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1. Introduction 

Nanotechnology can appropriately be defined as researchers 

at atomic and molecular scales in designing, modeling, 

fabrication, and manipulation. This topic is a multi-disciplinary 
field of different fundamental sciences and engineering. 

Nowadays, scientists are looking for new and advanced materials 

to draw out their utilization in order to improve world life 

quality[1-4]. Nanomaterials are one of the most recent and 

alluring fields in which several studies have been done in 

especially in design and fabrication[5-16]. The significance of 

nanomaterials becomes remarkable after an investigation of 

nanomaterials to use them in nanoelectronic circuits of new 

sensors.  Although materials in nanoscale have excellent 

characteristics, carbon-based materials are more interesting for 

some of the scientists because of their unique mechanical, 
thermal and electrical properties [17]. Also, Nanoscale materials, 

with their high thermal, electrical and mechanical properties, 

have been widely used as reinforcements for improving 

mechanical properties of composites without increasing their 

weight significantly. For the same amount of mass, 

nanomaterials have a relatively high surface area to volume ratio 

as compared to larger forms of the material, which makes them 

more reactive[18]. Additionally, since the transference of load 

between matrix and fillers in composite materials occurs through 

their contacting surfaces, reinforcement with nanomaterials 

could be more effective than micro and macro reinforcement. 

Nanomaterials which are mostly used to enhance the properties 

of nanocomposites are as follows: graphene [19-30], graphite 

[31-37] carbon nanotubes (CNTs)[38-51], graphene spirals[52, 

53], coiled carbon nanotubes (CCNTs) [54-67] and nanoclays 
[68-71]. In this review we have mentioned varies simulation 

studies in mechanical properties of nanocomposites including 

representative volume element (RVE) approaches using the 

finite element, multiscale simulation and molecular dynamics 

studies. 

 

2. Carbon nanotube reinforced nanocomposites 

 CNTs are allotropes of carbon that have cylindrical 

structures, in which carbon atoms are bonded together in 

hexagonal arrangements. These nanostructures exhibit 

extraordinary properties that make them invaluable for many 
engineering applications. For instance, these lightweight 

structures are the strongest and stiffest materials that have been 

achieved by scientists to date and accordingly are widely used as 

reinforcements in nanocomposites. The development of new 

composite materials has long been of interest to researchers. 

Traditional CNTs are strong reinforcements for composite 

materials; incorporation of these fillers into the polymer matrix, 

however, can reduce fracture toughness of composite and 

increase its brittleness. Liu et al [72] employed representative 

volume element (RVE) approaches using the finite element 

method for simulation the effective elastic properties of CNT 
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reinforced nanocomposite. Their results show that the 

reinforcing capabilities of the carbon nanotubes in a matrix are a 

significant influence on increasing stiffness of the 

nanocomposite. In another study [73] representative volume 
element (RVE) model is created to investigate the mechanical 

behavior of Single-walled carbon nanotubes (SWCNT) 

reinforced rubber nanocomposites using multiscale finite 

element method.  Anifantis et al [74] investigated the effect of 

the interface on the effective elastic properties of CNT reinforced 

nanocomposite for various volume fractions using representative 

cylindrical volume element model. Ayatollahi et al [48] 

presented a multiscale simulation to investigate the nonlinear 

properties of SWCN reinforced nanocomposite under various 

loading conditions. Their results show that the ratio is the 

important factor in elastic properties of nanocomposite; also the 

strong interphase has more effects on the nanocomposite 
Stiffness in comparing weaker interphase. The effects of pinhole 

defects and waviness of carbon nanotube on the mechanical 

properties of nanocomposite are studied by  Joshi et al [75]. In 

this study, the mechanical properties of representative volume 

element (RVE) model for nanocomposite are obtained for 

waviness index of carbon nanotube; also the effect of number and 

type of the defects on stiffness of nanocomposite is evaluated. 

According to the results with increasing number of pinhole 

defects, as well as with increasing the waviness number the 

stiffness of nanocomposite decreases. In another study [76] the 

effect of carbon nanotube (CNT) orientation on the mechanical 
properties, including Young’s modulus and Poisson's ratio of 

nanocomposites under lateral and axial load was examined using 

representative volume element (RVE). Joshi and Upadhyay [77] 

investigated the effects of interphase properties on mechanical 

behavior of long and short multiwalled carbon nanotubes 

(MWCNTs) reinforced nanocomposite. Gupta and Harsha [78] 

studied the effects of vacancies on zigzag and armchair carbon 

nanotube on Young's modulus of CNT  reinforced 

nanocomposite. Their results show that the presence of a vacancy 

on CNT significantly reduced the stiffness of nanocomposites. 

