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1. Introduction 

Thick hyperelastic shells in the presence of large displacements 

and strains with nonlinear elastic constitutive laws are typically 

used for the modeling of rubber-like materials and biological 

tissues. In such cases, a fully nonlinear formulation, including 
both kinematic and constitutive nonlinearities, needs to be 

adopted. The incompressible or nearly-incompressible 

hyperelasticity, including geometrical and material nonlinearities, 

is the ability of a material to incident large elastic strain due to 

small forces, without losing its original properties. Rubber-like 

hyperelastic materials are usually modeled as incompressible or 
nearly incompressible nonlinear elastic. These materials are often 

used to make tires, catheters, water hoses, shock absorbers, 

fenders for boats, seals, cylindrical sleeves in label printing and 

packer rubbers. The mathematical modelling of the mechanical 

behaviour of rubber-like hyperelastic materials focuses to a large 

extent on the development of an appropriate form of a strain 
energy function applicable to the range of deformations of interest 

to practical applications. Common practical constitutive relations 

for studying the mechanical deformations of these materials 

include the neo-Hookean and the Mooney-Rivlin. The neo-

Hookean model provides a good description of the mechanical 

properties of rubber materials when deformation is less than 70%. 
A comprehensive survey on the finite element methods of 

incompressible or almost incompressible hyperelastic materials 

can be found in many papers [1]. As an important primary 

research, Sussman and Bathe [2] introduce a displacement-

pressure finite element formulation for the geometrically and 
materially nonlinear analysis of compressible and almost 

incompressible solids. Doll and Schweizerhof [3] developed the 

volumetric part of the strain energy function and investigated new 

volumetric functions. Lopez-Pamies [4] proposed a new I1 based 

hyperelastic model, much like the neo-Hookean one, for rubber 

elastic solids applicable over the entire range of deformations. 
Bijelonja et al. [5] presented development of a displacement-

pressure based finite volume formulation for modelling of large 

strain problems including incompressible hyperelastic materials 

with a Mooney–Rivlin model. The problem of the finite 

axisymmetric deformation of a thick-walled circular cylindrical 

elastic tube subjected to pressure is formulated for an 
incompressible isotropic neo-Hookean material by Zhu et al. [6] 

and solved numerically by finite element library Libmesh. 

Tanveer and Zu [7] presented finite amplitude transient vibration 

analysis of nearly incompressible hyperelastic axisymmetric 

solids by a mixed p-type method and solved the equations by the 

Newmark’s method along with the Newton–Raphson iterative 
technique for hyperelastic material description. Montella et al. [8] 

presented the mechanical behavior of a Tire Derived Material 

(TDM) in details numerically and experimentally. They fitted 

some hyperelastic models to the collected experimental data to 

investigate the rate-independent behavior of these materials as 
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anti-vibration in railway track applications. Kiendl et al. [9] 

presented formulations for compressible and incompressible 

hyperelastic thin shells with plane stress condition based on 

energy methods and used continuous iso-geometric discretization 

to build the numerical solution.  

Since the early studies of hyperelastic theories related to 
rubber-like materials, their range of applications have been 

extended to include biological materials and synthetic soft tissues 

used in bio-medical engineering. Investigating aortic aneurysm as 

pressurized hyperelastic blood vessels enable scientists to evaluate 

the relative sensitivity of displacement and stress to geometrical 

and mechanical properties of the aneurysmal tissue. Furthermore, 
in pathologic conditions, arteries are even under more shear 

deformation compared to healthy vessels [10]. In clinical 

interventions, such as balloon angioplasty significant wall 

shearing may take place. Simulation of arteries under blood 

pressure to yield displacement and stress analysis of blood vessels 

could result in useful information on the behavior of the arterial 
tissues under shear deformation [11]. Mihai and Goriely [12] 

investigated universal relations between parameters of different 

hyperelastic material models which are used to quantify nonlinear 

elastic responses of several hyperelastic models as rubber 

structures to soft tissues. Utilizing a computational approach, 

Scotti et al. [13] studied the effects of geometry asymmetry and 
wall thickness, two vital parameters that intensify risk of 

aneurysm rupture, on deformation and stress of virtual abdominal 

aortic aneurysm (AAA). Lally et al. [14] investigated the effect of 

different stent designs on level of deformation and stress in the 

vascular wall of stented arteries based on FEM for developing 

novel stent designs. A review of some specific and pioneer 
constitutive models proposed for hyperelastic energy densities of 

soft biological tissues were presented in literature [15]. 

