[1] M. C. Boyce, E.M. Arruda, Constitutive models of rubber elasticity: a review, Rubber Chemistry and Technology, Vol. 73, No. 3, pp. 504-523, 2000.
[2] W. Ma, B. Qu, F. Guan, Effect of the friction coefficient for contact pressure of packer rubber, Journal of Mechanical Engineering Science, Vol. 228, No. 16, pp. 2881-2887, 2014.
[3] T. Sussman, K. J. Bathe, A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Computers & Structures, Vol. 26, No. 112, pp. 357-109, 1987.
[5] J. C. Simo, R. L. Taylor, Penalty function formulations for incompressible nonlinear elastostatics, Computer Methods in Applied Mechanics and Engineering, Vol. 35, pp. 107-118, 1982.
[7] J. S.
Chen, C.
Pan, A pressure projection method for nearly incompressible rubber hyperelasticity, Part I: Theory,
Journal of Applied Mechanics, Vol. 63, No. 4, pp. 862-868, 1996.
[8] J. S.
Chen, C. T. Eu, C.
Pan, A pressure projection method for nearly incompressible rubber hyperelasticity, Part II: Applications,
Journal of Applied Mechanics, Vol. 63, No. 4, pp. 869-876, 1996.
[9] I. Bijelonja, I. Demirdžic, S. Muzaferija, A finite volume method for large strain analysis of incompressible hyperelastic materials, International Journal for Numerical methods in Engineering, Vol. 64, pp. 1594-1609, 2005.
[10] C. A. C. Silva, M. L. Bittencourtb, Structural shape optimization of 3D nearly-incompressible hyperelasticity problems, Latin American Journal of Solids and Structures, Vol. 5, pp. 129-156, 2008.
[11] S. Doll, K. Schweizerhof, On the development of volumetric strain energy functions, Journal of Applied Mechanics, Vol. 97, pp.17–21, 2000.
[12] H. Ghaemi, K. Behdinan, A. Spence, On the development of compressible pseudo-strain energy density function for elastomers Part 1. Theory and experiment, Journal of Materials Processing Technology, Vol. 178, pp. 307-316, 2006.
[13] G. Montella, A. Calabrese, G. Serino, Mechanical characterization of a Tire Derived Material: experiments, hyperelastic modeling and numerical validation, Construction and Building Materials, Vol. 66, pp. 336-347, 2014.
[14] V. Dias, C. Odenbreit, O. Hechler, F. Scholzen, T. B. Zineb, Development of a constitutive hyperelastic material law for numerical simulations of adhesive steel–glass connections using structural silicone, International Journal of Adhesion and Adhesives, Vol. 48, pp. 194–209, 2014.
[15] Y. Zhu, X. Y. Luo, R. W. Ogden, Nonlinear axisymmetric deformations of an elastic tube under external pressure, European Journal of Mechanics- A/Solids, Vol. 29, No. 2, pp. 216-229, 2010.
[16] M. Tanveer, J. W. Zu, Non-linear vibration of hyperelastic axisymmetric solids by a mixed p-type method, International Journal of Non-Linear Mechanics, Vol. 47, pp. 30-41, 2012.
[18] H. R. Eipakchi, Third-order shear deformation theory for stress analysis of a thick conical shell under pressure, Journal of Mechanics of materials and structures, Vol. 5, No. 1, 1-17, 2010.
[19] M. Ghannad, G. H. Rahimi, M. Z. Nejad, Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials, Composites: Part B, Vol. 45, pp. 388-396, 2013.
[20] M. Jabbari, M. Z. Nejad, M. Ghannad, Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness, Composites: Part B, Vol. 96, pp. 20-34, 2016.
[21] H. Gharooni, M. Ghannad, M. Z. Nejad, Thermo-elastic analysis of clamped-clamped thick FGM cylinders by using third-order shear deformation theory, Latin American Journal of Solids and Structures, Vol. 13, No. 4, pp. 750-774, 2016.
[22] J. Vossoughi, A. Tozeren, Determination of an effective shear modulus of aorta, Russian Journal of Biomechanics, Vol. 1-2, pp. 20-36, 1998.
[23]
T. E. Carew,
R. N. Vaishnav,
D. J. Patel, Compressibility of the arterial wall,
Circulation Research, Vol. 23, No. 1, pp. 61–68, 1968.
[24]
K. L. Dorrington,
N. G. McCrum, Elastin as a rubber,
Biopolymers, Vol. 16, No. 6, pp. 1201-1222, 1977.
[25] L. A. Mihai, A. Goriely, How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity, Journal of Royal Society A, Vol.473, No. 2207, 20170607, 2017.
[26] J. D. Humphrey, S. L. O’Rourke, 2015, An Introduction to Biomechanics Solids and Fluids, Analysis and Design, 2nd ed., Springer, New York.
[27] D. Azar, D. Ohadi, A. Rachev, J. F. Eberth, M. J. Uline, T. Shazly, Mechanical and geometrical determinants of wall stress in abdominal aortic aneurysms: A computational study, PLoS ONE, Vol. 13, No. 2, e0192032, 2018.
[28] J. N. Reddy, 2002, Energy principles and variational methods in applied mechanics, Wiley, New York.
[29] J. T. Oden, A theory of penalty methods for finite element approximations of highly nonlinear problems in continuum mechanics, Computers and Structures, Vol. 8, pp. 445-449, 1978.
[30] G. A. Holzapfel, 2000, Nonlinear Solid Mechanics, a Continuum Approach for Engineering, Wiley, New York.
[31] Y. Başar, D. Weichert, 2000, Nonlinear Continuum Mechanics of Solids, Springer, Berlin.
[32] I. Doghri, 2000, Mechanics of Deformable Solids: Linear, Nonlinear, Analytical and Computational Aspects, Springer, Berlin.
[33] J. N. Reddy, 2004, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed., CRC Press, New York.
[34] A. H. Nayfeh, 1981, Introduction to Perturbation Techniques, Wiley, New York.
[35] Y. Payan, J. Ohayon, (Eds.) 2017, Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling, World Bank Publications, London.
[36] G. A. Holzapfel, R. W. Ogden, (Eds.) 2003, Biomechanics of soft tissue in cardiovascular systems, Springer-Verlag, Austria.
[37] J. H. Kim, S. Avril, A. Duprey, J. P. Favre, Experimental characterization of rupture in human aortic aneurysms using full-field measurement technique, Biomechanics and Modeling in Mechanobiology, Vol. 11, No. 6, pp. 841-854, 2012.
[38] G. A. Holzapfel, T. C. Gasser, Computational stress–deformation analysis of arterial walls including high-pressure response International Journal of Cardiology, Vol. 116, pp. 78-85, 2007.
[39] R. Mihara, A. Takasu, K. Maemura, T. Minami, Prolonged severe hemorrhagic shock at a mean arterial pressure of 40 mmHg does not lead to brain damage in rats, Acute Medicine & Surgery, Vol. 5, pp. 350-357, 2018.
[40] M. Cecconi, D. D. Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, J. L. Vincent, A. Rhodes, Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine, Intensive Care Medicine, Vol. 40, pp. 1795-1815, 2014.
[41] B. R.
Simon, M. V.
Kaufmann, M. A.
McAfee, A. L.
Baldwin, L. M.
Wilson, Identification and determination of material properties for porohyperelastic analysis of large arteries,
Journal of Biomechanical Engineering, Vol. 120, No. 2, pp. 188-194, 1998.