Furthermore, some researchers studied the mechanical 

properties of CNT-based nanocomposites using molecular 
dynamics simulations. Odegard et al [79] studied the bulk elastic 

properties of a functionalized and nonfunctionalized single-

walled carbon nanotube reinforced polyethylene nanocomposite 

in crystalline and amorphous polyethylene matrix using a 

hierarchical multiscale method. Their results reveal that the 

stiffness of nanocomposites for functionalized carbon nanotubes 

are less or equal to those of the nanocomposite without 

functionalizing nanotubes. Al-Ostaz et al [80] investigate the 

elastic properties, more precisely the engineering constants of 

carbon nanotubes and nanocomposites thereof with aligned and 

randomly oriented nanoparticles using molecular dynamics 
simulations. 

Meguid et al [81] exhibited a different multiscale method to 

evaluate the elastic and interfacial properties of carbon nanotube 

(CNT)-reinforced nanocomposites. They used the two-step 

approach to estimate the bulk properties of nanocomposite, firs 

molecular dynamics simulation, and Second, the 

micromechanics models and combined  Monte Carlo finite-

element (FE) modeling. Wu et al. [82] worked on carbon 

nanotube and core-shell nanowire structures; they discussed 

electromechanical and resistance-change memory devices. 

 

3. Graphene  reinforced nanocomposites 
Graphene sheets can be considered as an efficient substitution 

if their high electrical conductivity can be investigated to obtain 

a strong current-generated magnetic field [83]. Graphene 

nanostructures are scientifically and commercially crucial due to 

their special molecular structure, which is monoatomic in 

thickness, rigorously two-dimensional, and highly conjugated. 

Therefore, graphene presents extraordinary electrical, optical, 

thermal and mechanical properties. Liu et al. [84] discussed the 

surface modification of graphene which has a considerable 

advantage in sensors. 

Moreover, they investigated the chemical sensors and 

biosensors and their application in different aspects. Zhang et al. 
[85] applied MD analysis to find the elastic modulus, fracture 

strain and fracture stress of graphene. They proved that the 

temperature gradient has more influence on graphene mechanical 

properties in comparison with the layer number in the multilayer 

graphene. Shiu and Tsai [86] used MD simulations to study the 

graphene reinforced nanocomposites different morphologies and 

revealed that composites with intercalated graphene possess 

greater elastic modulus than composites reinforced by graphene 

platelets. MD simulation provides detailed information on the 

deformation and damage of nanomechanism[26, 87-91]. 

On the other hand, to investigate the specimen’s properties, 
continuum mechanics is more efficient. Although it is a huge 

challenge for scientists to make a connection between MD 

simulations and continuum mechanics, in some researches 

scientists tried to couple MD and continuum mechanics for 

graphene composites. By employing a combined approach of 

MD, molecular structural mechanics and FEM the elastic 

constants of nanocomposites were calculated [92]. Chandra et al. 

[93] applied multiscale modeling to estimate the effect of 

graphene sheets’ orientation on the stiffness of the composites. 

Dai and Mishnaevsky [94] presented a 3D computational model 

of graphene-reinforced polymeric nanocomposites to evaluate 

damage and fracture of these materials. They applied inverse 
modeling to evaluate interface properties; it is found that the 

mechanical properties of the interface are almost 75% higher 

than pure matrix. Also, they found that by increasing the aspect 

ratio of the fillers, elastic modulus increases. K. Hbaieb et al  [68] 

compared the results of two and three-dimensional finite element 

models for the stiffness of the nanocomposite. They show that 

the two-dimensional model is simpler and  does not accurately 

predict the stiffness. Also, The MorieTanaka model results are 

compared with the MorieTanaka model. The results for 

randomly oriented particles show that the MorieTanaka model in 

compare three-dimensional model overestimates the stiffness of 
clay reinforced nanocomposites. 

 

4. Coiled Carbon nanotube reinforced nanocomposites 

CCNTs are a form of CNTs where unique properties of 

straight CNTs are combined with morphological characteristics 

to promote the properties of CNTs [64, 95]. For example, load 

transfer and bonding strength between CCNTs and polymer 

matrix are greater than those between straight CNTs and polymer 
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matrix in nanocomposites [65, 96]. Due to these potentials, more 

attention is paid to CCNTs, and CCNTs reinforced 

nanocomposites in recent years. Lau et al. [65] examined 

synthesis methods of CCNTs and their potential applications in 
advanced composites. They stated that the use of CCNTs as 

reinforcements not only can increase composites’ strength but 

also can increase their toughness. Li et al. [54] investigated the 

mechanical behaviour of CCNTs reinforced epoxy-based 

composites using tensile and nano-indentation tests. They also 

studied dispersion and interlock action of CCNTs embedded in 

epoxy resin by in situ scanning electron microscopy (SEM). 

