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1. Introduction 

Hyperelastic materials are quite common in many engineering 

applications. In the last decades, many constitutive models are 

developed for hyperelastic materials, which can be used in 

computational model according to the application. The 

Mooney-Rivlin model of hyperelastic materials can simulate 
most of the mechanical behaviour of the rubber materials. The 

model provides a good description of the mechanical properties 

of rubber materials when deformation is less than 150% [1]. 

Rubber products are used in different industrial applications; 

such as rubber hose to carry fluids, rubber anti-vibration 

mountings, cylindrical pneumatic floating rubber fenders for 

boats and so on. Furthermore, rubber seals for sealing 

connectors are used to very easily seal on the internal or the 

external diameters of test parts which have smooth cylindrical 

connections. Rubber cylindrical sleeves have been used for 

many years successfully for label printing and have been 
proven of value for the established printing processes. The 

Mooney-Rivlin model of rubber materials completely satisfies 

the performance calculation of packer rubber materials. When 

the packer rubber supports pressure from a liquid, it 

experiences a relatively large deformation, which produces a 

larger contact pressure and forms a seal between the rubber and 

the casing, resulting in sealing of the annular gap and isolation 

of the production layer. The load capacity of the packer rubber 

is a function of the contact pressure that exists during the 

sealing process [2]. These materials are incompressible or 

almost incompressible and undergo large strains when 

subjected to loads. Nevertheless, computational modelling 

poses challenges owing to incompressibility. For example, the 

displacement based finite element methods, which are widely 

used for various applications and materials, are not efficient for 

almost incompressible materials. Sussman and Bathe [3] 
introduce a displacement-pressure (u/p) finite element 

formulation for the geometrically and materially nonlinear 

analysis of compressible and almost incompressible solids. An 

important research on "slightly compressible" concept was 

developed by LevinsonI and Burgesse in 1971 [4]. Simo and 

Taylor [5] in 1982 analyzed incompressible nonlinear elastic 

solids by a penalty function approach. They investigated the 

formulation and numerical analysis of constitutive equations 

for finite elasticity in terms of principal stretches in 1991 [6]. 

Chen and their assistants [7] presented a pressure projection 

method for the nonlinear analysis of structures made of nearly 
incompressible hyperelastic materials in 1996. The main focus 

of their second part of the paper was to demonstrate the 

performance of the previous method and to address some of the 

issues related to the analysis of engineering elastomers 

including the proper selection of strain energy density 

functions [8]. Bijelonja et al. [9] presented development of a 

displacement-pressure based finite volume formulation for 

modelling of large strain problems involving incompressible 

hyperelastic materials. The incompressibility constraint is 

enforced by employing the integral form of the mass 

ART ICLE  INFO ABST RACT  

Article history: 

Received: 18 February 2019 

Accepted: 15 April 2019 

In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable 

thickness made of hyperelastic materials is presented. The governing equilibrium equations for 

the cylindrical shell with variable thickness under non-uniform internal pressure are derived based 

on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and 

homogenous hyperelastic material in nearly incompressible condition. Two-term Mooney-Rivlin 

type material is considered which is a suitable hyperelastic model for rubbers. Boundary Layer 

Method of the perturbation theory which is known as Match Asymptotic Expansion (MAE) is 

used for solving the governing equations. In order to validate the results of the current analytical 

solution in analyzing pressurized hyperelastic thick cylinder with variable thickness, a numerical 

solution based on Finite Element Method (FEM) have been investigated. Afterwards, for a rubber 

case study, displacements, stresses and hydrostatic pressure distribution resulting from MAE and 

FEM solution have been presented. Furthermore, the effects of geometry, loading, material 

properties and incompressibility parameter have been studied. Considering the applicability of the 

rubber elasticity theory to aortic soft tissues such as elastin, the behaviour of blood vessels under 

non-uniform pressure distribution has been investigated. The results prove the effectiveness of 

FSDT and MAE combination to derive and solve the governing equations of nonlinear problems 

such as nearly incompressible hyperelastic shells. 

Keywords: 

Variable thickness 

 Blood vessel 

 Hyperelastic material 

Mooney-Rivlin model 

Match Asymptotic Expansion 

mailto:Ghannad.mehdi@gmail.com
https://www.sciencedirect.com/science/article/pii/0020740371900427#!
https://www.sciencedirect.com/science/article/pii/0020740371900427#!


Journal of Computational Applied Mechanics, Vol. 50, No. 2, December 2019 

 

396 

 

conservation equation in deformed configurations of the body 

and a Mooney–Rivlin incompressible material model is used 

for material description. Silva and Bittencourt [10] presented 

shape optimization of nearly incompressible hyperelastic 

structural problems for the Mooney-Rivlin hyperelastic model. 

Doll and Schweizerhof [11] reviewed the isochoric-volumetric 

decoupling of the strain energy function. Ghaemi et al. [12] 

developed a compressible pseudo-strain energy function that 

describes the mechanical behaviour of rubber-like materials. 

Montella et al. [13] presented the mechanical behaviour of a 

Tire Derived Material in details. A hyper elastic material law 
for silicones has been developed and validated by Dias et al. 

[14] based on a strain energy function.  

The problem of the finite axisymmetric deformation of a 

thick-walled circular cylindrical elastic tube subjected to 

pressure on the external lateral boundaries was formulated for 

an incompressible isotropic neo-Hookean material by Zhu et al. 

[15]. Tanveer and Zu [16] presented finite amplitude transient 

vibration analysis of nearly incompressible hyperelastic 

axisymmetric solids by a mixed p-type method which 

displacement and pressure fields were separately defined using 

high degree polynomials and the solution was obtained with 
one or a few elements depending upon the nature of the 

problem. Kiendl et al. [17] presented formulations for 

compressible and incompressible hyperelastic thin shells with 

plane stress condition based on energy methods. 

In optimizing a shell with respect to weight or stress 

distribution, one method is to use shells with varying thickness 

or material properties. The literature that addresses the stresses 

of thick cylindrical shells with variable thickness is quite 

limited. Eipakchi [18] calculated stresses and displacements of 

linear elastic conical shell with varying thickness under non-

uniform internal pressure analytically, using third-order shear 

deformation theory. Ghannad et al. [19] presented a closed-
form analytical solution for clamped-clamped thick cylindrical 

shells with variable thickness made of functionally graded 

materials subjected to constant internal pressure based on the 

first-order shear deformation theory. Jabbari et al. [20] 

presented semi-analytical solution of rotating truncated conical 

shells with varying thickness made of functionally graded 

materials (FGMs) subjected to thermo-mechanical loading. 

The system of partial differential equations is semi-analytically 

solved by using multi-layered method (MLM). Gharooni and 

Ghannad investigated thermo-elastic analysis in pressurized 

thick FGM cylinders with varying properties of power function 
based on higher-order shear deformation theory [21].  

Significant manifestation of cardiovascular disease 

involves a regional dilation of the aorta termed an aortic 

aneurysm (AA) which is a focal dilatation of the aortic wall. 

The decision to surgically intervene prior to AA rupture is 

made with recognition of significant procedural risks, and is 

primarily based on the maximal diameter and/or growth rate of 

the AA. Therefore, a pressing need remains to identify better 

predictors of rupture risk and ultimately integrate their 

measurement into clinical decision making and evaluate the 

relative sensitivity of wall stress to geometrical and mechanical 

properties of the aneurysmal tissue. In pathologic conditions, 
arteries are even under more shear deformation compared to 

healthy vessels. For example, atherosclerosis and calcification 

are typically, localized, therefore, certain portions of the wall 

are hardened in contrast to the rest of the wall. Under pulsatile 

action, the normal portion of the wall can naturally stretch 

considerably while the diseased portions may not be able to 

stretch as much and, therefore, shearing may occur at the 

boundary between the diseased and healthy portions of the 

wall. In clinical interventions, such as balloon angioplasty and 

balloon embolectomy significant wall shearing may take place. 

In vessel transplantation, shear deformation is important. For 

example in using mammary or femoral vessel for a coronary 

bypass, the straight vessel must be bent to match the curvature 

of coronary vessel in which it is subjected to shear deformation 

[22]. In analysis such as finite element method or shear 

deformation theory, simulation of arterial tissues under blood 
pressure could result in useful information. In 1968, Thomas et 

al. [23] studied incompressibility condition to the analysis of 

arterial-wall elasticity. They concluded that for most practical 

purposes arteries may be considered nearly incompressible. 

The applicability of the rubber elasticity theory to elastin has 

been tested by Dorrington and McCrum [24] for simple tension 

of a homogeneous rubber. They proved that elastin is not a 

normal elastomer but conforms to a new model, termed the 

liquid drop elastomer and review the earlier experiments in 

which elastin was shown to conform more or less to the theory 

of rubber elasticity. Mihai and Goriely [25] investigated the 
fact that the physical responses of nonlinear elastic materials 

are generally described by parameters which are scalar 

functions of the deformation, and their particular choice is not 

always clear. Reference [26] is a very useful book which covers 

the fundamentals of biomechanics and topics including 

biosolids, biofluids, stress, balance and equilibrium. Various 

biological parameters (for instance mean blood vessel 

characteristics) are presented in this book. Azar et al. [27] used 

a series of finite element-based computational models that 

represent a range of plausible aortic aneurysm scenarios, and 

evaluated the relative sensitivity of wall stress to geometrical 

and mechanical properties of the aneurysmal tissue.  
Most of the studies reviewed investigate that analytical 

solution of pressurized hyperelastic thick cylindrical shells 

with variable thickness has not been studied in the literature. 

On the other hand, most of the previous studies have not 

acceptable results because of failing to take into account shear 

stresses or the displacement based finite element methods 

which are not efficient for almost incompressible materials. 

The common problems with these methods, when Poisson’s 

ratio approaches 0.5, are the incorrect displacements and 

stresses, the ill conditioning of stiffness matrix, and the locking 

phenomena. Furthermore, investigating aortic aneurysm as 
pressurized hyperelastic blood vessels enable scientists to 

evaluate the relative sensitivity of displacement and stress to 

geometrical and mechanical properties of the aneurysmal 

tissue. In order to improve the approximation and take into 

account the effect of shear stresses and strains, the general 

method of derivation and nonlinear analysis of hyperelastic 

thick-walled cylindrical shells with variable thickness under 

non-uniform internal pressure has been presented in this paper 

by using FSDT. The hyperelastic material of the shell is 

assumed to be isotropic and homogeneous with two-term 

Mooney-Rivlin material description in nearly incompressible 

condition. The extension of incompressible materials to nearly 
incompressible materials is considered. Two ends of thick-

walled vessel have clamped boundary conditions. The variation 

of pressure and thickness are along axial direction of the shell. 

