[1] M. C. Boyce, E. M. Arruda, Constitutive Models of Rubber Elasticity: A Review, Rubber Chemistry and Technology, Vol. 73, No. 3, pp. 504-523, 2000.
[2] T. Sussman, K.-J. Bathe, A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Computers & Structures, Vol. 26, No. 1-2, pp. 357-409, 1987.
[3] S. Doll, K. Schweizerhof, On the Development of Volumetric Strain Energy Functions, Journal of Applied Mechanics, Vol. 67, No. 1, 2000.
[4] O. Lopez-Pamies, A new -based hyperelastic model for rubber elastic materials, Comptes Rendus Mécanique, Vol. 338, No. 1, pp. 3-11, 2010.
[5] I. Bijelonja, I. Demirdžić, S. Muzaferija, A finite volume method for large strain analysis of incompressible hyperelastic materials, International Journal for Numerical Methods in Engineering, Vol. 64, No. 12, pp. 1594-1609, 2005.
[6] Y. Zhu, X. Y. Luo, R. W. Ogden, Nonlinear axisymmetric deformations of an elastic tube under external pressure, European Journal of Mechanics - A/Solids, Vol. 29, No. 2, pp. 216-229, 2010.
[7] M. Tanveer, J. W. Zu, Non-linear vibration of hyperelastic axisymmetric solids by a mixed p-type method, International Journal of Non-Linear Mechanics, Vol. 47, No. 4, pp. 30-41, 2012.
[8] G. Montella, A. Calabrese, G. Serino, Mechanical characterization of a Tire Derived Material: Experiments, hyperelastic modeling and numerical validation, Construction and Building Materials, Vol. 66, pp. 336-347, 2014.
[9] J. Kiendl, M.-C. Hsu, M. C. H. Wu, A. Reali, Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials, Computer Methods in Applied Mechanics and Engineering, Vol. 291, pp. 280-303, 2015.
[10] D. Azar, D. Ohadi, A. Rachev, J. F. Eberth, M. J. Uline, T. Shazly, Mechanical and geometrical determinants of wall stress in abdominal aortic aneurysms: A computational study, PLoS One, Vol. 13, No. 2, pp. e0192032, 2018.
[11] J. Vossoughi, A. Tozeren, Determination of an effective shear modulus of aorta, Russian Journal of Biomechanics, Vol. 1-2, pp. 20-36, 1998.
[12] L. A. Mihai, A. Goriely, How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity, Proceedings. Mathematical, physical, and engineering sciences Royal Society, Vol. 473, No. 2207, pp. 20170607, 2017.
[13] C. M. Scotti, A. D. Shkolnik, S. C. Muluk, E. A. Finol, Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness, BioMedical Engineering OnLine, Vol. 4, pp. 1-22, 2005.
[14] C. Lally, F. Dolan, P. J. Prendergast, Cardiovascular stent design and vessel stresses: a finite element analysis, Journal of Biomechanics, Vol. 38, No. 8, pp. 1574-81, 2005.
[15] G. Chagnon, M. Rebouah, D. Favier, Hyperelastic Energy Densities for Soft Biological Tissues: A Review, Journal of Elasticity, Vol. 120, No. 2, pp. 129-160, 2014.
[16] Y. Ikeda, Y. Kasai, S. Murakami, S. Kohjiya, Preparation and Mechanical Properties of Graded Styrene-Butadiene Rubber Vulcanizates, Journal of the Japan Institute of Metals, Vol. 62, No. 11, pp. 1013-1017, 1998.
[17] E. Bilgili, Controlling the stress–strain inhomogeneities in axially sheared and radially heated hollow rubber tubes via functional grading, Mechanics Research Communications, Vol. 30, No. 3, pp. 257-266, 2003.
[18] E. Bilgili, Modelling mechanical behaviour of continuously graded vulcanised rubbers, Plastics, Rubber and Composites, Vol. 33, No. 4, pp. 163-169, 2013.
[19] O. Lopez-Pamies, P. Ponte Castañeda, On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I—Theory, Journal of the Mechanics and Physics of Solids, Vol. 54, No. 4, pp. 807-830, 2006.
[20] R. C. Batra, A. Bahrami, Inflation and eversion of functionally graded non-linear elastic incompressible circular cylinders, International Journal of Non-Linear Mechanics, Vol. 44, No. 3, pp. 311-323, 2009.
[21] Y. Anani, G. H. Rahimi, Stress analysis of thick pressure vessel composed of functionally graded incompressible hyperelastic materials, International Journal of Mechanical Sciences, Vol. 104, pp. 1-7, 2015.
[22] Y. Anani, G. H. Rahimi, Stress analysis of rotating cylindrical shell composed of functionally graded incompressible hyperelastic materials, International Journal of Mechanical Sciences, Vol. 108-109, pp. 122-128, 2016.