Depending upon the intended applications, material properties 

of rubber-like material models may be desirable to vary in one or 

more directions for optimizing the life of structures. This purpose 

can be achieved by either changing the chemical composition or 
fabricating the component from two or more materials [16]. 

Graded rubber-like materials attracted the attention of researchers 

for modeling these materials behavior under mechanical and 

geometrical boundary conditions. For instance, effects of material 

inhomogeneities on stress distributions through the thickness of 

circular cylinders made of rubber-like materials in mechanical and 
thermal load was studied by Bilgili [17]. In another study, Bilgili 

[18] investigated plane strain deformations of a circular cylinder 

made of heterogeneous neo-Hookean material with 

circumferential displacements prescribed on the inner and the 

outer surfaces. Lopez-Pamies and Castaneda [19] have used a 

second-order homogenization method to determine the overall 
constitutive response of an elastomer reinforced with either rigid 

or compliant fibers and subjected to finite deformations. Batra and 

Bahrami [20] considered cylindrical pressure vessel made of FG 

rubber-like material under internal pressure. To discover stress 

components of the pressure vessel, they assumed axisymmetric 

radial deformations of a circular cylinder composed of FG 
Mooney–Rivlin material with the material parameters varying 

continuously through the radial direction by a power law relation. 

Anani and Rahimi [21, 22] studied behavior of spherical and 

cylindrical shell made of FG rubbers by neo-Hookean model. 

They assumed radial variation of material properties by power law 

function and used classical theory (PET) and Gauss-
hypergeometric function to derive and solve equations, 

respectively. Geometrically nonlinear dynamic behavior of FG 

thick hollow cylinder under axisymmetric mechanical shock 

loading is investigated by Ghadiri Rad et al. [23]. They used 

meshless local Petrov–Galerkin method to analyze cylinder made 

of neo-Hookean materials such as carbon-based polymers. 

In optimizing FG structures with respect to weight or stress 

distribution, one method is to use shells with varying thickness or 

materials properties along one or two direction. The literature that 

addresses the stresses of thick cylindrical shells with variable 
thickness is quite limited. Eipakchi [24] calculated stresses and 

displacements of linear elastic conical shell with varying thickness 

under non-uniform internal pressure analytically, using shear 

deformation theory (SDT). Gharooni and Ghannad [25] 

investigated thermo-elastic analysis in pressurized thick FGM 

cylinders with varying properties of power function based on 
higher-order shear deformation theory. The innovative 

formulations for higher-order approximation with FG function of 

materials properties have been presented in this research. Ghannad 

et al. [26] presented a closed-form analytical solution for thick 

FGM cylindrical shells with variable thickness subjected to 

constant internal pressure based on the first-order shear 
deformation theory (FSDT) and solved the governing equations 

by the usage of perturbation theory. Jabbari et al. [27] investigated 

thermo-elastic analysis of rotating truncated conical shells with 

varying thickness made of functionally graded materials (FGMs) 

subjected to thermo-mechanical loading. The system of partial 

differential equations is semi-analytically solved by using multi-
layered method (MLM). Nejad et al. [28] presented semi-

analytical solution for elastic analysis of axially functionally 

graded rotating thick cylindrical shells with variable thickness 

under non-uniform pressure by the usage of SDT and MLM. 

Mazarei et al. [29] presented an exact closed-form analytical 

solution to solve the thermo-elasto-plastic problem of thick-
walled spherical vessels made of functionally graded materials. 

Material properties were graded in the thickness direction 

according to a power law distribution and the plastic model was 

based on von Mises yield criterion and its associated flow rules 

under the assumption of perfectly plastic material behavior. Nejad 

et al. [30] investigated exact solutions for purely elastic, partially 
plastic and fully plastic deformation and stresses of rotating FG 

cylindrical pressure vessels with radial variations of material 

properties under thermal load. Stress distribution in a functionally 

graded nanodisk of variable thickness under thermal and 

mechanical loads and constant angular velocity was obtained by 

Hosseini et al. [31] based on the strain gradient theory and 
numerical scheme. Mechanical properties of the nanodisk were 