Because of fast convergence, closed form solution and 

compatibility with physics of shell, Boundary Layer Method of 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Dorrington%20KL%5BAuthor%5D&cauthor=true&cauthor_uid=880350
https://www.ncbi.nlm.nih.gov/pubmed/?term=McCrum%20NG%5BAuthor%5D&cauthor=true&cauthor_uid=880350
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the perturbation theory which is known as Match Asymptotic 

Expansion (MAE) is used for solving the governing equations. 

A new ingenious formulation and parameters have been 
defined during current study to simplify and abbreviate the 

representation of inner and outer equations components in 

MAE. In addition, the terms of variable thickness and non-

uniform pressure have been presented in special representation. 

Displacements, stresses and hydrostatic pressure distribution 

resulting from MAE solution have been presented for some 

case studies and the results have been compared with a FE 

modeling in ANSYS software. Current study aims to illustrate 

the performance of the potentials and their reliability for the 

prediction of the state of deformation and stress in hyperelastic 

vessels from rubbers to arteries. We present the equations that 

provide the general continuum description of the deformation 
and the hyperelastic stress response of the material. The present 

study takes advantage of the FSDT and MAE combination in 

order to identify the elastic behaviour of the pressurized rubber-

like shells, human aneurismal aortic tissues and the stresses of 

critical points at failure under common pressure of blood 

vessels. We will discuss the constituents of arterial walls from 

the mechanical perspective and emphasize those aspects which 

are important to researchers interested in constitutive issues. 

 

2. Basic formulations 

2.1. Shear deformation theory 

In this study, we consider a thick-walled cylindrical shell with 

variable thickness under non-uniform internal pressure (Fig. 1). 

In the reference configuration, geometry based on the terms of 
cylindrical polar coordinate is: 

( ) , 0 2 , 0i or r r x x L      
 (1) 

where 
ir  and ( )or x , respectively, are the inner and outer 

radius and L  is the length of the shell. The parameter r  is the 
radius of every layer of cylinder in the reference configuration 

which can be replaced in terms of radius of mid-plane ( )R x

and distance of every layer with respect to mid-plane ( )z : 

( )  , 

( ) ( )
d d ,

2 2

( , , ) ( , , )

r R x z

h x h x
z r z

r x z x 

 

    



 (2) 

( )h x is the thickness of the cylinder which is varying along 

axial direction. The following relations can be written for the 

geometry components of the shell: 

( )
( ) ,

2

( ) ( ),

( )

i

o i

a b

a

h x
R x r

r x r h x

h h
h x h x

L

 

 

 
   

 

 (3) 

 

 
Figure 1. Geometry and B.C. of the cylindrical shell with variable 

thickness under non-uniform internal pressure  

 The general axisymmetric displacement field, in the first-

order Mirsky-Hermann's theory could be expressed on the basis 

of radial displacement zU  and axial displacement xU , as 

follows  

0,

( , ) ( ) (x),

( , ) ( ) z (x)

z

x

U z x w x z

U

U z x u x







 



 

 (4) 

where ( )w x and ( )u x are the displacement components of the 

middle surface. Also, (x) and (x) are the rotational 

components used to determine the displacement field.  

The deformation gradient tensor  F in the matrix 

representation has the form [15]     x     

 

1 0

0 1 0

0 1

w z

w z

R z

u z

 



 

   
 


  

 
    

F

 

(5) 

Consequently, the right Cauchy–Green deformation tensor 

     
T

C F F and its principal invariants 1,2,3I are  

 

 

   
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θθ

xz xx

2
2 2
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0
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0

1 , 1

1 ,

1 1

C C
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w z
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 
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  
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  
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

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
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C

 (6) 

1 zz θθ xx

2

2 zz θθ θθ xx zz xx zx

2 2

3 zz θθ xx θθ zx

,

,

I C C C

I C C C C C C C

I C C C C C J

  

   

  

 (7) 

Jacobian which is known as volume ratio of deformation 

has the following terms (det is determinant operator): 

 

 
  

 

1
det

( )

1 1
   ( )

J
R x z

u z
R x z w z

w z

 


 

 
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The Green–Lagrange strain tensor can be defined as

 1 2 E C I  (  I is the identity tensor). Considering Voigt 

notation for Green–Lagrange strains, its components are as 

follows: 

 

 

 

 

2 2

zz

2 2 2 2
2

xx

2

θθ 2

zx zx

,
2 2

2 2 2 2

,
( ) 2 ( )

2

u w
u u w z z

w zw z

R x z R x z

u w w z

 
 

 
   




       


  


     

                
 
  

 


            

 

(9) 

 

2.2. Hyperelastic material constitutive equation 

Based on the assumption of isotropy, the strain energy density 

function depends either on the left or the right Cauchy–Green 

deformation tensor through the strain invariants  1 2 3( , , )W I I I

. If the material is modeled as incompressible, the determinant 

of deformation gradient is equal to unity  1J  . For 

incompressible models, under homogenous deformation, two 

of the invariants of Cauchy–Green deformation gradient vary 

independently. Conversely, if the material is defined as 

compressible, all the invariants are independent and the 

determinant of the Cauchy–Green deformation gradient  J  is 

the measure of the local volume change during deformation. In 

this study, the proposed strain energy function was developed 

based on the invariants 
1 2,I I  and J . 

In the present case, the extension of incompressible 

materials to nearly incompressible materials is considered; 

means that the incompressibility constraint is replaced with a 

penalty function correspond to the constraint. The strain energy 

function for nearly incompressible materials can be 

decomposed into isochoric and volumetric part using the 
deformation invariants and the volume change (Jacobian) as [5]: 

1 2 1 2
ˆ( , , ) ( , , ) ( )W I I J W I I J W J   (10) 

where Ŵ and W are the isochoric and the volumetric part of 

strain energy function, respectively. We can write 
*

1 2 1 2
ˆ ( , , ) ( , ) ( )W I I J W I I cH J   (11) 

 
21

( ) ( )
2

W J G J
 

(12) 

*W is the response of the material to distortional part of the 

deformation in Eq. (15). In the present study, a two-term 

Mooney-Rivlin type material is considered. It has the following 
form [1]:   

   *

1 2 1 1 2 2( , ) 3 3W I I C I C I   
 (13) 

where 1C  and 2C  are material constants resulting from 

experimental tests. 

( )G J  in Eq. (12) is a penalty function which has to satisfy 

the conditions ( ) 0 1G J J    and 0  is a penalty 

parameter which can be estimated by experimental data 

proportional to the material properties and is known as 

compressibility parameter [28]. Therefore it is reasonable to 

assume that rubber is almost incompressible. This is 

accomplished by dropping the restriction 1J  and including a 

hydrostatic work term in the strain energy function [5]. 

Considering the compressibility parameter as k  , where 

k  is an additional material constant representing the bulk 
modulus, only scales the penalty functions but does not change 

their shapes [12]. In this case, k is the ratio of the volumetric 

stress (hydrostatic pressure ( )P ) to the volumetric strain 

[23,25]. 

1

P P
k

V V J
 
 

 (14) 

0V  and V are the reference volume and volume changes 

through deformation, respectively. For the volumetric part, 

there are many forms proposed by researchers which are 

functions of bulk modulus and the Jacobian [5,6,29]. 

Generally, in the limiting state, the volumetric part of the strain 

energy function has to satisfy the condition

1 ( ) 1, ( ) 0, ( )J W J W J W J k      .  

Considering zero values of displacement components in the 

reference configurations (initial state) with Eqs. (5), (6) and (7) 

lead in       F C Ι and    1 2 3, , , 3,3,1,1I I I J  . In the 

second term of the right hand side of Eq. (11), constant c and 

function ( )H J with the condition 

( ) 0, ( ) 1 1H J H J J     only guarantee the stress free 

reference configuration with no physical meaning. Moreover, 

in the general case of nearly incompressible hyperelasticity (as 

Mooney-Rivlin material), hydrostatic pressure ( 1)P k J   

does not vanish even at the natural state. The first condition 

 ( ) 0H J  corresponds to the incompressibility constraint 

1J  and the second condition  ( ) 1H J  is necessary for 

giving the meaning of pressure to the constant multiplier of H  
as 

0c p  . Then the initial value of P (i.e.
0p ), which has no 

clear physical meaning, must be introduced to make the initial 

stress zero [5].  

In the current study, the function ( )H J and ( )G J are 

considered as [5,30] 
( ) ln( ), ( ) 1H J J G J J    (15) 

Finally, the strain energy per unit undeformed volume of a 

two-term Mooney–Rivlin material model in nearly 

incompressible condition and coupled form is expressed by 

[5,10,30] 

     
2

1 1 2 2 03 3 ln( ) 1
2

k
W C I C I p J J      

 
(16) 

Consequently, constitutive equation of coupled Mooney-

Rivlin model in material description and nearly 

incompressible, isotropic and homogenous conditions would 

result [30,31]. 

 

   

1 2

1

1 2 1 2 0

, ,
= 2

   2 2 1

W I I J

C C I C kJ J p 





       

S
C

I C C

 (17) 

1 2,C C  and k  are material constants and  I is the identity 

tensor. The initial stress is zero if the hydrostatic pressure 

vanishes at the natural state, and vice versa. Recalling the 

assumption of stress-free reference configuration, Eq. (17) 
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result in  0 1 22 2p C C  [5,9]. Thus, the multiplier 
0p  in 

the case of ( ) ln( )H J J denotes the pressure measured in the 

initial volume. The other components in the right hand side of 

Eq. (17) can be written in the displacement field components. 

Therefore, the relation between the second Piola–Kirchhoff 

stress tensor and displacement components could be derived. 
 

2.3. Principle of virtual work 

The basic idea of the principle of virtual work is to couple 
kinematically admissible virtual deformations with force 

variables and stresses of the real deformation process. For 

convenience, we suppose that the boundary surface 
0A  of the 

body consists of two parts 
0A y and 

0A σ  where displacements 

y  and forces 
0t  are prescribed, respectively. Based on the 

principle of virtual work, the variation of strain energy of the 

elastic body is equal to the variation of external work due to 

loading [17,31,32].  

