[1] Y. Z. Wang, T. J. Tsai, Static and dynamic analysis of a viscoelastic plate by the finite element method, Applied Acoustics, Vol. 25, No. 2, pp. 77-94, 1988/01/01/, 1988.
[2] A. Y. Aköz, F. Kadıoğlu, G. Tekin, Quasi-static and dynamic analysis of viscoelastic plates, Mechanics of Time-Dependent Materials, Vol. 19, No. 4, pp. 483-503, 2015.
[3] W. Flügge, 2013, Viscoelasticity, Springer Berlin Heidelberg,
[4] R. Christensen, 2012, Theory of Viscoelasticity: An Introduction, Elsevier Science,
[5] H. F. Brinson, L. C. Brinson, 2015, Polymer Engineering Science and Viscoelasticity: An Introduction, Springer US,
[6] D. Gutierrez-Lemini, 2014, Engineering viscoelasticity, Springer,
[7] N. W. Tschoegl, 2012, The phenomenological theory of linear viscoelastic behavior: an introduction, Springer Science & Business Media,
[8] J. Wang, B. Birgisson, A time domain boundary element method for modeling the quasi-static viscoelastic behavior of asphalt pavements, Engineering analysis with boundary elements, Vol. 31, No. 3, pp. 226-240, 2007.
[9] Q. Xu, M. Rahman, Finite element analyses of layered visco‐elastic system under vertical circular loading, International journal for numerical and analytical methods in geomechanics, Vol. 32, No. 8, pp. 897-913, 2008.
[10] G. Ghazlan, S. Caperaa, C. Petit, An incremental formulation for the linear analysis of thin viscoelastic structures using generalized variables, International journal for numerical methods in engineering, Vol. 38, No. 19, pp. 3315-3333, 1995.
[11] J. Sorvari, J. Hämäläinen, Time integration in linear viscoelasticity—a comparative study, Mechanics of Time-Dependent Materials, Vol. 14, No. 3, pp. 307-328, 2010.
[12] I. P. King, On the finite element analysis of two-dimensional problems with time dependent properties, Ph.D. Thesis, University of California, Berkeley, USA, 1965.
[13] M. Zocher, S. Groves, D. H. Allen, A three‐dimensional finite element formulation for thermoviscoelastic orthotropic media, International Journal for Numerical Methods in Engineering, Vol. 40, No. 12, pp. 2267-2288, 1997.
[14] N. Khaji, S. H. Javaran, New complex Fourier shape functions for the analysis of two-dimensional potential problems using boundary element method, Engineering Analysis with Boundary Elements, Vol. 37, No. 2, pp. 260-272, 2013.
[15] S. Hamzehei-Javaran, Approximation of the state variables of Navier’s differential equation in transient dynamic problems using finite element method based on complex Fourier shape functions, Asian Journal of Civil Engineering, pp. 1-20, 2018.
[16] M. A. Zocher, A thermoviscoelastic finite element formulation for the analysis of composites, Ph.D. Thesis, Texas A&M University, USA, 1995.
[17] M. J. Powell, Radial basis functions in 1990, Adv. Numer. Anal., Vol. 2, pp. 105-210, 1992.
[18] J. Wang, G. Liu, A point interpolation meshless method based on radial basis functions, International Journal for Numerical Methods in Engineering, Vol. 54, No. 11, pp. 1623-1648, 2002.
[19] J. Wang, G. Liu, On the optimal shape parameters of radial basis functions used for 2-D meshless methods, Computer methods in applied mechanics and engineering, Vol. 191, No. 23-24, pp. 2611-2630, 2002.
[20] M. Golberg, C. Chen, H. Bowman, Some recent results and proposals for the use of radial basis functions in the BEM, Engineering Analysis with Boundary Elements, Vol. 23, No. 4, pp. 285-296, 1999.
[21] E. J. Kansa, Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates, Computers & Mathematics with applications, Vol. 19, No. 8-9, pp. 127-145, 1990.
[22] E. J. Kansa, Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations, Computers & mathematics with applications, Vol. 19, No. 8-9, pp. 147-161, 1990.
[23] R. Franke, Scattered data interpolation: tests of some methods, Mathematics of computation, Vol. 38, No. 157, pp. 181-200, 1982.
[24] S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Advances in Computational Mathematics, Vol. 11, No. 2-3, pp. 193-210, 1999.
[25] R. E. Carlson, T. A. Foley, The parameter R2 in multiquadric interpolation, Computers & Mathematics with Applications, Vol. 21, No. 9, pp. 29-42, 1991.
[26] M. Golberg, C. Chen, S. Karur, Improved multiquadric approximation for partial differential equations, Engineering Analysis with boundary elements, Vol. 18, No. 1, pp. 9-17, 1996.
[27] D. L. Logan, 2011, A first course in the finite element method, Cengage Learning,
[28] J. N. Reddy, 2005, An introduction to the finite element method, McGraw-Hill Education, USA, Thirded.
[29] O. C. Zienkiewicz, 1971, The Finite Element Method in Engineering Science, McGraw-Hill Book Co Inc. London, UK
[30] M. H. Sadd, 2009, Elasticity: theory, applications, and numerics, Academic Press,
[31] D. S. Simulia, ABAQUS CAE Theories Manual, ABAQUS Inc., 2014.
[32] J. Barlow, G. A. O. Davis, Selected FE benchmarks in structural and thermal analysis, Test No. LE1, NAFEMS Report FEBSTA, pp. 1986.
[33] S. Timoshenko, J. N. Goodier, 1970, Theory of Elasticity, McGraw-Hill Book Co. Inc, New York, USA., Thirded.