According to this research, the hardness, elastic modulus, and 

tensile strength of the composites increase by increasing the 

weight percentage of the fillers. Also, CCNTs dispersed well and 

interlocked tightly with the matrix. Experimental study of the 

behaviour of nanomaterials is a challenging task and says little 
about the physics of deformation process and the effect of 

various parameters [64]. Also, the results of the tests depend 

intensively on the fabrication of nanostructures with controlled 

such characteristics as shape and size [97]. As a consequence, 

experimental tests to characterize the mechanical response of the 

nanomaterials have serious limitations. However, computational 

methods—such as molecular dynamics and finite element—have 

been proved to be successful. Molecular dynamics simulations 

are so time-consuming for simulation of mechanical behaviour 

of complex systems like nanocomposites containing a great 

number of fillers with various shapes, sizes and orientations then 
Finite element method, nevertheless, is considered to be a more 

promising tool for prediction and assessment of the mechanical 

behavior of such complex systems as carbon-based 

nanocomposites.  The quality and properties of fillers are key to 

the performance of composite materials. Parameters of fillers—

namely geometry, concentration and properties—play an 

important role in the reinforcement of composite materials. As to 

nanocomposites, thickness and properties of the interphase layer 

are other influencing factors [97, 98]. This issue is not true in the 

case of micro composites as the thickness of the interphase layer 

is in the range of 1-2 nm [99]. Therefore, it could be neglected in 

micromechanical modelling. Mortazavi et al. [97] studied the 
effect of fillers geometry, volume fraction, and properties 

contrast and, in particular, the effect of interphase thickness and 

properties contrast on effective thermal conductivity and elastic 

stiffness of nanocomposites utilizing 3D finite element 

simulation. The considered geometries for fillers are a long 

cylinder, sphere, and thin disc. They have found that although the 

effect of interphase is considerable for spherical fillers, it is less 

effective when fillers’ geometry deviates more from the spherical 

shape. CCNTs are helical structures that have several geometric 

parameters such as tube diameter, coil diameter, helix angle and 

number of coils. When these structures are used as 
reinforcements in nanocomposites, the parameters mentioned 

above affect the overall behavior of nanocomposites. Khani et al. 

[66] developed a 3D finite element model and employed it to 

study the effect of interphase, volume fraction, orientation and 

geometric parameters on the elastic behavior of nanocomposite 

with CCNT fillers. They also proposed an algorithm to answer 

the question of whether or not nanocomposites with spring fillers 

are appropriate alternatives to those with single-walled CNT 

(SWCNTs) fillers. The authors concluded that SWCNT fillers 

provide better reinforcement compared to CCNT inclusions with 

the same volume to surface area ratio. 

 Among carbon-based nanofillers, recently, a significant 
number of researches focused on Carbon Nano Coils (CNCs) 

because of their particular geometry and physical properties. The 

electric conductivity of CNC was calculated between 107 to 180 

s/cm by Hayashida et al. [100]; thus, CNC is an appropriate 

material for nanoscale electronic applications. The spring 

constant of CNC was determined equal to 0.12 n/m which has an 

acceptable agreement with experimental results [101].  

Molecular Dynamics (MD) and Molecular Mechanics (MM) 

are one of the practical methods to study and to model carbon-

based nanomaterials. Wu et al. [64, 102] analyzed the CNC’s 

energy absorption capacity. Buckling analysis of CNTs shows 

that length decrease and diameter increase lead to greater 
buckling loads. Also, by increasing the pitch number of CNCs, 

the natural frequencies decline [61]. Ghaderi and Hajiesmili [57] 

investigated the fracture strain and fracture load of CNCs using 

MD and Finite element method. They revealed that the fracture 

load per atom of the CNCs are lower than the corresponding 

armchair CNTs. Fakhrabadi et al. [103] presented an MM based 

FEM modeling of CNCs and their application as mass sensors. 

Besides, FEM has been used in several works to evaluate the 

influence of interphase zone between fillers and matrix on the 

nanocomposite’s properties.  

 

5. Conclusion 

Development in simulation methods for nanocomposites 

based on carbon nanostructure rapidly evolving this research 

area. In this review varies simulation studies in mechanical 

properties of nanocomposites including representative volume 

element (RVE) approaches using the finite element, multiscale 

simulation and molecular dynamics studied is mentioned. All the 

studies show a significant role of interphase properties on 

mechanical behavior of nanostructure reinforced nanocomposite. 
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