 
0 0 0

EXT INT

0 0 0 0 0 0 0

δ δ δ 0

   = δ . d δ . d : δ d
V A V

V A V 

     

    
σ

y b a y t P F  (18) 

where 
0 , 

0V  and 
0b are density, volume and body force in 

undeformed configuration, respectively. a is dynamic 

acceleration.  P and  F are first Piola–Kirchhoff stress and 

deformation gradient tensors, respectively. Kinematically 

admissible virtual deformation variables are understood to be 

the variations δy  and δF  which are subjected to the 

constraints (GRAD is gradient operator) 

0 0δ GRADδ in , δ 0 onV A  yF y y  (19) 

Therefore, the principle of virtual work (Eq. (18)) is a weak 

formulation of the equations of motion as well as the dynamic 

boundary conditions. Equality of energy conjugate variables 

preserves its validity as : :P δF S δE . In the static equilibrium 

and absence of body forces, Eq. (18) results in the variation of 

external work consists of non-uniform internal pressure i ( )P x

applying at the internal surface iA  of cylinder: 

0 i

EXT 0 0 i z i

i i

δ = δ . d ( )δ d ,

d 2 d

A A
ir r

A P x U A

A r x


 



 y t

 (20) 

Considering displacement components from Eq. (4), we can 

rewrite Eq. (20): 

EXT i

0

( ) ( )
δ = 2 ( ) ( ) d

2 2

L
h x h x

P x R x w x  
  

    
  

  (21) 

The internal virtual work in material description can be 

expressed from Eq. (18) and energy conjugate variables 

 
0 0

ij

INT 0 ij 0

0

δ : δ d δ d ,

d 2 ( )d d 2 ( ) z d d

V V

V S V

V r x r x R x z x



 

  

  

 S E

 (22) 

Considering Voigt notation from Eq. (9), the variation of 

strain energy of cylinder with variable thickness can be derived 

based on non-zero physical components of second Piola–

Kirchhoff stress: 

zz

zz( )/2

θθ

INT θθ

0 ( )/2 xx zx

xx

δ

δ 2 δ ( ) 1 d d
( )

δ

h xL

h x

zx

S
z

S R x z x
R x

S S



 

 





 
   

      
  

 

   (23) 

The stress resultants are defined as follows: 

   
( )/2

TT zz 2

( )/2

1 1 d
( )

h x

z z z

h x

z
N M Q S z z z

R x





 
  

 
  (24) 

   
( )/ 2

TT θθ 2

θ θ θ

( )/2

1 d

h x

h x

N M Q S z z z





 
 

(25) 

   
( )/2

T T
θθ 2

θ θ θ

( )/2

( )
1 d

( )

h x

h x

R x
N M Q S z z z

R x z





 
  

 
  (26) 

   
( )/2

TT xx 2

( )/2

1 1 d
( )

h x

x x x

h x

z
N M Q S z z z

R x





 
  

 
  (27) 

   
( ) /2

TT zx 2

( )/2

1 1 d
( )

h x

zx zx zx S

h x

z
N M Q K S z z z

R x





 
  

 


 

(28) 

In the last equation, 
SK is shear correction factor which is 

applying in the stress resultant derived from shear stresses 

because of preventing stress overestimation. We consider

5 / 6SK   in the present study [19,33]. 

Calculating strain invariants from Eq. (9) and substituting 

results into Eqs. (23) and (21), considering EXT INTδ δ   and 

carrying out the integration by parts, the equilibrium equations 
for the cylindrical shell with variable thickness under non-

uniform internal pressure are obtained in the term of stress 

resultants: 

  x x zx

d
( ) 1 0

d
R x N u M N

x
       

 
(29) 

  

  

x x zx

z zx zx

d
( ) 1

d

   ( ) 1 0

R x M u Q M
x

R x N N u M

 

 

     

     

 (30) 

  

 

x x zx

θ θ θ i

d
( ) 1

d

1 ( )
   ( ) ( )

( ) 2

R x N w M N
x

h x
N N w M P x R x

R x

 



     

 
      

 

 (31) 

  

  

 

x x zx θ

z zx zx

θ θ i

d
( ) 1

d

    ( ) 1

1 ( ) ( )
( ) ( )

( ) 2 2

R x M w Q M M
x

R x N N w M

h x h x
M w Q P x R x

R x

 

 



      

    

 
    

 

 (32) 

 

3. Analytical solution 

3.1. Perturbation theory 

In this article, Boundary Layer Method of the perturbation 

theory which is known as Match Asymptotic Expansion (MAE) 

is used for solving the governing equations. The advantages of 

this method are fast convergence, closed form solution and 

compatibility with physics of shell. MAE can explain the 

behaviour of the shell successfully even near the boundaries. 

The governing equations (29)-(32) for cylinder with variable 

thickness is a system of four nonlinear coupled differential 

equations with variable coefficients. Preliminary definitions, 
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simplifications and preparations are necessary for using MAE. 

At first, it is necessary to convert the equations into 

dimensionless form for making use of the characteristic scales. 

The following dimensionless parameters are defined [18,34]: 

0

0 0 0 0 0 0

, , , , , , , , , ,
n

i i i
i i

hr P rx h z R u w
x h z r u w P

L h h h h
R

h h L
    


          

 

  
(3

3) 

The mark  on the parameters denotes the dimensionless 

quantity. 
0h is the characteristic thickness which is commonly 

consider the smallest thickness in shell.  is perturbation 

parameter which is assumed small quantity. The main idea of 

perturbation theory is that perturbation parameter is so small 

that coefficients of different power of it don’t have the same 

order which is lead in equality for i  coefficients. Considering 

each coefficient result in displacement quasi vector   xy . 

Existence of two boundary layer lead in two region of solution 

near boundaries (inner expansions) and a solution away from 
boundaries (outer expansion) [34].  

In the dimensionless forms, first and second order 

differential based on x should be rewrite as follows: 
2 2

2 2 2

d 1 d d 1 d
,

d d d dx L x x L x
   (34) 

In shear deformation theory, the differentials and 

integrations are with respect to x and z , respectively. 
Therefore, for simplification and abbreviation of representing 

equations, a dimensionless integral is defined: 

 
ji

i+ j+1

0

( )/2

( )/2

(i, j)
(i, j) ( ) d

h x

h x

II
II z R x z z

h





  
 

(35) 

which is the function of geometric parameters ( )R x and 

( )h x . In order to solve the set of governing differential 

equations, the inverse of coefficient matrices (defined in the 

next sections) are needed. To do this, we take integrate the first 

equation in the set of Eqs. (29)-(32). The constant of integral is 

0 0c c   where   is bookkeeping perturbed parameter. As 

there is no u in equations unliked du x , we take d du xv  . 

Therefore, we can write 7du v x c  where 
7c  is integral 

constant. 
0c and 

7c will be calculated from boundary 

conditions. 

The following parameters need to be defined based on 

material and geometrical constants 1 2, , , sC C k K  because of 

abbreviation in representing inner and outer equations. 

     

   

   

   

   

1 2 12 1 2 1

1 2 2 1 2 3

1 2 4 1 2 5

1 2 6 1 2 7

1 2 8 1 2 9

ˆ2 , 1 , 4 ,

4 2 ,2 3 ,

2 , 4 5 ,

4 6 ,  8 2 7 ,

2 2 3 , 2 2 5 6

s sC C C K K C C k Ck

C C k Ck C C k Ck

C C k Ck C C k Ck

C C k Ck C C k Ck

C C k Ck C C k Ck

       


     


     


     
      


 (36) 

 

3.2. Outer expansion 

The outer expansion of solution is considered as a uniform 

series of  as       O O0 O1,x x x   y y y . Substituting of 

this expansion in governing equations and considering the 

terms with the same order of  , result in the first and second 

order equations of outer solution. In this section

   d dx  . 

    

    

     

1

O O0 O0

2

O O1 O1

O1 O1 O1

t

t

O( ) : ,

O( ) : ,

II II











 

A y F

A y F

F F F

 (37) 

where    O O0,A F and  O1

t
F are coefficient matrices, non-

homogeneity vectors of first and second order equation, 

respectively.  Oiy are unknown displacement vectors in (i)

order outer solution.  O1

t
F consist of two vectors  O1

II
F and 

 O1

II F  correspond with ( )II x  and derivative of ( )II x , 

respectively. These vectors would be defined in appendices. 

Other nonzero components of the mentioned matrix and 

vectors are 

   

   

T

O0 O0 O0 O0 O0

T

O1 O1 O1 O1 O1

, , , ,

, , ,

v w

v w

 

 





y

y
 (38) 

   

   

     

 

   

   

O O 1211 22

O O 113 31

O O 114 41

O 33

O O 134 43

O 144

(0,1), (0,1),

(0,0)

(1,0) (0,1) ,

(0, 1)

(0,0) (1, 1),

2 (1,0) (0,1) (2, 1)

sk II K C II

Ck II

Ck II II

k II

Ck II k II

Ck II k II II

   

    

     


 


   


   

A A

A A

A A

A

A A

A

 (39) 

   

 

 

0

O0 O021 2

0

O0 i3

2

O0 i4

, 0,

( )
( ) ( ) ,

2

( ) ( ) ( )
( )

2 4

c

h

h x
P x R x

R x h x h x
P x

 

 
   

 

 
  

 

F F

F

F

 (40) 

The solutions of the algebraic equations (48) are as follows: 

       
1 1

O0 O O0 O1 O O1
t,

 
       y A F y A F  (41) 

 

3.3. Inner expansion 

As the outer solutions don’t satisfy the B.C., we can conclude 

existence of boundary layers at 0,1x  . Therefore, it should 

be considered fast variables ( )x  as a new variables for these 

regions. Considering fast variables make it possible to measure 
the great variation around boundaries.  

