Computational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites

Document Type : Review Paper


1 College of Engineering, School of Mechanical Engineering, University of Tehran, Tehran, Iran

2 Department of Mechanical Engineering, University of Guilan, Rasht, Guilan, Iran


Computational methods can play a significant role in characterization of the carbon-based nanocomposites by providing simulation results. In this paper, we prepared a brief review of the mechanical properties of carbon nanotubes (CNTs), Graphene, and coiled carbon nanotube (CCNTs) reinforced nanocomposites. Varies simulation studies in mechanical properties of nanocomposites including representative volume element (RVE) approaches using the finite element, multiscale simulation and molecular dynamics studied is mentioned. All the simulation results show a significant role of interphase properties, interphase thickness, elastic properties of nanostructure, various loading conditions and orientation of the nanostructure on mechanical behavior of nanostructure reinforced nanocomposite. Some researchers employed various approaches for comparing simulation results of the effective elastic properties of nanostructures reinforced nanocomposite. Although it is a huge challenge for scientists to make a connection between MD simulations and continuum mechanics, in some researches scientists tried to couple MD and continuum mechanics for more precise results in nanocomposites.


1.             Bodaghi, M., et al., 4D printing self-morphing structures. Materials, 2019. 12(8): p. 1353.
2.             Ebrahimi, F. and A. Dabbagh, Mechanics of Nanocomposites: Homogenization and Analysis. 2020.
3.             Ebrahimi, F., M. Nouraei, and A. Dabbagh, Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mechanics Based Design of Structures and Machines, 2019: p. 1-24.
4.             Ebrahimi, F. and A. Dabbagh, A comprehensive review on modeling of nanocomposite materials and structures. Journal of Computational Applied Mechanics, 2019. 50(1): p. 197-209.
5.             Farajpour, M., et al., Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms. Mechanics of Advanced Materials and Structures, 2019. 26(17): p. 1469-1481.
6.             Dastani, K., et al., Revealing electrical stresses acting on the surface of protoplast cells under electric field. European Journal of Mechanics-B/Fluids, 2019. 76: p. 292-302.
7.             Hadi, A., et al., Effects of stretching on molecular transfer from cell membrane by forming pores. Soft Materials, 2019: p. 1-9.
8.             Hosseini, M., M. Shishesaz, and A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness. Thin-Walled Structures, 2019. 134: p. 508-523.
9.             Nejad, M.Z., N. Alamzadeh, and A. Hadi, Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition. Composites Part B: Engineering, 2018. 154: p. 410-422.
10.          Nejad, M.Z., et al., Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory. Structural Engineering and Mechanics, 2018. 67(4): p. 417-425.
11.          Hosseini, M., et al., A review of size-dependent elasticity for nanostructures. Journal of Computational Applied Mechanics, 2018. 49(1): p. 197-211.
12.          Zamani Nejad, M., M. Jabbari, and A. Hadi, A review of functionally graded thick cylindrical and conical shells. Journal of Computational Applied Mechanics, 2017. 48(2): p. 357-370.
13.          Nejad, M.Z., A. Hadi, and A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory. International Journal of Engineering Science, 2016. 103: p. 1-10.
14.          Nejad, M.Z. and A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams. International Journal of Engineering Science, 2016. 105: p. 1-11.
15.          Nejad, M.Z. and A. Hadi, Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams. International Journal of Engineering Science, 2016. 106: p. 1-9.
16.          Hadi, A., M.Z. Nejad, and M. Hosseini, Vibrations of three-dimensionally graded nanobeams. International Journal of Engineering Science, 2018. 128: p. 12-23.
17.          Mittal, G., et al., A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 2015. 21: p. 11-25.
18.          Hussain, F., et al., Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. Journal of composite materials, 2006. 40(17): p. 1511-1575.
19.          Dai, G. and L. Mishnaevsky Jr, Graphene reinforced nanocomposites: 3D simulation of damage and fracture. Computational Materials Science, 2014. 95: p. 684-692.
20.          Dikin, D., et al., Graphene-based composite materials. Nature, 2006. 442(7100): p. 282-286.
21.          Ramanathan, T., et al., Functionalized graphene sheets for polymer nanocomposites. Nature nanotechnology, 2008. 3(6): p. 327-331.
22.          Mensah, B., et al., Graphene-reinforced elastomeric nanocomposites: a review. Polymer Testing, 2018. 68: p. 160-184.
23.          Schopp, S., et al., Functionalized Graphene and Carbon Materials as Components of StyreneButadiene Rubber Nanocomposites Prepared by Aqueous Dispersion Blending. Macromolecular Materials and Engineering, 2014. 299(3): p. 319-329.
