pumps using neural networks, in Proceeding of, IEEE, pp. 632-635.
[13] M. A. S. Al Tobi, G. Bevan, K. Ramachandran, P. Wallace, D. Harrison, Experimental set-up for investigation of fault diagnosis of a centrifugal pump, Int. J. Mech. Aerospace Ind. Mechatronic Manuf. Eng, Vol. 11, No. 3, pp. 481-485, 2017.
[14] A. Al-Braik, O. Hamomd, F. Gu, A. Ball, Diagnosis of impeller faults in a centrifugal pump based on spectrum analysis of vibration signals, in Proceeding of, British Institute of Non-Destructive Testing, pp.
[15] E. Niazi, M. Mahjoob, A. Bangian, Experimental and numerical study of cavitation in centrifugal pumps, in Proceeding of, American Society of Mechanical Engineers Digital Collection, pp. 395-400.
[16] A. A. Abdel Fatah, M. A. Hassan, M. Lotfy, A. S. Dimitri, Health Monitoring of Centrifugal Pumps Using Digital Models, Journal of Dynamic Systems, Measurement, and Control, Vol. 141, No. 9, 2019.
[17] R. Spence, J. Amaral-Teixeira, Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests, Computers & fluids, Vol. 37, No. 6, pp. 690-704, 2008.
[18] J. Gonza´ lez, J. n. Ferna´ ndez, E. Blanco, C. Santolaria, Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump, J. Fluids Eng., Vol. 124, No. 2, pp. 348-355, 2002.
[19] C. Mullen, T. Vaughan, M. Voisin, M. Brennan, P. Layrolle, L. McNamara, Cell morphology and focal adhesion location alters internal cell stress, Journal of The Royal Society Interface, Vol. 11, No. 101, pp. 20140885, 2014.
[20] R. Barrio, J. Parrondo, E. Blanco, Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points, Computers & Fluids, Vol. 39, No. 5, pp. 859-870, 2010.
[21] A. A. Noon, M.-H. Kim, Erosion wear on centrifugal pump casing due to slurry flow, Wear, Vol. 364, pp. 103-111, 2016.
[22] K. Guleren, A. Pinarbasi, Numerical simulation of the stalled flow within a vaned centrifugal pump, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 218, No. 4, pp. 425-435, 2004.
[23] Y. Fu, J. Yuan, S. Yuan, G. Pace, L. d'Agostino, P. Huang, X. Li, Numerical and experimental analysis of flow phenomena in a centrifugal pump operating under low flow rates, Journal of Fluids Engineering, Vol. 137, No. 1, 2015.
[24] K. Cheah, T. Lee, S. Winoto, Z. Zhao, Numerical flow simulation in a centrifugal pump at design and off-design conditions, International Journal of Rotating Machinery, Vol. 2007, 2007.
[25] L. Obregon, G. Valencia, J. D. Forero, Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD, 2019.