 

0

1

0 0, (left boundary),

1
1 1, (right boundary)

x
x x

x
x x







   


   

 (42) 

New first and second order differential definitions based on 

fast variables x   have perturbation parameter: 

2 2
2

2 2

d d d d
,

d d d dx x x x 

  

 

(43) 
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In cylinder with variable thickness and non-uniform 

pressure, it is necessary to derive Taylor expansion for all the 

parameters of axial function ( )x :  

   

 

d ( )
( ) ( ) , 0,1

d

( ) D , 0,1

x
x x x

x x

x x  

  


 

 
      
 

     

 (44) 

Subscript index   means applying x   in each 

parameter. Therefore, we should write Taylor expansion for the 

following parameters:  

 

 

 

 

i i i

( ) D , 0,1 ,

( ) D , 0,1 ,

( ) D , 0,1 ,

( ) D , 0,1

h x h x h

R x R x R

P x P x P

II x II x II

  

  

  

   

 

 

 

 

   


  


  


  

 (45) 

 The inner expansion of solution is considered as a uniform 

series of  in each boundary: 

      0 1,x x x        y y y
 

(46) 

Substituting of inner expansion 

      0 1,x x x        y y y  in governing equations 

with mentioned changes in section 3.1 and considering terms 

with the same order of  , result in inner equations at boundary

 : 

            

            

           

2
1

1 0 2 0 3 0 02

2
2

1 1 2 1 3 1 12

1 1 1 1 1 1

t

D D Dt

d d

d d

d d

d d

O( ) :

O( ) :

II A II P P

x x

x x

      

 

      

 

     
    






  




  



    


A y A y A y F

A y A y A y F

F F F F F F

 (47) 

   1 2, A A and  3A  are coefficient matrices at the 

boundary .  0F and  1

t
F are non-homogeneity vectors of 

differential equation at the 
1O( )  and 

2O( ) for the boundary

 , respectively.  iy are unknown displacement vectors in 

(i) th order of inner solution at the boundary .  1

II

F and 

 1

DII


F , in  1

t
F , are correspond with ( )II x  and D ( )II x

(in Taylor expansion), respectively.  1

DA


F occurs in non-

homogeneity of 
2O( ) equation which resulting from Tayler 

expansion of coefficient matrices in 
1O( ) equation because of 

variable thickness.  1

P

F and  1

DP


F  include ( )iP x   and 

D ( )iP x  (in Taylor expansion), respectively. Furthermore, 

 1

P

F and  1

DP


F are resulting from variable thickness and 

non-uniform pressure, respectively. Considering too many 

terms,  1

t
F vector would be defined in appendices. Other 

nonzero components of the matrices and vectors defined below. 

In this section    d dx 
   at the boundary . 

   

   

T

0 0 0 0 0

T

1 1 1 1 1

, , , ,

, , ,

v w

v w

    

    

 

 





y

y
 

 

(48) 

 

 

   

 

1 22

1 1233

1 1 1234 43

1 1244

(2,1),

(0,1)

(1,1),

(2,1)

s

s

s

k II

K C II

K C II

K C II

 

 

  

 

 

 


 




A

A

A A

A

 (49) 

   

   

     

2 212 21

2 2 12 123 32

2 2 12 124 42

(1,1),

(0,1) (1,0)

(1,1) (2,0) (1,1)

s

s

k II

K C II Ck II

K C II Ck II II

  

   

    

  



    


     


A A

A A

A A

 

(50) 

 

 

   

     

 

   

   

3 11

3 1222

3 3 113 31

3 3 114 41

3 33

3 3 134 43

3 144

(0,1),

(0,1) ,

(0,0)

(0,1) (1,0) ,

(0, 1)

(0,0) (1, 1),

2 (1,0) (0,1) (2, 1)

s

k II

K C II

Ck II

Ck II II

k II

Ck II k II

Ck II k II II

 

 

  

   

 

   

   

 

 

    



    


 


   

   


A

A

A A

A A

A

A A

A



 (51) 

   

 

 

0

0 021

0

0

0 4

2

i3

2

i

, 0,

,
2

2 4

c

h

h
P R

R h h
P

 


  

  
 

 

 
   

 

 
  

 

F F

F

F

 (52) 

Eqs. (47) are systems of coupled non-homogenous 

differential equations with constant coefficients. Each equation 

have general and particular solution: 

     

     

0 0 0gen. par.

1 1 1gen. par.

,  

  

 

 

y y y

y y y
 (53) 

Considering m and  V
 as eigenvalues and 

eigenvectors, respectively; general solution have exponential 

form as    
gen.

e
m x

V 
 y . Substituting general solution 

in homogenous part of Eqs. (47) and considering e 0
m x  

lead in a nonlinear eigenvalue problem: 

         2

1 2 3 0m m V       A A A
 

(54) 

The necessary condition for existing the solution of Eq. (54) 

is zero value of the coefficient determinant which is the 

characteristic equation of the system. Six non-zero roots of it 

are the eigenvalues i( )m . Substituting roots in Eq. (54) lead in 

corresponding eigenvectors i( )V . The eigenvalues and 

eigenvectors are complex conjugate. Considering Van-Dyke’s 

matching principle [34], the solution should be finite at
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x   . Therefore, in left boundary ( 0)   eigenvalues 

with positive real part and in right boundary ( 1)   

eigenvalues with negative real part are omitted.  So, the general 

solution of the boundary is calculated. 

       
3

0 1 i igen. gen. gen.
i 1

ie
m x

c V    

 



  y y y

 

(55) 

where ic are 3 constant for each boundary which could be 

calculated by the boundary condition. The particular solution 

of first order Eq. (47) is simply calculate by 

     
1

0 3 0par.  


y A F . But  1

t
F consist of nonlinear 

polynomials terms, exponential terms by the same roots with 

characteristic equations i(e )
m x 

and exponential terms by 

the different roots with characteristic equations 
j

(e )
q x 

based on 
1O( ) solution. Therefore, the particular solution of 

2O( ) is calculated by undetermined coefficients method as 

follows: 

       

       

        

        

1 1 1 1

2

1 2 1 0

2

1 2 1 0m i m i m ii

2

1 2 1 0q j q j q jj

pol. exp(m ). exp(q ).

par. par. par. par.

pol.

par.

exp(mi).

par.

exp(q j).

par.

i i

i

j

,

e

e

m x

q x

B x B x B

B x B x B

B x B x B

   







 

 

   



  



  



  






y y y y

y

y

y

 

(56) 

Substituting  1 par.y in Eq. (47) -
2O( ) would lead in 

undetermined coefficients  0B , 1B and  2B . 

3.4. Composite solution 

In the MAE method, the composite solution is the summation 

of these three calculated solutions (one outer  Oy  and two 

inner    0 1,  y y ) minus the overlapped parts of them. 

Outer solution at 0,1x  and inner solutions at x   are 

overlapped and this common part have to be removed from 
composite solution. Therefore, 

           0 1

comp. 0 1O O O

 

 

 

     y y y y y y
 

(57) 

where  0

O

 
y and  1O


y are common parts of inner and outer 

solutions at two ends of the shell which can be determined by 

definition of intermediate variable or Van-Dyke’s matching 

principle [34]. Eight constants, consist of three constants in 

general solution of each boundary and two constants 
0c and 

7c

, should be calculated by the boundary conditions. The clamed 

boundary conditions in (i) th order perturbation solution are: 

 

 

0 0 0 0 0

1 1 1 1 1

0 0 , , , 0,

1 0 , , , 0

x x u w

x x u w

 

 

   

   

i i i i

i i i i

 (58) 

Finally, the unknown vector      comp. , , ,u w  y y  

which consists of dimensionless displacement field 

components would be obtained in terms of x and z variables. 

Considering Eq. (4) and
, , 0z x z xU U h , the dimensionless 

radial and axial displacements can be calculated. Using Eqs. (5-

9) would yield     1,2,3, , ,I JF C and  E , respectively. The 

hydrostatic pressure, strain energy function and second Piola–

Kirchhoff stress distribution could be calculated by using Eqs. 

(14), (16) and (17). The relation       
T

1 Jσ F S F  would 

result in Cauchy stress components. The analytical solution has 

been carried out by writing the program in MAPLE 18 software. 

 
4. Numerical results and discussion 

4.1. Finite Element (FE) solution 

In order to demonstrate the potentials of the presented 

analytical solution for the purpose of analyzing pressurized 

thick cylinder with variable thickness made of nearly 

compressible hyperelastic material, a numerical solution based 

on Finite Element Method (FEM) is investigated. The ANSYS 

16 package is used in the static analysis of thick hollow 
cylinder with variable thickness under non-uniform internal 

pressure and clamped boundary conditions. The PLANE183 

element in the axisymmetric mode, which is an element with 

eight nodes and two translational degrees of freedom in the 

axial and radial directions per each node, has been used to 

model the mechanical part of the analysis. It also has mixed 

formulation capability for simulating deformations of nearly 

incompressible hyperelastic materials. In order to consider 

Mooney-Rivlin elastic model in nearly incompressible 

condition, three constants involving 
10 01,C C and d should be 

defined for ANSYS software. Two first constants are the same 

material properties as 
1C and 

2C  in Eq. (13), respectively. d

is material incompressibility parameter which relation with 

bulk modulus is . 2k d   [13]. For non-uniform internal 

pressure, the pressure functions have been defined and applied 

to the internal layer nodes. Clamped boundary conditions have 

been exerted by preventing the nodes around the two ends of 

the cylinder from movement. In the next sections, the 

numerical results (FEM) and analytical results (MAE) have 

been investigated for different case studies. 

4.2. Constant thickness-Uniform pressure 

As a case study, a thick homogenous cylinder with constant 

thickness under uniform internal pressure and clamped-

clamped boundary conditions at the two ends with the 

following geometry characteristics have been considered: 
50mmR  , 6mmh  and 400mmL  . The constants of 

Mooney-Rivlin model for rubber assume  

1 0.552MPa (80psi)C  and 2 0.138MPa (20psi)C 

[9,16,29]. The applied uniform internal pressure is 8kPaiP  . 

The following changes should be applied for constant thickness 

and uniform pressure in the equations of inner and outer 

solutions (in section 3)  

         O1 1 1 1 1

D D D
0

A II P PII
   

        F F F F F
 

(59) 

i i i( ) ,

( ) ,

( ) ,

P x P P

R x R R

h x h h

II II









 

 

 



 (60) 
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Various relations are recommended for estimating the value 

of incompressibility parameter k . The common part of similar 
relations is definition of the bulk modulus based on material 

model constants ( 1C and 2C in current model) or initial shear 

modulus ( )G and Poisson’s ratio ( ) . In nearly incompressible 

materials, Poisson’s ratio with respect to compressibility 

intensity consider about 0.49 0.499   [4,12,16]. The 

compressibility parameter k  only scales the penalty functions 

(but no change in shapes) and enforces incompressibility if 

large values are chosen. Therefore, the order of bulk modulus 
can be estimated based on compressibility intensity: 

 

 

2

1 2

3

1 2

0.49 2 10

or

0.499 2 10

k C C

k C C





    

    

 (61) 

Considering 1C and 2C values in current research lead in 

the variation range of the k about 1 100 MPa . Although 

constants 1 2,C C and k can be calculated independently from 

experimental tests [14], exact k is considered based on the 

convergence of solutions at nearly incompressible limit in 

current study [7,8]. 