24.          Lian, H., et al., Study on modified graphene/butyl rubber nanocomposites. I. Preparation and characterization. Polymer Engineering & Science, 2011. 51(11): p. 2254-2260.
25.          Gan, L., et al., Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Composites Part B: Engineering, 2015. 69: p. 237-242.
26.          Lin, F., Y. Xiang, and H.-S. Shen, Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites–a molecular dynamics simulation. Composites Part B: Engineering, 2017. 111: p. 261-269.
27.          Kim, H., A.A. Abdala, and C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules, 2010. 43(16): p. 6515-6530.
28.          Young, R.J., et al., The mechanics of graphene nanocomposites: a review. Composites Science and Technology, 2012. 72(12): p. 1459-1476.
29.          Daneshmehr, A., A. Rajabpoor, and A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories. International Journal of Engineering Science, 2015. 95: p. 23-35.
30.          Ebrahimi, F. and A. Dabbagh, Wave dispersion characteristics of embedded graphene platelets-reinforced composite microplates. The European Physical Journal Plus, 2018. 133(4): p. 151.
31.          Sengupta, R., et al., A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in polymer science, 2011. 36(5): p. 638-670.
32.          Zheng, W., X. Lu, and S.C. Wong, Electrical and mechanical properties of expanded graphitereinforced highdensity polyethylene. Journal of Applied Polymer Science, 2004. 91(5): p. 2781-2788.
33.          Li, B. and W.-H. Zhong, Review on polymer/graphite nanoplatelet nanocomposites. Journal of materials science, 2011. 46(17): p. 5595-5614.
34.          Cho, J., J. Luo, and I.M. Daniel, Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis. Composites science and technology, 2007. 67(11-12): p. 2399-2407.
35.          Kalaitzidou, K., H. Fukushima, and L.T. Drzal, Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites. Composites Part A: Applied Science and Manufacturing, 2007. 38(7): p. 1675-1682.
36.          Yasmin, A. and I.M. Daniel, Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer, 2004. 45(24): p. 8211-8219.
37.          Yasmin, A., J.-J. Luo, and I.M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites. Composites Science and Technology, 2006. 66(9): p. 1182-1189.
38.          Gojny, F., et al., Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites science and technology, 2004. 64(15): p. 2363-2371.
39.          Gojny, F.H., et al., Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Composites Science and Technology, 2005. 65(15-16): p. 2300-2313.
40.          Andrews, R. and M. Weisenberger, Carbon nanotube polymer composites. Current Opinion in Solid State and Materials Science, 2004. 8(1): p. 31-37.
41.          Spitalsky, Z., et al., Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science, 2010. 35(3): p. 357-401.
42.          Thostenson, E.T., Z. Ren, and T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology, 2001. 61(13): p. 1899-1912.
43.          Schadler, L., S.a. Giannaris, and P. Ajayan, Load transfer in carbon nanotube epoxy composites. Applied physics letters, 1998. 73(26): p. 3842-3844.
44.          Qian, D., et al., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied physics letters, 2000. 76(20): p. 2868-2870.
45.          Hu, Z., et al., Mechanical property characterization of carbon nanotube modified polymeric nanocomposites by computer modeling. Composites Part B: Engineering, 2014. 56: p. 100-108.
46.          Lu, X. and Z. Hu, Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling. Composites Part B: Engineering, 2012. 43(4): p. 1902-1913.
47.          Montazeri, A. and R. Naghdabadi, Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling. Journal of applied polymer science, 2010. 117(1): p. 361-367.
48.          Ayatollahi, M., S. Shadlou, and M. Shokrieh, Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Composite Structures, 2011. 93(9): p. 2250-2259.
49.          Zhu, R., E. Pan, and A. Roy, Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites. Materials Science and Engineering: A, 2007. 447(1-2): p. 51-57.
50.          Thostenson, E.T. and T.-W. Chou, On the elastic properties of carbon nanotube-based composites: modelling and characterization. Journal of Physics D: Applied Physics, 2003. 36(5): p. 573.
51.          Rahmani, O., et al., Dynamic response of a double, single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects. Mechanics of Advanced Materials and Structures, 2017. 24(15): p. 1274-1291.
52.          Norouzi, S. and M.M.S. Fakhrabadi, Nanomechanical properties of single-and double-layer graphene spirals: a molecular dynamics simulation. Appl. Phys. A., 2019. 125(5): p. 321.