assumed to vary according to the power law formulation in radial 

direction. However, there are practical occasions which require 

tailored grading of properties in two directions, the number of 

studies on structures made of two-directional functionality is very 

limited. As important researches, Nejad and Hadi [32] applied 
Eringen’s non-local theory to investigate size effects on vibration 

analysis of Euler–Bernoulli nano-beams made of bi-directional 

functionally graded material in both axial and thickness directions 

of the beam. Buckling analysis of the nano-beams made of two-

directional functionally graded materials with small scale effects 

was carried out by Nejad et al. [33] based on the nonlocal elasticity 
theory. They presented a solution by the usage of generalized 

differential quadrature method and taking into account the 

variation of FG material properties with arbitrary functions along 

thickness and length direction. Nejad et al. [34] investigated the 

bending of Euler-Bernouilli nano-beams made of bi-directional 

functionally graded materials using Eringen\'s non-local elasticity 
theory and the Rayleigh-Ritz method. Bi-directional functionality, 

similar to the previous article, was assumed for FGMs nano-beam.  

 Although numerous studies have been carried out on 

compressible or nearly incompressible hyperelastic shells, no 
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analytical analysis has been carried out to date on non-uniformly 

pressurized cylinder with nonlinear variable thickness made of 

hyperelastic FGMs. On the other hand, most of the mentioned 
numerical methods are not efficient for incompressible materials. 

The common problems with these studies, as Poisson’s ratio 

approaches 0.5, are the ill conditioning of stiffness matrix, the 

locking phenomena and effect of applying numerical techniques 

on resulted displacements and stresses. Using multi-layered 

method, linear elastic semi-analytical solution of axially 
functionally graded thick cylindrical shells with variable thickness 

could be demonstrated. However, one could divide the length of 

the cylinder into several disks with uniform material properties in 

each layer and analyze a multi-body problem with tractions and 

displacement continuity conditions imposed at interfaces between 

adjoining disks, this semi-analytical approach is not suitable in 
nonlinear modeling of FG hyperelastic variable thickness shells 

with radial variation of the material properties. Furthermore, no 

exact or analytical solution could be demonstrated for these 

geometrically and materially nonlinear complex problems based 

on plane or 3D elasticity theories. But analytical solutions have 

their own advantages; one can use these methods in optimizing 
shell thickness with trial and error, provided that displacements or 

stresses are considered as the objective functions, by preparing a 

mathematical program to analyze various models. They are more 

efficient respect to the FE modeling because the related programs 

can be run by a few variations and don’t require constructing FE 

modeling and meshing.  

In the current study, nonlinear quasi-static analysis of thick 

cylindrical pressure vessels with arbitrary variable thickness made 

of neo-Hookean model of hyperelastic FGM with radially-varying 

properties in nearly incompressible state under non-uniform 

pressure loading is presented. The thickness and pressure profiles 

of the vessel are considered as the arbitrary nonlinear function of 
axial direction. The nonlinear governing equations have been 

derived by using first-order shear deformation theory. Match 

Asymptotic Expansion (MAE) of the perturbation theory is used 

for solving the governing system of nonlinear coupled differential 

equations with variable coefficients. The article is proposing to 

solve a very complex case containing geometrically and materially 
nonlinear shells undergoing large displacements and strains and 

benchmarks for non-linear problems. A new ingenious 

formulation and parameters have been defined during current 

study to simplify and abbreviate the representation of inner and 

outer equations components in MAE. The effect of materials 

constants, inhomogeneity index, geometry and pressure profiles 
on displacements, stresses and hydrostatic pressure distributions 

resulting from MAE solution have been investigated for different 

hyperelastic material properties and case studies and the results 

have been compared with FE modeling in ANSYS software. We 

present the equations that provide the general continuum 

description of the deformation and the hyperelastic stress response 
of the material. Current study aims to illustrate the potentials and 

reliability for estimating the state of deformation and stress in 

hyperelastic FG vessels from rubber structures to arteries. 

2. Basic formulations 

2.1. Shear deformation theory 

Fig. 1 show geometry, loading and boundary conditions of a 

thick-walled axisymmetric cylindrical shell with arbitrary variable 

thickness under non-uniform pressure loading in the reference 

configuration. The location of any typical point, within the shell 

element may be determined by radius of mid-plane ( )R x  and 

distance of typical point from the middle surface z , as 

( ) ( )
( )  , , 0

2 2

h x h x
r R x z z x L        (1) 

( )h x and L  are axially variable thickness and length of the shell, 

respectively. The following relations can be written for the 

geometry components of the shell: 

i o i

( )
( ) , ( ) ( )

2

h x
R x r r x r h x     (2) 

 
Figure 1. Geometry, loading and boundary conditions in cross section of the 

shell. 