The difference percentage of dimensionless radial 

displacement resulting from the numerical and analytical 

solution i.e.  MAE FEM FEMDiff (%) 100z z z zU U U U  

with respect to k  for different R and
i 12P C are plotted in Fig. 

2. Variation range of k is considered 5 100 MPa . Important 

remark is that for 5 MPak  , the eigenvalues of characteristic 

equation no longer have conjugate complex form and MAE 

solution diverge. Fig. 2(a) shows that ascending increment in 
the ratio of middle layer radius to thickness increase difference 

percentage of MAE and FEM for different k . Furthermore, the 

variation of bulk modulus is in a manner that for all the values 

of R and 
i 12P C , the least difference percentage is observed at 

a definite value of k . The value of this point is 10 MPak 

for any R and 
i 12P C . It is observed that the accuracy of MAE 

descend for 15R  because of intensifying nonlinear behaviour 

of the cylinder. For 3R  , FSDT accuracy decrease in 

analyzing thick cylindrical shells. It can be seen from Fig. 2(b) 

that increasing the ratio of pressure to material constants 

(material strength) cause an increase in difference percentage 

between MAE and FEM solution for different k . This value 
is in the estimated range for nearly incompressible Mooney-

Rivlin hyperelastic model with 1 0.552MPaC   and 

2 0.138MPaC   material constants and lead in convergence 

between MAE and FEM results. The same manner has been 

observed for difference percentage of dimensionless axial 

displacement. Therefore, we set 10 MPak  in the current 

study.  

4.3. Variable thickness-Uniform pressure 

A thick homogenous cylinder with variable thickness under 

uniform internal pressure and clamped-clamped boundary 

conditions with the geometry of: 47mmir  , 12mmah  , 

6mmbh  and 400mmL   have been investigated. The 

constants of nearly incompressible Mooney-Rivlin model for 

rubber assume 
1 0.552MPaC  , 

2 0.138MPaC  and 

10 MPak  . The applied uniform internal pressure is 

8kPaiP  as previous section. The following changes should 

be applied for uniform pressure in the inner and outer equations 

(in section 3)  

 1 i i i

D
0, ( )

P
P x P P 

   F
 

(62) 

Dimensionless Cauchy stresses and hydrostatic pressure are 

defined as i i,P P P P σ σ .   

Dimensionless radial displacement distribution along axial 

direction and thickness of shell in different layers are plotted in 
Fig. 3. Radial displacements decrease from internal layer to the 

external one in any thickness. Variation of the displacements 

increases in thinner parts of shell. At the points far away from 

boundaries, this variation is uniform because of linear 

thickness variation. However, non-uniform peak is observed 

around boundaries under the effect of shear stresses and 

clamped B.C. As explain in Fig. 2, difference of MAE and 

FEM results increase at higher thickness ( )R toward low 

values of x .  
Fig. 4 shows the dimensionless axial displacement 

distribution along axial direction and thickness of shell in 

different layers. Axial displacement is zero at the middle of 

cylinder and increase uniformly toward the boundaries at the 

points far away from boundaries. Although displacements are 

zero at 0,1x  , shear stresses near boundaries intensify axial 

displacements. Fig. 4(a) reveals that axial displacements at the 

points far away from boundaries are equal for different layers, 
however displacements differ at layers around boundaries and 

maximum value occur at inner layer (close to loading). Axial 

displacements show uniform distribution along thickness 

toward 0.5x   while toward the boundaries reverse bolds true. 

One half of the cylinder is always in tension and other in 
compression. As x increase, by descending thickness, FSDT 

accuracy decrease.  
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Figure 2. Difference percentage of radial displacement with respect to k  for different (a) R and (b) 

i 12P C  
 

 
Figure 3. Dimensionless radial displacement distribution (a) along axial direction (b) along thickness 

 

 
Figure 4. Dimensionless axial displacement distribution (a) along axial direction (b) along thickness

Fig. 5(a) and (b) show dimensionless circumferential and 
axial Cauchy stress distribution in different layers along axial 

direction of cylinder, respectively. Nearly all parts of the shell 

have tensile circumferential and axial Cauchy stress, except 

around boundaries at the outer layer. It can be estimated that 

similar manner occur at the inner layer points for external 

pressure load. Because all the elements are in tensile state, but 

clamped conditions near boundaries at the layer away from 

loading cause resistance against displacement which lead in 

compressive stresses. It is obviously observed that the 

maximum stress values are axial stress around boundary 1x   

which has minimum thickness. The circumferential stress of 

the points away from boundaries have higher variation than 
axial stress because of higher radial displacement quantities to 

axial ones and being away from clamped effect. 

Dimensionless shear Cauchy stress distribution in different 

layers along axial direction is plotted in Fig. 5(c). Existence of 

shear stress near boundaries reveal the advantage of shear 

deformation theory respect to theories that neglect shear stress 

effect. Although FSDT is suitable for displacement analyzing 

rather than stress one, the results of MAE are more accurate 

around boundaries respect to FE solution. Inner layer of the 

shell is critical layer under internal pressure load. Getting away 

from middle layer, especially toward critical layer, change 
linear distribution of displacements and stresses to nonlinear 

state. By the way, stresses are calculated indirectly from 

displacements and strains in shear deformation theory. 

Therefore, first-order shear deformation theory estimate 

stresses more slightly than real states in critical layers. The 

distribution of the dimensionless hydrostatic pressure in 

different layers along axial direction is plotted in Fig. 5(d). 

Hydrostatic pressure can be considered as average of principal 

stresses. Investigation and comparison of Fig. 5 confirm this 

fact; so hydrostatic pressure can be a suitable equivalent 

parameter that show shell state from the view point of stresses. 

Therefore, similar to axial and circumferential stresses, nearly 
all parts of the shell have positive values of hydrostatic 

pressure except around boundaries at the outer layer away 

from loading. Difference between MAE and FEM results 

increase at the points of internal and external layers away from 

boundaries. Increasing x (descending thickness) leads in 

continuous increment of hydrostatic pressure way from 

boundaries because of higher displacement values at smaller 

thickness. Considering Eq. (14) and hydrostatic pressure 

distribution lead in 0.995 1.007J  .
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Figure 5. Dimensionless (a) circumferential Cauchy stress, (b) axial Cauchy stress,  

(c) shear Cauchy stress and (d) hydrostatic pressure in different layers along axial direction

4.4. Variable thickness-Non-uniform pressure 

In order to report the performance of current study for 

analyzing arteries, we consider the mechanical response of a 

hyperelastic thick-walled circular cylindrical tube under 

various pressure loads with clamped end conditions to 

periphery tissues. As current research studies the manner of 

pressurized vessels in dimensionless state, the results of FSDT 

and MAE solution may be suitable for investigating some 

proper case studies of blood vessels. Considering the 

applicability of the rubber elasticity theory to aortic soft tissues 

such as elastin, the behaviour of blood vessels under non-
uniform pressure distribution has been investigated from 

current research. Furthermore, the current study will present 

helpful results for alternative hyperelastic materials with higher 

strength for blood vessels in future research [22,24,35].  

In general, arteries are roughly subdivided into two types: 

elastic and muscular. Elastic arteries have relatively large 

diameters and are located close to the heart (for example, the 

aorta and the carotid and iliac arteries), while muscular arteries 

are located at the periphery. Depending on the type of artery 

considered, the material behaviour may be regarded as 

(perfectly) elastic for proximal arteries of the elastic type, or 
viscoelastic for distal arteries of the muscular type. Here we 

focus attention on the elastic arterial walls composed of three 

distinct layers, the intima (inner) layer, the media (middle) 

layer and the adventitia (outer) layer. From the mechanical 

perspective, the media is the most significant layer in a healthy 

artery. The thickness of the layers depends strongly on the type 

(elastic or muscular) and the physiological function of the 

blood vessel and its topographical site. Although the 

mechanical properties of arterial walls vary along the arterial 

layers, the general mechanical characteristics exhibited by 

arterial walls are the same. Hence, Most of the constitutive 

models treat the arterial wall as a single layer. Since arteries 
have no valuable changes in volume within the physiological 

range of deformation, they can be regarded as nearly 

incompressible materials [36].  

It is known that pathological changes of the intimal 

components may be associated with atherosclerosis, the most 

common disease of arterial walls, which involves deposition of 

fatty substances, calcium, collagen fibers, cellular waste 

products and fibrin (a clotting material in the blood). The 

resulting build-up is called atherosclerotic plaque. It may be 

very complex in geometry and biochemical composition. The 

mechanical behaviour of atherosclerotic arteries differs 

significantly from that of healthy arteries. In later stages the 

media is also affected. These pathological changes are 

associated with significant alterations in the mechanical and 

geometrical properties of the arterial wall. The layers thicken 

and stiffen with age (arteriosclerosis) so that the variation of 

thickness and physiological pressure occur in blood vessels 
[36,37]. In this study, the mechanical effects of pathological 

changes of the thickened and stiffened layers due to 

arteriosclerosis containing atherosclerotic plaque were 

considered. Hence, it would be interesting to apply the 

displacement and stress analysis performed in this study to the 

prediction of diameter growth and rupture in atherosclerotic 

arteries. Furthermore, dilation of an artery using a balloon 

catheter during mechanical treatments such as percutaneous 

transluminal angioplasty with loading in the physiological 

range of deformation can be estimated by current method 

[26,27]. Wall shearing may take place in balloon angioplasty 
and the relative sensitivity of wall displacement and stress to 

geometrical and loading properties of the aneurysmal tissue in 

clinical interventions can be evaluated [36]. 

According to the explanation presented, a thick 

homogenous cylinder with variable thickness and clamped 

boundary conditions by the similar geometry and material 

constants as previous section is considered. Internal pressure 

distribution, unlike previous case studies, varies non-uniformly 

along axial direction of vessel. Five pressure profiles are 

applied to the cylindrical shell. Table 1 shows the characteristic 

of applied pressures. The pressure profiles vary in the range of 

5kPa(40mmHg) 13kPa(100mmHg)  which are the mean blood 

vessel pressures of human soft tissues. 100mmHg is the mean 

of systolic/diastolic pressure [35,38] and 40mmHg may be 

occurred in hypotension pressure of arteries [39,40]. There are 

many isotropic rubber-like potentials proposed for carotid 

arteries (such as current study) which are able to model the 

behaviour of blood vessels in the physiological pressure 

domain [36,41]. Although the material models of arteries have 

commonly exponential form, simple neo-Hookean model with 

material constant 2G  (similar to current model) in some 

research is considered for isotropic parts of blood vessels. 