53.          Norouzi, S. and M.M.S. Fakhrabadi, Anisotropic nature of thermal conductivity in graphene spirals revealed by molecular dynamics simulations. Journal of Physics and Chemistry of Solids, 2019: p. 109228.
54.          Li, X.-F., K.-T. Lau, and Y.-S. Yin, Mechanical properties of epoxy-based composites using coiled carbon nanotubes. Composites science and technology, 2008. 68(14): p. 2876-2881.
55.          Lau, K.-t., M. Lu, and K. Liao, Improved mechanical properties of coiled carbon nanotubes reinforced epoxy nanocomposites. Composites Part A: applied science and manufacturing, 2006. 37(10): p. 1837-1840.
56.          Pipes, R.B. and P. Hubert, Helical carbon nanotube arrays: mechanical properties. Composites Science and Technology, 2002. 62(3): p. 419-428.
57.          Ghaderi, S.H. and E. Hajiesmaili, Nonlinear analysis of coiled carbon nanotubes using the molecular dynamics finite element method. Materials Science and Engineering: A, 2013. 582: p. 225-234.
58.          Ju, S.-P., et al., A molecular dynamics study of the mechanical properties of a double-walled carbon nanocoil. Computational Materials Science, 2014. 82: p. 92-99.
59.          Feng, C., et al., Predicting mechanical properties of carbon nanosprings based on molecular mechanics simulation. Composite Structures, 2014. 114: p. 41-50.
60.          Ghaderi, S.H. and E. Hajiesmaili, Molecular structural mechanics applied to coiled carbon nanotubes. Computational Materials Science, 2012. 55: p. 344-349.
61.          Fakhrabadi, M.M.S., et al., Investigation of buckling and vibration properties of hetero-junctioned and coiled carbon nanotubes. Computational Materials Science, 2013. 73: p. 93-112.
62.          Tian, L. and X. Guo, Fracture and defect evolution in carbon nanocoil–A molecular dynamics study. Computational Materials Science, 2015. 103: p. 126-133.
63.          Wu, J., et al., NanohingeInduced Plasticity of Helical Carbon Nanotubes. Small, 2013. 9(21): p. 3561-3566.
64.          Wu, J., et al., Giant stretchability and reversibility of tightly wound helical carbon nanotubes. Journal of the American Chemical Society, 2013. 135(37): p. 13775-13785.
65.          Lau, K.T., M. Lu, and D. Hui, Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures. Compos. Part. B-Eng., 2006. 37(6): p. 437-448.
66.          Khani, N., M. Yildiz, and B. Koc, Elastic properties of coiled carbon nanotube reinforced nanocomposite: a finite element study. Mater. Design., 2016. 109: p. 123-132.
67.          Hosseini, M., et al., Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory. International Journal of Applied Mechanics, 2017. 9(06): p. 1750087.
68.          Hbaieb, K., et al., Modelling stiffness of polymer/clay nanocomposites. Polymer., 2007. 48(3): p. 901-909.
69.          Kim, B.C. and S.W. Park, Fracture toughness of the nano-particle reinforced epoxy composite. Composite structures, 2008. 86(1-3): p. 69-77.
70.          Ho, M.-W., et al., Mechanical properties of epoxy-based composites using nanoclays. Composite structures, 2006. 75(1-4): p. 415-421.
71.          Adeli, M.M., et al., Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory. The European Physical Journal Plus, 2017. 132(9): p. 393.
72.          Liu, Y.J. and X. Chen, Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mechanics of materials, 2003. 35(1-2): p. 69-81.
73.          Georgantzinos, S., G. Giannopoulos, and N. Anifantis, Investigation of stress–strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method. Theoretical and Applied Fracture Mechanics, 2009. 52(3): p. 158-164.
74.          Giannopoulos, G., S. Georgantzinos, and N. Anifantis, A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites. Composites Part B: Engineering, 2010. 41(8): p. 594-601.
75.          Joshi, U.A., S.C. Sharma, and S. Harsha, Analysis of elastic properties of carbon nanotube reinforced nanocomposites with pinhole defects. Computational Materials Science, 2011. 50(11): p. 3245-3256.
76.          Joshi, U.A., S.C. Sharma, and S. Harsha, Effect of carbon nanotube orientation on the mechanical properties of nanocomposites. Composites Part B: Engineering, 2012. 43(4): p. 2063-2071.
77.          Joshi, P. and S.H. Upadhyay, Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite. Computational Materials Science, 2014. 87: p. 267-273.
78.          Gupta, A. and S. Harsha, Analysis of mechanical properties of carbon nanotube reinforced polymer composites using multi-scale finite element modeling approach. Composites Part B: Engineering, 2016. 95: p. 172-178.
