[1] S. S. Rao, 2009,
Engineering optimization: theory and practice, John Wiley & Sons,
[2] A. Moradi, A. M. Nafchi, A. Ghanbarzadeh, E. Soodmand, Optimization of linear and nonlinear full vehicle model for improving ride comfort vs. road holding with the Bees Algorithm, in
Proceeding of, IEEE
, pp. 17-22.
[3] A. Moradi, K. H. Shirazi, M. Keshavarz, A. D. Falehi, M. Moradi, Smart piezoelectric patch in non-linear beam: design, vibration control and optimal location,
Transactions of the Institute of Measurement and Control, Vol. 36, No. 1, pp. 131-144, 2014.
[4] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen, 2007,
Evolutionary algorithms for solving multi-objective problems, Springer,
[5] M. E. Felezi, S. Vahabi, N. Nariman-Zadeh, Pareto optimal design of reconfigurable rice seedling transplanting mechanisms using multi-objective genetic algorithm,
Neural Computing and Applications, Vol. 27, No. 7, pp. 1907-1916, 2016.
[6] M. Salehpour, G. Etesami, A. Jamali, N. Nariman-zadeh, Improving ride and handling of vehicle vibration model using Pareto robust genetic algorithms, in
Proceeding of, IEEE
, pp. 272-276.
[7] A. Moradi, H. Makvandi, I. B. Salehpoor, Multi objective optimization of the vibration analysis of composite natural gas pipelines in nonlinear thermal and humidity environment under non-uniform magnetic field,
JOURNAL OF COMPUTATIONAL APPLIED MECHANICS, Vol. 48, No. 1, pp. 53-64, 2017.
[8] B. C. Arnold, 2015,
Pareto distributions, Chapman and Hall/CRC,
[9] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,
Journal of global optimization, Vol. 11, No. 4, pp. 341-359, 1997.
[10] H. Wang, W. Wang, Z. Cui, H. Sun, S. Rahnamayan, Heterogeneous differential evolution for numerical optimization,
The Scientific World Journal, Vol. 2014, 2014.
[11] J. Tvrdık, Competitive differential evolution and genetic algorithm in GA-DS toolbox,
Tech. Comput. Prague, Praha, Humusoft, Vol. 1, No. 2, pp. 99-106, 2006.
[12] G. Etesami, M. E. Felezi, N. Nariman-Zadeh, Pareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm,
The International Journal of Automotive Engineering, Vol. 9, No. 3, pp. 3021-3032, 2019.
[13] F. Qiao, H. Miao, Optimization design for planar four-bar mechanism based on differential evolution, in
Proceeding of.
[14] R. R. Bulatović, S. R. Dordević, On the optimum synthesis of a four-bar linkage using differential evolution and method of variable controlled deviations,
Mechanism and Machine Theory, Vol. 44, No. 1, pp. 235-246, 2009.
[15] W. Lin, K. Hsiao, A new differential evolution algorithm with a combined mutation strategy for optimum synthesis of path-generating four-bar mechanisms,
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 231, No. 14, pp. 2690-2705, 2017.
[16] M. G. Villarreal-Cervantes, C. A. Cruz-Villar, J. Alvarez-Gallegos, E. A. Portilla-Flores, Differential evolution techniques for the structure-control design of a five-bar parallel robot,
Engineering Optimization, Vol. 42, No. 6, pp. 535-565, 2010.
[17] P. Shiakolas, D. Koladiya, J. Kebrle, On the optimum synthesis of six-bar linkages using differential evolution and the geometric centroid of precision positions technique,
Mechanism and Machine Theory, Vol. 40, No. 3, pp. 319-335, 2005.
[18] B. Feng, N. Morita, T. Torii, A new optimization method for dynamic design of planar linkage with clearances at joints—optimizing the mass distribution of links to reduce the change of joint forces,
Journal of mechanical design, Vol. 124, No. 1, pp. 68-73, 2002.
[19] Z. Ye, M. Smith, Complete balancing of planar linkages by an equivalence method,
Mechanism and Machine Theory, Vol. 29, No. 5, pp. 701-712, 1994.
[20] Z. Li, Sensitivity and robustness of mechanism balancing,
Mechanism and Machine Theory, Vol. 33, No. 7, pp. 1045-1054, 1998.
[21] V. Arakelian, M. Dahan, Partial shaking moment balancing of fully force balanced linkages,
Mechanism and Machine Theory, Vol. 36, No. 11-12, pp. 1241-1252, 2001.
[22] V. H. Arakelian, M. Smith, Shaking force and shaking moment balancing of mechanisms: a historical review with new examples,
Journal of Mechanical Design, Vol. 127, No. 2, pp. 334-339, 2005.
[23] V. Arakelian, Shaking moment cancellation of self-balanced slider–crank mechanical systems by means of optimum mass redistribution,
Mechanics Research Communications, Vol. 33, No. 6, pp. 846-850, 2006.
[24] F. R. Tepper, G. G. Lowen, General theorems concerning full force balancing of planar linkages by internal mass redistribution,
Journal of Engineering for Industry, Vol. 94, No. 3, pp. 789-796, 1972.
[25] I. Esat, H. Bahai, A theory of complete force and moment balancing of planer linkage mechanisms,
Mechanism and Machine Theory, Vol. 34, No. 6, pp. 903-922, 1999.
[26] S. Erkaya, Investigation of balancing problem for a planar mechanism using genetic algorithm,
Journal of Mechanical Science and Technology, Vol. 27, No. 7, pp. 2153-2160, 2013.
[27] A. Lilla, M. Khan, P. Barendse, Comparison of differential evolution and genetic algorithm in the design of permanent magnet generators, in
Proceeding of, IEEE
, pp. 266-271.
[28] N. K. Madavan, B. A. Biegel, Multiobjective optimization using a Pareto differential evolution approach, 2002.
[29] K. Chaudhary, H. Chaudhary, Optimum Balancing of Slider-crank Mechanism Using Equimomental System of Point-masses,
Procedia Technology, Vol. 14, pp. 35–42, 12/31, 2014.