Material properties, applied pressures and geometry of various 
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arteries may be in 4 10R  and i0.02 20P G  range 

[26,27,36,37]. Hence, case studies of variable thickness are 

selected similar to geometry of common elastic arteries R (as 

unite layer) in current research; means that the thick and thin 

part of the vessel cover the average thickness of the layers in 

common elastic arteries of human body

     
Table 1. The characteristic of non-uniform internal pressure profiles 

Pressure Profile ID Pressure Profile Relation Pressure constants 

i1P  
i i( ) constantP x P   

i 9 kPaP   

i 2P   0 0 1
i i i i( )P x P P P x    0 1

i i13 kPa, 5 kPaP P   

i3P   0 0 1 2

i i i i( )P x P P P x    0 1
i i13 kPa, 5 kPaP P   

i 4P    01 01 0.5 2
i i i i( ) 4P x P P P x x     01 0.5

i i5 kPa, 13 kPaP P   

i5P     01 01 0.5
i i i i( ) sinP x P P P x    01 0.5

i i13 kPa, 5 kPaP P   

Distribution of non-uniform internal pressures along axial 

direction are depicted in Fig. 6. The pressure profiles are 

considered coordinated by the linear thickness variation of 

shell. Fig. 7 show dimensionless radial and axial displacement 

distribution in middle layer along axial direction for different 

pressure profiles. Dimensionless hydrostatic pressure values 

for different pressures distribution are presented in Tables 2. In 

the constant pressure 
i1 9 kPaP  (mean value of 5 and 13 kPa), 

as previous results, thinner parts of vessel cause more radial 

displacement. Linear variation of pressure 
i 2P and thickness 

 xh of shell are in reverse directions and counteract each other 

effect. Therefore, 
i 2P cause uniform distribution of radial 

displacement along axial direction of shell with linear variable 

thickness. This counterbalance is to some extent that despite 

the existence of 13 kPa pressure at x 0 , with respect to 

i1 9kPaP  , maximum value of displacement descend. 

Considering Figs. 6 and 7 show that parabolic pressure 
i 3P

compared with linear one 
i 2P has higher values of pressure and 

consequently displacement all over the length of shell. Radial 

displacement under 
i 2P and 

i 3P  decrease toward right boundary 

linearly and nonlinearly (similar to parabolic variation) 

respectively. It can be observed that maximum displacement 

resulting from 
i1P are higher than 

i 2P and 
i 3P . Pressure profiles 

of 
i 4P and 

i 5P  which have higher non-uniform distribution than 

other pressures lead in larger displacement values respect to 

constant pressure
i1P . By similar range of applied variable 

pressure, more non-uniform pressure distribution along the 

longitudinal direction cause higher amount of radial 

displacements. In this state, displacement values along the 

length of shell have more difference. Therefore, important 

conclusion is that similar profile of variable thickness and non-

uniform applied pressure result in minor displacement 

quantities and uniform displacement distributions. In the 

current case studies, strength of the cylinder with linear 

variable thickness from the view point of less radial 
displacements across non-uniform pressure has following 

arrangement:  

i5 i 4 i1 i3 i 2P P P P P     (63) 

Whatever pressure distribution be symmetric in axial 

direction, the positive and negative axial displacements have 

more equal contribution along the length of shell. The 

contribution of tensile elements in axial direction are more than 

compressive ones under asymmetric pressures 
i 2P and 

i 3P . The 

elements have nearly equal stretch along axial direction at 

points away from boundaries, especially for more uniform 

pressure distributions. Strength of the cylinder with linear 

variable thickness from the view point of uniform and low axial 

displacement distribution across non-uniform pressure has 

following arrangement: 

i3 i 2 i 4 i5 i1P P P P P   
 

(64) 

The points of internal layer with minimum thickness and 

maximum displacement are critical elements in nearly 

incompressible hyperelastic cylinder with variable thickness 

under non-uniform internal pressure. Furthermore, similar 

distribution of pressure and thickness could be a suitable 
criterion in designing thickness profile of pressurized vessels. 

Hydrostatic pressure of internal layer has its maximum value at 

x 0 for 
i 2P and 

i 3P unexpectedly, because the effect of 

pressure profile is dominant to variable thickness. For other 

profiles, maximum hydrostatic pressure occurs at x 1  

because of lower thickness. 
i 4P and 

i 5P  cause minimum and 

maximum hydrostatic pressure among the profiles in current 

study, respectively. Therefore, vessels with variable thickness 

have minor hydrostatic pressure under non-uniform pressure 

distribution with peak away from boundaries. 

This approach enables insight into the nature of the 

deformation and stress distribution across the arterial wall to be 
gained, and therefore offers the potential for study of the 

mechanical functionality of arteries in physiological pressure 

range. The obtained analysis represents useful results for the 

community of vascular biomechanics. In particular, we use an 

analysis to examine the inflation of a cylindrical tube at various 

internal pressure profiles and to compute the evolution of the 

inner radius (critical layer) with the internal pressure. In 

addition, at the approximate physiological pressures, we 

evaluate the effect of variable thickness on the tube and 

determine the effect of the shear stress at the surfaces. It can be 

mentioned that our results tend to emphasize on wall 
degeneration of arteries within the aneurysm wall [36,37] that 

affects the thickness profile of the tissue, which can be mostly 

analyzed as variable thickness blood vessels. The rupture 

modes in the aortic specimens are characterized by oblique 

tears in the circumferential direction, indicating that the failure 

of the aneurismal aortic tissue is mainly governed by the axial 

stress. The failure stress in the axial direction is much higher in 

the adventitia layer compared to that in the media layer [37]. 

This means that the failure in the aneurismal aortic tissue may 

initiate in the media layer; i.e. inner surface of arteries are 

critical one which proved by current results (section 4.3 and 
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4.4). It is considered that the current methodology could have 

potential to identify the aneurismal wall displacement and 

stress and to assess the aortic aneurysm rupture risk based on 

maximal diameter, axial stress and hydrostatic pressure (as 

mean stress) in both constant and variable thickness vessels for 

patients having an aneurysm.
 
 

 
Figure 6. Distribution of different non-uniform internal pressures along axial direction 

 

 
Figure 7. Dimensionless (a) radial displacement (b) axial displacement in middle layer along axial direction for various load  

 
Table 2. Dimensionless hydrostatic pressure for different internal pressure profiles 

i1/P P  
0.5z     0z   

0x   0.3x   0.7x   1x    0x   0.3x   0.7x   1x   

i1P  5.601 2.908 3.629 8.367  1.282 2.088 2.865 2.467 

i 2P  8.105 3.530 2.814 5.865  1.297 2.349 2.426 2.287 

i 3P  8.373 4.275 3.685 6.526  1.526 2.761 2.979 2.751 

i 4P  4.526 3.982 4.861 6.604  1.479 2.719 3.696 3.015 

i 5P  7.524 1.962 2.552 11.178  1.123 1.534 2.132 1.926 
 

5. Conclusions 

In current research, the homogeneous and isotropic 

hyperelastic hollow cylinders with variable thickness under 
nearly incompressible condition have been analyzed by FSDT. 

Two ends of thick-walled vessel have clamped boundary 

conditions and non-uniform internal pressure load is applied 

along internal layer. Two-term Mooney-Rivlin type material is 

considered which is a suitable hyperelastic model for rubbers. 

In the present case, the extension of incompressible materials 

to nearly incompressible materials is considered; means that 

the incompressibility constraint is replaced with a penalty 

function correspond to the constraint 1J   in strain energy 

density function. In this context, it can be interpreted as a 
penalty parameter that enforces incompressibility if large 

values are chosen respect to hyperelastic material constants. 

Match Asymptotic Expansion (MAE) of the perturbation 

theory is used for solving the governing equations. The 

advantages of this method are fast convergence, closed form 

solution and compatibility with physics of shell. It can explain 

the behaviour of the shell successfully even near the boundaries. 

MAE in perturbation theory converts a system of four nonlinear 

coupled differential equations with variable coefficients to 
boundary layer in two region of solution near boundaries and a 

solution away from boundaries. A new ingenious formulation 

and parameters have been defined during current study to 

simplify and abbreviate the representation of inner and outer 

equations components in MAE. In addition, the terms of 

variable thickness and non-uniform pressure have been 

presented in special representation. Displacement, stress and 

hydrostatic pressure distributions resulting from MAE solution 

have been presented for some case studies and the results have 

been compared with a FEM modeling in ANSYS software. The 

results prove the effectiveness of FSDT and MAE combination 
to derive and solve the governing equations of nonlinear 

problems such as nearly incompressible hyperelastic shells. 

The shear stress in boundary areas cannot be ignored, unlike 
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areas away from the boundaries. The calculus of stresses from 

displacements and strains by using nonlinear constitutive 

relations may be decreased the accuracy respect to 

displacements results. Validity range of current analysis is 

about 3 15R  for geometry and 
i 12 0.03P C  for loading of 

variable thickness pressure vessels. Actually, intensifying 

nonlinear state of the cylinder descend FSDT and MAE 

accuracy in analyzing the shell, simultaneously. The behaviour 

of blood vessels under non-uniform pressure distribution 

shows that similar profile of variable thickness and non-

uniform applied pressure result in minor displacement 

quantities and uniform displacement distributions which could 

be a suitable criterion in designing thickness profile of 

pressurized vessels. Furthermore, vessels with variable 

thickness have minor hydrostatic pressure and stresses under 

non-uniform pressure distribution with peak away from 

boundaries. Current study aims to illustrate the performance of 

the potentials and their reliability for the prediction of the state 

of deformation and stress in hyperelastic vessels from rubbers 

to arteries. 