 

In the first-order shear deformation theory, the general 
axisymmetric displacement field can be expressed in the following 

form based on axial and radial displacement components. 

( , ) ( ) (x) ( , ) ( ) z (x),, 0
z x

U z x w x z U z x u x U


       (3) 

where ( )w x and ( )u x are the displacement components of the 
middle surface. Also, (x)  and (x)  are the function of 

displacement field. In geometrically nonlinear kinematic, 

deformation gradient tensor  F  can be written based on 

displacements components as [6] 

 

1 0

0 1 0

0 1

w z

w z
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F  (4) 

where     x    . Considering the definition of right 

Cauchy–Green deformation tensor as      
T

C F F , its principal 

invariants 
1,2,3

I  and the volume ratio of deformation (Jacobian) in 

cylindrical polar coordinate system can be written 

 
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 (5) 

‘det’ stands for determinant operator. The strain–displacement 
relations in matrix representation of Green–Lagrange strain tensor 

can be defined as  1 2 E C I  (  I is the identity tensor). Its 

components are as follows: 
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 (6) 

2.2. Hyperelastic FGM 

Hyperelastics (as rubber-like materials) are kind of materials in 

which the stresses are only dependent on the initial and the final 

configurations but independent of the load path. The strain energy 

functions of these materials depend on the right Cauchy–Green 
deformation tensor through the strain invariants  *

1 2 3
( , , )W I I I . In 

the present study, the hyperelastic material of the shell is assumed 

to be isotropic and non-homogenous with neo-Hookean material 

description in nearly incompressible condition which is a suitable 

hyperelastic model for rubbers and soft biological tissues. The 

response of neo-Hookean material to distortional part of the 
deformation has the following form [18, 22]:   

 *

1 1 1
( ) 3

n
W I C I   (7) 

Here 
1n

C  is material constant resulting from experimental 

tests. Non-homogenous and isotropic FG hyperelastic materials 

have different properties in terms of points. The variations of 
properties in functionally graded shells are generally considered 

in radial and/or longitudinal directions. As the constants of neo-

Hookean model have relation with linear elastic shear modulus 

1
2

n n
C  , the constant of this model could be considered with 

power-law distribution continuously and smoothly in the radial 

direction. Although the variations of the FG layers are the function 
of radial direction in the current research, the properties of outer 

points are determined based on thickness profile because of outer 

radius variation along axial direction. The FG material constant 

has the following form [20, 22]: 

1 1

i

n

n

R z
C C

r




 
 
 

 (8) 

where 
1

C  is material constant fixed at the internal surface and n  

is the inhomogeneity index determined empirically. To properly 

deal with incompressibility condition, distortional part of the 

strain energy function *
W  is classically augmented by two 

constraint terms; first constraint enforce incompressibility

 1J  via a Lagrange multiplier ( )P  which can be identified as 

the hydrostatic pressure and the other one guarantee the stress free 

state of reference configuration with no physical meaning. 

Therefore, the following strain energy function could be 

demonstrated [3, 35]: 

*

1 1 0
( , ) ( ) ( 1) ( )

2

P
W I J W I J P H J     (9) 

In the present study, the extension of incompressible materials 

to nearly incompressible materials is considered. Indeed, the 

assumption of almost incompressible material is accomplished by 
dropping the restriction 1J   and including a hydrostatic work 

term in the strain energy function. The compressibility parameter 
k can be defined as the ratio of the volumetric stress, known as 

hydrostatic pressure ( )P , to the volumetric strain [2, 12]. 

0
1

P P
k

V V J
 
 

 (10) 

0
V  and V are the reference volume and volume changes through 

deformation, respectively. Considering k  as an additional 

material constant, representing the bulk modulus, only scales the 

second term in Eq. (9) but does not change its shape [35, 36]. In 

this context k  can be interpreted as the compressibility parameter 

that enforces incompressibility if large values are chosen. 

Although k  can be estimated by volumetric experimental tests, 

some relations are recommended for estimating the value of 
incompressibility parameter; for instance  2 (1 ) 3(1 2 )k      . 