79.          Odegard, G.M., S.-J.V. Frankland, and T.S. Gates, Effect of nanotube functionalization on the elastic properties of polyethylene nanotube composites. Aiaa Journal, 2005. 43(8): p. 1828-1835.
80.          Al-Ostaz, A., et al., Molecular dynamics simulation of SWCNT–polymer nanocomposite and its constituents. Journal of Materials Science, 2008. 43(1): p. 164-173.
81.          Alian, A.R. and S.A. Meguid, Multiscale modeling of nanoreinforced composites, in Advances in Nanocomposites. 2016, Springer. p. 1-39.
82.          Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
83.          Bunch, J.S., et al., Electromechanical resonators from graphene sheets. Science, 2007. 315(5811): p. 490-493.
84.          Meyer, J.C., et al., The structure of suspended graphene sheets. Nature, 2007. 446(7131): p. 60.
85.          Zhang, Y.Y. and Y. Gu, Mechanical properties of graphene: Effects of layer number, temperature and isotope. Computational Materials Science, 2013. 71: p. 197-200.
86.          Shiu, S.-C. and J.-L. Tsai, Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Composites Part B: Engineering, 2014. 56: p. 691-697.
87.          Rahman, R. and A. Haque, Molecular modeling of crosslinked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Composites Part B: Engineering, 2013. 54: p. 353-364.
88.          Mokhalingam, A., D. Kumar, and A. Srivastava, Mechanical behaviour of graphene reinforced aluminum nano composites. Materials Today: Proceedings, 2017. 4(2): p. 3952-3958.
89.          Hadden, C.M., et al., Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments. Carbon, 2015. 95: p. 100-112.
90.          Alkhateb, H., A. Al-Ostaz, and A. Cheng, Molecular dynamics simulations of graphite-vinylester nanocomposites and their constituents. Carbon letters, 2010. 11(4): p. 316-324.
91.          Lu, C.-T., et al., A comparison of the elastic properties of graphene-and fullerene-reinforced polymer composites: the role of filler morphology and size. Scientific reports, 2016. 6: p. 31735.
92.          Montazeri, A. and H. Rafii-Tabar, Multiscale modeling of graphene-and nanotube-based reinforced polymer nanocomposites. Physics Letters A, 2011. 375(45): p. 4034-4040.
93.          Chandra, Y., et al., Multiscale hybrid atomistic-FE approach for the nonlinear tensile behaviour of graphene nanocomposites. Composites Part A: Applied Science and Manufacturing, 2013. 46: p. 147-153.
94.          Dai, G. and L.J.C.M.S. Mishnaevsky Jr, Graphene reinforced nanocomposites: 3D simulation of damage and fracture. Computational Materials Science, 2014. 95: p. 684-692.
95.          Liu, L., F. Liu, and J. Zhao, Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications. Nano Research, 2014. 7(5): p. 626-657.
96.          Park, S.-H., et al., Superior electrical and mechanical characteristics observed through the incorporation of coiled carbon nanotubes, in comparison to non-coiled forms, in polymers. Polymer, 2013. 54(4): p. 1318-1322.
97.          Mortazavi, B., J. Bardon, and S. Ahzi, Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput. Mater. Sci., 2013. 69: p. 100-106.
98.          Singh, V., et al., Graphene based materials: past, present and future. Progress in materials science, 2011. 56(8): p. 1178-1271.
99.          Mütschele, T. and R. Kirchheim, Hydrogen as a probe for the average thickness of a grain boundary. Scripta metallurgica, 1987. 21(8): p. 1101-1104.
100.        Hayashida, T., L. Pan, and Y. Nakayama, Mechanical and electrical properties of carbon tubule nanocoils. Physica B: Condensed Matter, 2002. 323(1-4): p. 352-353.
101.        Chen, X., et al., Mechanics of a carbon nanocoil. Nano Letters, 2003. 3(9): p. 1299-1304.
102.        Wu, J., et al., Carbon Nanotubes: NanohingeInduced Plasticity of Helical Carbon Nanotubes (Small 21/2013). Small, 2013. 9(21): p. 3545-3545.
103.        Fakhrabadi, M.M.S., et al., Vibrational analysis of carbon nanotubes using molecular mechanics and artificial neural network. Physica E: Low-Dimensional Systems and Nanostructures, 2011. 44(3): p. 565-578.
Volume 50, Issue 2
December 2019
Pages 413-419
  • Receive Date: 04 December 2019
  • Revise Date: 29 December 2019
  • Accept Date: 14 December 2019