[23] M. H. Ghadiri Rad, F. Shahabian, S. M. Hosseini, Geometrically nonlinear elastodynamic analysis of hyper-elastic neo-Hooken FG cylinder subjected to shock loading using MLPG method, Engineering Analysis with Boundary Elements, Vol. 50, pp. 83-96, 2015.
[24] H. R. Eipakchi, Third-order shear deformation theory for stress analysis of a thick conical shell under pressure, Journal of Mechanics of Materials and Structures, Vol. 5, No. 1, pp. 1-17, 2010.
[25] H. Gharooni, M. Ghannad, M. Z. Nejad, Thermo-Elastic Analysis of Clamped-Clamped Thick FGM Cylinders by Using Third-Order Shear Deformation Theory, Latin American Journal of Solids and Structures, Vol. 13, No. 4, pp. 750-774, 2016.
[26] M. Ghannad, G. H. Rahimi, M. Z. Nejad, Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials, Composites Part B: Engineering, Vol. 45, No. 1, pp. 388-396, 2013.
[27] M. Jabbari, M. Z. Nejad, M. Ghannad, Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness, Composites Part B: Engineering, Vol. 96, pp. 20-34, 2016.
[28] M. Z. Nejad, M. Jabbari, M. Ghannad, Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading, International Journal of Engineering Science, Vol. 89, pp. 86-99, 2015.
[29] Z. Mazarei, M. Z. Nejad, A. Hadi, Thermo-Elasto-Plastic Analysis of Thick-Walled Spherical Pressure Vessels Made of Functionally Graded Materials, International Journal of Applied Mechanics, Vol. 08, No. 04, 2016.
[30] M. Z. Nejad, N. Alamzadeh, A. Hadi, Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition, Composites Part B: Engineering, Vol. 154, pp. 410-422, 2018.
[31] M. Hosseini, M. Shishesaz, A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness, Thin-Walled Structures, Vol. 134, pp. 508-523, 2019.
[32] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016.
[33] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016.
[34] M. Z. Nejad, A. Hadi, A. Omidvari, A. Rastgoo, Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory, Structural Engineering and Mechanics, Vol. 67, No. 4, pp. 417-425, 2018.
[35] H. Ghaemi, K. Behdinan, A. Spence, On the development of compressible pseudo-strain energy density function for elastomers, Journal of Materials Processing Technology, Vol. 178, No. 1-3, pp. 307-316, 2006.
[36] C. A. C. SILVA, M. L. BITTENCOURT, Structural shape optimization of 3D nearly-incompressible hyperelasticity problems, Latin American Journal of Solids and Structures, Vol. 5, No. 2, pp. 129-156, 2008.
[37] G. A. Holzapfel, 2000, Nonlinear Solid Mechanics, a Continuum Approach for Engineering, Wiley, New York
[38] Y. Başar, D. Weichert, 2000, Nonlinear Continuum Mechanics of Solids, Springer, Berlin
[39] J. H. Kim, S. Avril, A. Duprey, J. P. Favre, Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique, Biomechanics and Modeling in Mechanobiology, Vol. 11, No. 6, pp. 841-853, 2012.
[40] I. Doghri, 2000, Mechanics of Deformable Solids, Springer, Berlin
[41] A. H. Nayfeh, 1993, Introduction to Perturbation Techniques, Wiley, New York
[42] V. Dias, C. Odenbreit, O. Hechler, F. Scholzen, T. Ben Zineb, Development of a constitutive hyperelastic material law for numerical simulations of adhesive steel–glass connections using structural silicone, International Journal of Adhesion and Adhesives, Vol. 48, pp. 194-209, 2014.
[43] A. P. S. Selvadurai, M. Shi, Fluid pressure loading of a hyperelastic membrane, International Journal of Non-Linear Mechanics, Vol. 47, No. 2, pp. 228-239, 2012.
[44] G. A. Holzapfel, T. C. Gasser, Computational stress-deformation analysis of arterial walls including high-pressure response, International Journal of Cardiology, Vol. 116, No. 1, pp. 78-85, 2007.
[45] M. Abdessamad, M. Hasnaoui, M. Agouzoul, Analytical Modeling of a Descending Aorta Containing Human Blood Flow, Defect and Diffusion Forum, Vol. 384, pp. 117-129, 2018.
[46] J. D. Humphrey, S. L. O’Rourke, 2015, An Introduction to Biomechanics: Solids and Fluids, Analysis and Design, Springer, New York, 2nded.
[47] R. C. Batra, Material tailoring and universal relations for axisymmetric deformations of functionally graded rubberlike cylinders and spheres, Mathematics and Mechanics of Solids, Vol. 16, No. 7, pp. 729-738, 2011.
[48] M. J. Łos, S. Panigrahi, K. Sielatycka, C. Grillon, Successful Biomaterial-Based Artificial Organ—Updates on Artificial Blood Vessels, in: M. J. Łos, A. Hudecki, E. Wiecheć, Stem Cells and Biomaterials for Regenerative Medicine, Eds., pp. 203-222, United States: Academic Press, 2019.