The common part of similar relations is definition of the bulk 

modulus based on linear elastic shear modulus ( ) and Poisson’s 

ratio ( ) . In nearly incompressible materials such as rubbers or 

soft biological tissues, Poisson’s ratio in regard to the intensity of 

compressibility has constant values about 0.49 0.499   . The 
order of graded compressibility parameter 

n
k (bulk modulus) can 

be estimated based on the intensity of compressibility in FG 

material as [7, 9, 35]: 

2 3

1 1
0.49 10 or 0.499 10

n n n n
k C k C          (11) 

Therefore, variation of bulk modulus can be considered similar 

to Eq. (8). 

 
i

( )
,

n

n

R x z
k x z k

r




 
 
 

 (12) 

where k is the bulk modulus fixed at the internal radius.  

Considering zero values of displacement components in the 
reference configurations (initial state) with Eqs. (4) and (5) lead in

      F C Ι and    
1 2 3
, , , 3,3,1,1I I I J  . In general state of 

nearly incompressible hyperelastic materials (as neo-Hookean 

ones), hydrostatic pressure ( 1)P k J   does not vanish even at 

the natural state. Therefore, constant 
0

P and function ( )H J , in 

the third term of the right hand side of Eq. (9), along with the 
condition ( ) 0, ( ) 1 1H J H J J     guarantee the stress free 

reference configuration. The first condition  ( ) 0H J 

corresponds to the incompressibility constraint 1J   while the 

second one  ( ) 1H J  is necessary for giving the meaning of 

pressure to the constant multiplier of H as 
0

P . The initial value 

of P (i.e.
0

P ), with no clear physical meaning, should be 
determined to make the initial stress zero. In the current study, the 

function ( )H J  are considered as [3, 35]: 

( ) ln( )H J J  (13) 

Finally, the strain energy per unit undeformed volume of FG 
hyperelastic material for neo-Hookean model in nearly 

incompressible condition is expressed in the coupled form [1, 4].  

   
2

1 1 0
3 ln( ) 1

2

n

n n

k
W C I P J J      (14) 

Constitutive equation of coupled neo-Hookean model in 
material description and nearly incompressible, isotropic and non-

homogenous conditions is resulted consequently [37, 38]. 

   1

1 0
= 2 2 1

n n n

W
C k J J P


   


S I C

C
 (15) 

Eq. (15) relates the right Cauchy–Green strain tensor  C  to 

the second Piola–Kirchhoff stress tensor  S  through constitutive 

relation.  I is the identity tensor. The initial stress is zero if the 

hydrostatic pressure vanishes at the natural state, and vice versa. 

Recalling the assumption of stress-free reference configuration, 

Eq. (15) result in 
0 1

2
n n n

P C   [4, 5]. Thus, the multiplier 
0n

P  
in the case of ( ) ln( )H J J denotes the pressure measured in the 

initial volume. The components in the right hand side of Eq. (15), 

other than identity tensor and material constants, can be written in 

the displacement field components. Therefore, the relation 

between the second Piola–Kirchhoff stress tensor and 

displacement components could be derived. 
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2.3. Governing equations 

Based on the principle of virtual work, the variation of strain 

energy of the elastic body is equal to the variation of external work 

related to loading. The weak form of equilibrium equation, in 
quasi-static conditions with no body forces, can be written based 

on energy conjugate variables ( S  and E ) in deformed 

configuration [38-40]. 

0 0

0 0
: δ d .δ d 0

V A

V A   S E t y  (16) 

where 
0

V and 
0

A are the volume and boundary of the volume in 

the undeformed configuration, respectively. Vector t  denotes the 

traction applied to the boundary (pressure load), δy is the virtual 

displacement field and δE is the virtual strain field deduced from 

the gradient of y . The variation of external work related to non-

uniform internal pressure 
i
( )P x applied to the internal surface 

element 
i

dA  is: 

0 i

0 i z i i i
i

.δ d ( ) δ d , d 2 d

A A

r r
A P x U A A r x


  t y  (17) 

Above relation can be rewritten by considering displacement 

components from Eq. (3). 

i

0

( ) ( )
2 ( ) ( ) d

2 2

L
h x h x

P x R x w x  
  

   
  

  (18) 

The internal virtual work of the volume element 
0

dV  can be 
expressed in material description. 