 

 

 

 

 

 
 

 

 

 

Appendix 

The non-homogeneity vectors of 2O( ) equations in outer and inner expansions are as follows:  

     

 

2

O1 3 O0 O0 O0 O0 O0
1

2 2

O0 O0 O0 7 O0 O0 O0

2 2

O0 O0 12 O0 O1
1

(2, 1) (0,1) 2 (1, 1) 2 (1,0) (0,1)

2 (0,0) (0, 1) (1,0) (0,0)

ˆ(1,1) 2 (0,1) (0,1) , 0s

II

II

Ck II II II w II II v

II v w II w Ck II II w

k II II v K C II

  

 

  

        


         


     
 

F

F

 (A1) 

     

 

 
 

O1 1 O0 O0 O0 O0 O0
2

O0 O0 2 O0 O0 O0

12 O0 O0 O0 O0 O0

O1 1
2

(2,0) (1,1) (1,0) (1,0) (0,0)

ˆ (0,1) (1,0) (0,0)

ˆ(0,1) (1,1) (1,1) (0,1)

(2,0)

s s

s s

O

II

II

Ck II II II w II II w

K II v K Ck II II w

K C II w II k II v K k II

Ck II

  

  

  



      


  


     

 


F

F 0 0 0 O0(1,0) (1,1) (1,1)O OII w II k II v








     
 

 (A2) 

      

 

2 2

O1 3 O0 O0 O0 O0 O0 O0
3

2

1 O0 7 O0 O0 12 O0 2 O0

2 2

O0 O0 O0 O0

O1 12 O0
3

(0,0) 2 (1, 1) (0, 1)

(1,0) (0,0) (0,1) 2 (0,0)

2 (2, 2) 2 (1, 2) (0, 2)

(0,1)

s

s

II

II

Ck II v II II w v

Ck II Ck II v K C II C II

k II II w II w

K C II

  

   

 



         

    

       

 

F

F











 (A3) 

     

     

O1 1 O0 12 O0 3 O0 O0 O0
4

2 2

O0 O0 O0 O0 O0 O0 O0 O0

2

O0 O0 O0 7 O0 O0 O0 O0

(2,0) (1,1) (1,1) (2, 1) 3 2

(1,0) 3 (0,1) 2 (1, 1) 4 2

2 (0,0) 2 (0, 1) (0,0) 2 (1,0)

2

s

II Ck II II K C II Ck II v

II v II v v II w v

II w II w Ck II v w II v

   

  

 

        

      

       



F

 

 

2 2 2

2 O0 O0 O0 O0 O0

O1 12 O0
4

(1,0) 2 (1, 2) (3, 2) (0,1) 2 (2, 2)

(1,1)s

II

C II k II w II II II w

K C II

  











        


  


F

 (A4) 

         1 1 1 i 1 i
1 2 3 4

D
0, D , D D D

2

P P P Ph
P x R P x h R h R h h

              
   

 
        

 
F F F F  (A5) 

        i

1 1 1 i 1
1 2 3 4

D D D D D
0, D ,

2 2 2

P P P Ph P x h h
P x R R       

       

   
         

   
F F F F  (A6) 



Hamed Gharooni and Mehdi Ghannad 

409 

 

   

 
1 1 0 0

1

0 0

D
D (1,0) D (0,1) D (0,0)

D (1,1) D (0,1)

A
x Ck II II II w

x k II II v

      

    

 



    

 

F

 (A7) 

   

   

1 1 0 0 12 0
2

0 0 0 0

D
D (2,0) D (1,1) D (1,0) D (1,1)

+D (0,1) D (1,1) D (2,1)

s

A
x Ck II II II w x K C II

II w x k II v II


         

       

 

 

       
  

    


F

 (A8) 

   

 

1 1 0 0 0 12 0
3

0 0 0 0

D
D (1,0) D (0,0) D (1,1)

D (0,1) D (0, 1) D (1, 1)

s

A
x Ck II II v x K C II

II w x k II w II


         

       

  

 

       
  

         

F

 (A9) 

       

   
 

1 1 0 0 0 0
4

0 12 0 0 0

0 0

D
D (0,1) D (1,0) 2 D (0,0)

D (2,0) D (1,1) D (2,1) D (1,1)

D (2, 1) D (0,1) D (1, 1)

s

A
x Ck II v II v II w

II II x K C II II w

x k II II II w


        

        

     



  



    

        
   

      

F

 (A10) 

     

   

     

1 1 0 0 0 0
2

1 12 0 0 0
3

1 12 0 0 0 1
4 1

D

D

D D

D (2,0) D (1,1) D (1,0) D (1,1) D (2,1)

D (1,1) D (0,1)

D (2,1) D (1,1) , 0

s

s

II

II

II II

Ck II II II w k II v II

K C II II w

K C II II w





 

         

     

      

 

 

 

        

         

      
  

F

F

F F





 (A11) 

      

 

 

2

1 3 0 0 0 0
1

2

0 0 0 0 0 0 0

2

12 0 0 0 0 0

2 (1,1) (2,0) (1,0) (0,1) (2, 1)

2 (1,0) (0,1) 2 (1, 1) 2 (0,0) (0, 1)

ˆ(1,1) (0,1)s s s

II
Ck II II II w II II

II II v II w II v w II w

C K II II K w K


         

           

      

  

 

   

      


       

    
  

F

     
2

2

0 0 0 0 0 0 0 0

2

7 0 0 0

2 (2,1) 4 (1,1) 4 (0,1) 2

(1,0) (0,0)

k II II v II v w

Ck II II w

          

    

    

 

        
  

   

 (A12) 

   

    
   

1 1 0 0 0 0 2 0 0
2

0 0 0 0 0 0 0 5 0 0

4 0 0 0 0 0 0

12

ˆ(1,0) (0,0) (0,1) (2,0)

(1,0) (0,0) (2,1)

(0,1) (1,1)

(

s s

s

s

II
Ck II II w K II v K Ck II

II w II w w Ck II

K Ck II v w II v

K C II


          

           

       



   

     

  

    


       


     
 



F

   

    

     

0 0 0 6 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2,1) (1,1) (3,0) (2,1)

(1,1) (1, 1) (2, 1)

(1,0) (3,1) (2,0)

ˆ
s

II w Ck II II

II v II w w II w

II w v II II v w

k K I

         

          

          

     

   

   

      


       

         
 

  

  
 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

7 0 0 0 0

(0,1) (2,1) 4

ˆ(1,1) 4 4 (3,1)

2 (2,0) (1,0)

s

s

I II v K

II v v w K w II

Ck II II w

         

          

     

      

    

  

  
       

  

        


  
    

(A13) 



Journal of Computational Applied Mechanics, Vol. 50, No. 2, December 2019 

 

410 

 

   

     

1 1 0 0 0 0 0 0 0 0 0 0
3

0 0 0 0 7 0 0 0

2

2 0 2 0 0

(2,0) (1,0) 2 (0,0)

ˆ (1,1) (0,1) (0,0) (1,0)

ˆ4 (0,0) (0,0)

s

s

II
Ck II II w w w II w w

K II II w Ck II v II

C II Ck II K w


             

          

    

    

    

 

         


        
 

 

F

 

   

   

2

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2

0 0 0 3 0 0 0 0 0

2

0 0 0

ˆ(1,0) 2

(2,0) 2 (2, 1) 2 (0, 1)

2 (1, 1)

s

s s

s

K w w w w

II K K w w w

K II Ck II II v w

II w v

    

          

          

   



      

     

 

          
  

        

             

      

       

     

2 2

0 0 0 0 0 0

2 2 2

0 8 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0

2 (1,0) (0,0)

2 (2,0) (2,0) (0,0) (1,1)

ˆ(0,1) (2,1) (1,1)

s

s

II v II v

II Ck II II w K Ck II

II v K k II II v w

       

        

            

  

   

      

  

            
   

           

   2 2

0 0 0 0 0 0(0,1) 2 (2, 2) 2 (1, 2) (0, 2)II v w k II II w II w          


         


 

(A14) 

   

   

 

1 1 0 0 0 0 0 0 0
4

0 0 0 0 0 0 9 0 0 0

2

2 0 0 0 0 0

ˆ(0,1) (1,1) (2,1) (1,0)

(2,0) (3,0) (1,1)

(1,0)

s

s

II
Ck II w K II w II II w w

II w w II Ck II v

Ck II K w w w w


           

           

     

  

     



      


            
 

       
 

F

 

   

   

0 0

0 0 0 0 0 0 0 0

2 2
2

0 0 0 3 0 0

0 0

ˆ

ˆ(2,0)

(3,0) 2 (3,0) (0, 1)

2 (2, 1) (0,1) 2 2 (1, 1) (0,0)

s

s s

s

K w

II K w w K w

K II Ck II II w

II II v II II w

 

        

       

      



    

   



  
  

 

  
         

  

          
  

     

   

 

     

0 0

2 2

0 0 0 0

2

0 0 0 0 0 0 0

2

4 0 0 0 0 0

3 (1,0) (2, 1) (0,1) (1,0) 2 (2,0)

2 (1, 1) 2 (2, 1) 2 (3, 1) (2,1)

ˆ(2,1) (1,1)s s s

II II II II v II v

II v w II w II II

Ck II K K K II v



        

          

      



 

   

    

     

         


          
  

 

     

   

   

0 0

2 2 2

12 0 0 0 8 0 0

7 0 0 0 0 0 0 0 0 0 0

0 0 0 0

ˆ(0,1) (3,0) (1,0)

ˆ2 (2,0) 2 (1,0) (0,0) (3,1)

(2,1)

s s

s

C II K w K w Ck II II w

Ck II II v w II v w K k II

II w v

 

       

             

    



 

     

 




            
   

           

 
       

 

0 0 0 0 0

2 2

0 0 0 0

(1,1)

2 (1, 2) (3, 2) (0,1) 2 (2, 2)

II v w w

k II w II II II w

     

       

 

 

   
          

   

        

 

(A15) 

 

 



Hamed Gharooni and Mehdi Ghannad 

411 

 

 

 

References 

[1] M. C. Boyce, E.M. Arruda, Constitutive models of 

rubber elasticity: a review, Rubber Chemistry and 

Technology, Vol. 73, No. 3, pp. 504-523, 2000. 

[2] W. Ma, B. Qu, F. Guan, Effect of the friction coefficient 

for contact pressure of packer rubber, Journal of 

Mechanical Engineering Science, Vol. 228, No. 16, pp. 

2881-2887, 2014. 

[3] T. Sussman, K. J. Bathe, A finite element formulation for 

nonlinear incompressible elastic and inelastic analysis, 

Computers & Structures, Vol. 26, No. 112, pp. 357-109, 
1987. 

[4] M. Levinson, I. W. Burgess, A comparison of some 

simple constitutive relations for slightly compressible 

rubber-like materials, International Journal of 

Mechanical Sciences, Vol. 13, No. 6, pp. 563-572, 1971. 

[5] J. C. Simo, R. L. Taylor, Penalty function formulations 

for incompressible nonlinear elastostatics, Computer 

Methods in Applied Mechanics and Engineering, Vol. 

35, pp. 107-118, 1982. 