 
0 0

ij

0 ij 0

0

: δ d δ d ,

d 2 ( )d d 2 ( ) z d d

V V

V S E V

V r x r x R x z x 

 


   

 S E

 (19) 

The variation of strain energy can be derived based on non-zero 

physical components of second Piola–Kirchhoff stress as 

( ) / 2

0 ( ) / 2

2

( ) 1 d d
( )

δ δ δ

h xL

h x

zz xx

zz xx

zx

zx

z
R x z x

R x

S E S E S E

S













  

 
  

 

 
 (20) 

Considering Eq. (6) and variational principles, the variation of 

strain tensor components can be calculated. 



  

 

 
 

 

2

2

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ ,

δ δ
δ ( )

( )

δ δ δ δ δ δ δ

δ δ δ δ δ

,

xx

zz

zx

E u u u w w u u w

w z z E

w z
E R x z w z

R x z

u u w w w

z



   

         




     

        

                 

          


   



         

        











 (21) 

The stress resultants are defined as follows: 

   
( ) / 2

TT 2

( ) / 2

1 1 d
( )

h x

zz

z z z

h x

z
N M Q S z z z

R x





 
 
 
 

  (22) 

   
( ) / 2

TT 2

θ θ θ

( ) / 2

1 d

h x

h x

N M Q S z z z






   (23) 

   
( ) / 2

T T
* * * 2

θ θ θ

( ) / 2

( )
1 d

( )

h x

h x

R x
N M Q S z z z

R x z










 
 
 

  (24) 

   
( ) / 2

TT 2

( ) / 2

1 1 d
( )

h x

xx

x x x

h x

z
N M Q S z z z

R x





 
 
 
 

  (25) 

   
( ) / 2

TT 2

( ) / 2

1 1 d
( )

h x

zx

zx zx zx S

h x

z
N M Q K S z z z

R x





 
 
 
 

  (26) 

S
K is shear correction factor applied to the stress resultants related 

to shear stresses because of preventing stress overestimation. We 

consider 5 / 6
S

K   in the present study [26]. Substituting Eqs. 
(18) and (20) into Eq. (16), considering strain invariants from Eq. 

(21), multiplying the sides in 
i

n
r  and carrying out the integration 

by parts, the equilibrium equations of nonlinear hyperelastic 

cylindrical shell with variable thickness under non-uniform 

internal pressure are obtained. 

   
d

( ) 1 0
d

x x zx
R x N u M N

x
       (27) 

   

  

d
( ) 1

d

( ) 1 0

x x zx

z zx zx

R x M u Q M
x

R x N N u M

 

 

   

     

 (28) 

   

 * *

θ θ i

d
( ) 1

d

1 ( )
( ) ( )

( ) 2

x x zx
R x N w M N N

x

h x
N w M P x R x

R x


 



    

    
 
 
 

 (29) 

   

  

 * *

θ θ i

d
( ) 1

d

( )

1 ( ) ( )
( ) ( )

( ) 2 2

1

x x zx

z zx zx

R x M w Q M M
x

R x

h x h x
M w Q P x R x

R x

N N w M


 



 

    



   

   

 
 
 

 (30) 

3. Analytical solution 

3.1. Perturbation theory 

In current study, Match Asymptotic Expansion of the 

perturbation theory is used to solve the governing equations. Main 

advantage of this method is fast convergence in nonlinear 

problems. The governing equations (27)-(30) are a system of four 
nonlinear coupled differential equations with variable coefficients 

in cylinder with variable thickness. Preliminary definitions, 

simplifications and preparations are necessary for MAE usage. At 

first, it is necessary to convert the equations into dimensionless 

form by the following definitions [24, 41]: 

0 0 0 0

0

0 0

, , , , ,

, , , , ,

n

rx h z R
x h z r R

L h h h h

h P ru w
u w P

h h L
    



    

     









i

i

i i

i

 (31) 

The mark  on the parameters denotes the dimensionless 

quantity. 
0

h is the characteristic thickness which is commonly 
considered the minimal thickness of shell.   is perturbation 

parameter which is assumed small quantity. The main idea of 

perturbation theory is that perturbation parameter is so small that 

coefficients of its different power don’t have the same order which 

lead in equality of 
i

  coefficients. Considering each coefficient 

results in displacement quasi-vector   xy . Existence of two 
boundary layer lead in two region of solution near boundaries 

(inner solution) and a solution away from boundaries (outer 

solution) [41].  