[6] J. C. Simo, R. L. Taylor, Quasi-incompressible finite 

elasticity in principal stretches. Continuum basis and 

numerical algorithms, Computer Methods in Applied 
Mechanics and Engineering, Vol. 85, No. 3, pp. 273-310, 

1991. 

[7] J. S. Chen, C. Pan, A pressure projection method for 

nearly incompressible rubber hyperelasticity, Part I: 

Theory, Journal of Applied Mechanics, Vol. 63, No. 4, 

pp. 862-868, 1996. 

[8] J. S. Chen, C. T. Eu, C. Pan, A pressure projection 

method for nearly incompressible rubber hyperelasticity, 

Part II: Applications, Journal of Applied 

Mechanics, Vol. 63, No. 4, pp. 869-876, 1996. 

[9] I. Bijelonja, I. Demirdžic, S. Muzaferija, A finite volume 
method for large strain analysis of incompressible 

hyperelastic materials, International Journal for 

Numerical methods in Engineering, Vol. 64, pp. 1594-

1609, 2005. 

[10] C. A. C. Silva, M. L. Bittencourtb, Structural shape 

optimization of 3D nearly-incompressible hyperelasticity 

problems, Latin American Journal of Solids and 

Structures, Vol. 5, pp. 129-156, 2008. 

[11] S. Doll, K. Schweizerhof, On the development of 

volumetric strain energy functions, Journal of Applied 

Mechanics, Vol. 97, pp.17–21, 2000. 

[12] H. Ghaemi, K. Behdinan, A. Spence, On the 
development of compressible pseudo-strain energy 

density function for elastomers Part 1. Theory and 

experiment, Journal of Materials Processing 

Technology, Vol. 178, pp. 307-316, 2006. 

[13] G. Montella, A. Calabrese, G. Serino, Mechanical 

characterization of a Tire Derived Material: experiments, 

hyperelastic modeling and numerical validation, 

Construction and Building Materials, Vol. 66, pp. 336-

347, 2014. 

[14] V. Dias, C. Odenbreit, O. Hechler, F. Scholzen, T. B. 

Zineb, Development of a constitutive hyperelastic 

material law for numerical simulations of adhesive steel–

glass connections using structural silicone, International 

Journal of Adhesion and Adhesives, Vol. 48, pp. 194–

209, 2014. 

[15] Y. Zhu, X. Y. Luo, R. W. Ogden, Nonlinear 

axisymmetric deformations of an elastic tube under 

external pressure, European Journal of Mechanics- 

A/Solids, Vol. 29, No. 2, pp. 216-229, 2010. 

[16] M. Tanveer, J. W. Zu, Non-linear vibration of 

hyperelastic axisymmetric solids by a mixed p-type 
method, International Journal of Non-Linear Mechanics, 

Vol. 47, pp. 30-41, 2012. 

[17] J. Kiendl, M. C. Hsu, M. C. H. Wu, A. Reali, 

Isogeometric Kirchhoff–Love shell formulations for 

general hyperelastic materials. Computer Methods in 

Applied Mechanics and Engineering., Vol. 291, pp. 280-

303, 2015. 

[18] H. R. Eipakchi, Third-order shear deformation theory for 

stress analysis of a thick conical shell under pressure, 

Journal of Mechanics of materials and structures, Vol. 

5, No. 1, 1-17, 2010. 
[19] M. Ghannad, G. H. Rahimi, M. Z. Nejad, Elastic analysis 

of pressurized thick cylindrical shells with variable 

thickness made of functionally graded materials, 

Composites: Part B, Vol. 45, pp. 388-396, 2013. 

[20] M. Jabbari, M. Z. Nejad, M. Ghannad, Thermo-elastic 

analysis of axially functionally graded rotating thick 

truncated conical shells with varying thickness, 

Composites: Part B, Vol. 96, pp. 20-34, 2016. 

[21] H. Gharooni, M. Ghannad, M. Z. Nejad, Thermo-elastic 

analysis of clamped-clamped thick FGM cylinders by 

using third-order shear deformation theory, Latin 

American Journal of Solids and Structures, Vol. 13, No. 
4, pp. 750-774, 2016. 

[22] J. Vossoughi, A. Tozeren, Determination of an effective 

shear modulus of aorta, Russian Journal of 

Biomechanics, Vol. 1-2, pp. 20-36, 1998. 

[23] T. E. Carew, R. N. Vaishnav, D. J. Patel, 

Compressibility of the arterial wall, Circulation 

Research, Vol. 23, No. 1, pp. 61–68, 1968. 

[24] K. L. Dorrington, N. G. McCrum, Elastin as a rubber, 

Biopolymers, Vol. 16, No. 6, pp. 1201-1222, 1977. 

[25] L. A. Mihai, A. Goriely, How to characterize a nonlinear 

elastic material? A review on nonlinear constitutive 
parameters in isotropic finite elasticity, Journal of Royal 

Society A, Vol. 473, No. 2207, 20170607, 2017. 

[26] J. D. Humphrey, S. L. O’Rourke, 2015, An Introduction 

to Biomechanics Solids and Fluids, Analysis and Design, 

2nd ed., Springer, New York. 

[27] D. Azar, D. Ohadi, A. Rachev, J. F. Eberth, M. J. Uline, 

T. Shazly, Mechanical and geometrical determinants of 

wall stress in abdominal aortic aneurysms: A 

computational study, PLoS ONE, Vol. 13, No. 2, 

e0192032, 2018. 

[28] J. N. Reddy, 2002, Energy principles and variational 

methods in applied mechanics, Wiley, New York. 
[29] J. T. Oden, A theory of penalty methods for finite 

element approximations of highly nonlinear problems in 

continuum mechanics, Computers and Structures, Vol. 8, 

pp. 445-449, 1978. 

[30] G. A. Holzapfel, 2000, Nonlinear Solid Mechanics, a 

Continuum Approach for Engineering, Wiley, New 

York. 

https://www.sciencedirect.com/science/article/pii/0020740371900427#!
https://www.sciencedirect.com/science/article/pii/0020740371900427#!
https://www.sciencedirect.com/science/journal/00207403
https://www.sciencedirect.com/science/journal/00207403
https://www.sciencedirect.com/science/journal/00457825
https://www.sciencedirect.com/science/journal/00457825
http://appliedmechanics.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Jiun-Shyan+Chen&q=Jiun-Shyan+Chen
http://appliedmechanics.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Chunhui+Pan&q=Chunhui+Pan
http://appliedmechanics.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Jiun-Shyan+Chen&q=Jiun-Shyan+Chen
http://appliedmechanics.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Chunhui+Pan&q=Chunhui+Pan
http://www.bioxbio.com/if/html/COMPUT-METHOD-APPL-M.html
http://www.bioxbio.com/if/html/COMPUT-METHOD-APPL-M.html
https://www.ncbi.nlm.nih.gov/pubmed/?term=Carew%20TE%5BAuthor%5D&cauthor=true&cauthor_uid=5661939
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vaishnav%20RN%5BAuthor%5D&cauthor=true&cauthor_uid=5661939
https://www.ncbi.nlm.nih.gov/pubmed/?term=Patel%20DJ%5BAuthor%5D&cauthor=true&cauthor_uid=5661939
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dorrington%20KL%5BAuthor%5D&cauthor=true&cauthor_uid=880350
https://www.ncbi.nlm.nih.gov/pubmed/?term=McCrum%20NG%5BAuthor%5D&cauthor=true&cauthor_uid=880350
https://www.ncbi.nlm.nih.gov/pubmed/880350


Journal of Computational Applied Mechanics, Vol. 50, No. 2, December 2019 

 

412 

 

[31] Y. Başar, D. Weichert, 2000, Nonlinear Continuum 

Mechanics of Solids, Springer, Berlin.  

[32] I. Doghri, 2000, Mechanics of Deformable Solids: 

Linear, Nonlinear, Analytical and Computational 

Aspects, Springer, Berlin.  

[33] J. N. Reddy, 2004, Mechanics of Laminated Composite 

Plates and Shells: Theory and Analysis, 2nd ed., CRC 

Press, New York. 

[34] A. H. Nayfeh, 1981, Introduction to Perturbation 

Techniques, Wiley, New York. 

[35] Y. Payan, J. Ohayon, (Eds.) 2017, Biomechanics of 
Living Organs: Hyperelastic Constitutive Laws for Finite 

Element Modeling, World Bank Publications, London. 

[36] G. A. Holzapfel, R. W. Ogden, (Eds.) 2003, 

Biomechanics of soft tissue in cardiovascular systems, 

Springer-Verlag, Austria. 

[37] J. H. Kim, S. Avril, A. Duprey, J. P. Favre, Experimental 

characterization of rupture in human aortic aneurysms 

using full-field measurement technique, Biomechanics 

and Modeling in Mechanobiology, Vol. 11, No. 6, pp. 

841-854, 2012. 

[38] G. A. Holzapfel, T. C. Gasser, Computational stress–
deformation analysis of arterial walls including high-

pressure response International Journal of Cardiology, 

Vol. 116, pp. 78-85, 2007.  

[39] R. Mihara, A. Takasu, K. Maemura, T. Minami, 

Prolonged severe hemorrhagic shock at a mean arterial 

pressure of 40 mmHg does not lead to brain damage in 

rats, Acute Medicine & Surgery, Vol. 5, pp. 350-357, 

2018. 

[40] M. Cecconi, D. D. Backer, M. Antonelli, R. Beale, J. 

Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. 

Pinsky, J. L. Teboul, J. L. Vincent, A. Rhodes, 

Consensus on circulatory shock and hemodynamic 
monitoring. Task force of the European Society of 

Intensive Care Medicine, Intensive Care Medicine, Vol. 

40, pp. 1795-1815, 2014. 

[41] B. R. Simon, M. V.  Kaufmann, M. A.  McAfee, A. L.  
Baldwin,  L. M. Wilson, Identification and determination 

of material properties for porohyperelastic analysis of 

large arteries, Journal of Biomechanical Engineering, 

Vol. 120, No. 2, pp. 188-194, 1998.  

 

 

https://biomechanical.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=B.+R.+Simon&q=B.+R.+Simon
https://biomechanical.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=M.+V.+Kaufmann&q=M.+V.+Kaufmann
https://biomechanical.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=M.+A.+McAfee&q=M.+A.+McAfee
https://biomechanical.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=A.+L.+Baldwin&q=A.+L.+Baldwin
https://biomechanical.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=A.+L.+Baldwin&q=A.+L.+Baldwin
https://biomechanical.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=L.+M.+Wilson&q=L.+M.+Wilson