In shear deformation theory, the differentials and integrations 

are performed over x and z direction, respectively. Therefore, 

for simplification and abbreviation of representing equations, a 
dimensionless integration could be defined as follow: 
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 
ji

i+ j+1

0

( )/2

( )/2

(i, j)
(i, j) ( ) d

h x

h x

II
II z R x z z

h





    (32) 

which is the function of geometric parameters ( )R x , ( )h x  and 

inhomogeneity index n . The inverse of coefficient matrices will 

be needed in the next sections. Hence, Eq. (27) should be 

integrated. The constant of integration is 
0 0 i

n
c c r   where   is 

bookkeeping perturbed parameter. As there is no u  in governing 
equations unlike d du x , parameter (d d )u xv  is considered 

instead. The unknown parameter u  can be determined through the 

relation 
7

(1 ) du v x c  where 
7

c  is the constant of integration. 

0c and
7

c will be calculated from boundary conditions. 

The following parameters need to be defined in regard to 

material and geometrical constants 
1 2
, , ,

s
C C k K  of internal layer 

because of abbreviation in representing inner and outer equations. 

 
1 1 1 2

1 3 1 4 1 5

ˆ1 , 2 , 4 ,

2 3 , 4 5 , 8 7

s s
K K C k Ck C k Ck

C k Ck C k Ck C k Ck

     

     





 (33) 

 
3.2. Outer solution 

The outer expansion of solution is considered a uniform series 
of   as       O O1 O2

,x x x   y y y . The subscript “O” stands for 

outer solution. Furthermore, the subscript “1” and “2” shows first 

and second order expansion, respectively. Substituting the outer 

expansion into governing equations and considering the terms 

with the same order of   result in the first and second order 

equations of outer solution. In this section    d dx  . 

    

          

1

O O1 O1

2

O O2 O2 O2 O2 O2

O( ) : ,

O( ) : ,
II II








  





A y F

A y F F F F
 (34) 

Here    
O O1

,A F and  O2
F are coefficient matrices, non-

homogeneity vectors of first and second order equation, 

respectively.  O i
y are unknown displacement vectors in “i”th-

order of outer solution.  O2
F consist of two vectors  O2

II
F and 

 O2

II 
F  correspond to ( )II x  and derivative of ( )II x , respectively. 

These vectors are defined in appendices. Other non-zero 

components of the mentioned matrix and vectors are 

       
T T

O1 O1 O1 O1 O1 O2 O2 O2 O2 O2
, , , , , , ,v w v w    y y  (35) 

   

     

     

   

   

O O 111 22

O O 2 O13 31 33

O O 214 41

O O 234 43

O 244

(0, 1), 2 (0, 1),

(0, ), (0, 1),

(1, ) (0, 1) ,

(0, ) (1, 1),

(1, ) (0, 1) (2, 1)

s
k II n K C II n

Ck II n k II n

Ck II n II n

Ck II n k II n

Ck II n k II n II n

    

     

     

   

    











A A

A A A

A A

A A

A

 (36) 

 

2

0 0

O1 i

2

i

0

( )
( ) ( )

2

( ) ( ) ( )
( )

2 4

c h

h x
P x R x

R x h x h x
P x

 



 
 
 
   

   
  

  
  
   

F  (37) 

The solutions of the algebraic equations (34) can be 

demonstrated as follows: 

           1 1

O1 O O1 O 2 O O 2
,

 

 y A F y A F  (38) 

3.3. Inner solution 

As the outer solutions don’t satisfy the B.C., existence of 

boundary layers at 0,1x   can be concluded. Therefore, fast 

variable ( )x


should be considered as a new variable for regions 

around boundaries. Considering fast variables make it possible to 

measure the great variation of mechanical response around 

boundaries.  

 

0

1

0 0, (left boundary),

1
1 1, (right boundary)

x
x x

x
x x







   


   







 (39) 

Subscript “ 0,1  ” shows x   in the boundary. Perturbation 

parameter appears in new definition of differential over fast 

variables x


: 

2 2

2

2 2

d d d d
,

d d d dx x x x
 

    (40) 

In cylinder with variable thickness and non-uniform pressure, 

it is necessary to derive Taylor expansion for all the parameters of 
axial function ( )x as  

( ) D ...x x
  

       (41) 

with ( )x


    and D d ( ) d xx x
    definition. x  

is substituted by new fast variable of inner expansion ( )x


. Taylor 

expansion should be written for the following parameters: 

 
i i i

( ) D , ( ) D ,
0,1

( ) D , ( ) D

h x h x h R x R x R

P x P x P II x II x II

     

      

 


 

   


   





 (42) 

  Substituting inner expansion       1 2
,x x x

     
   y y y  

into governing equations with mentioned changes in section 3.1 

and considering terms with the same order of   result in inner 

equations at boundary : 

            

            

           

2

1

1 1 2 1 3 1 12

2

2

1 2 2 2 3 2 22

2 2 2 2 2 2

D D D

d d

d d

d d

d d

O( ) :

O( ) :

II A II P P

x x

x x

      

 

      

 

     

    





  

  

    











A y A y A y F

A y A y A y F

F F F F F F

 (43) 

   1 2
,

 
A A and  3

A  are coefficient matrices at the boundary . 

 
1

F and  2
F are the non-homogeneity vectors of differential 

equation at the first and second order equation of boundary , 

respectively.  i
y are unknown displacement vectors in “i”th-

order of inner solution at the boundary . 2

II



F and  2

DII



F , in 

vector 2
F , are related to ( )II x

  and D ( )II x
 (in Taylor 

expansion), respectively.  2

DA



F , derived in non-homogeneity of 

second order equation, is resulted from Taylor expansion of 
coefficient matrices related to first order equation.  2

P



F and 

 2

DP



F , related to ( )
i

P x
   and D ( )

i
P x

  (in Taylor expansion of 

pressure), are derived from variable thickness and non-uniform 

pressure, respectively. The components of  2
F  will be defined 

in appendices. Other non-zero components of the matrices and 

vectors are defined below.    d dx


  is defined for the inner 
expansion of boundary . 

       
T T

1 1 1 1 1 2 2 2 2 2
, , , , , , ,v w v w

         
    y y  (44) 

   

   

 

1 1 122 33

1 1 134 43

1 144

(2, 1), 2 (0, 1)

2 (1, 1),

2 (2, 1)

s

s

s

k II n K C II n

K C II n

K C II n

   

  

 

   

  

 







A A

A A

A

 (45) 
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   

   

     

2 212 21

2 2 1 223 32

2 2 1 224 42

(1, 1),

2 (0, 1) (1, )

2 (1, 1) (2, ) (1, 1)

s

s

k II n

K C II n Ck II n

K C II n Ck II n II n

  

   

    

  

     

       







A A

A A

A A

 (46) 

   

     

     

   

   

3 3 111 22

3 3 2 313 31 33

3 3 214 41

3 3 234 43

3 244

(0, 1), 2 (0, 1) ,

(0, ), (0, 1)

(0, 1) (1, ) ,

(0, ) (1, 1) ,

2 (1, ) (0, 1) (2, 1)

s
k II n K C II n

Ck II n k II n

Ck II n II n

Ck II n k II n

Ck II n k II n II n

   

    

   

   

   

   

     

     

   

    

 A A

A A A

A A

A A

A










 (47) 

 

2

0 0

i1

2

i

0

2

2 4

c h

h
P R

R h h
P



 

  


 

 
 
 
   

   
  

  
  
   

F  (48) 

Eqs. (43) are systems of coupled non-homogenous differential 

equations with constant coefficients. Each equation has general 
  

gen.
and particular   

par.
solution: 

           
1 1 1 2 2 2gen. par. gen. par.

,
     

   y y y y y y  (49) 

Considering m


and  V


 as eigenvalues and eigenvectors, 
respectively, and substituting general solution of exponential form 

   
gen.

exp( )V m x
   

y into homogenous part of Eqs. (43) lead in 

an eigenvalue problem: 

         2

1 2 3
0m m V

     
  A A A  (50) 

The necessary condition for existing the solution of Eq. (50) is 

zero value of the coefficient determinant which is known as the 

characteristic equation of the system. Six non-zero roots of 
characteristic equation are the eigenvalues

i
( )m


. Substituting 

roots into Eq. (50) lead in corresponding eigenvectors
i

( )V


. The 

eigenvalues and eigenvectors are complex conjugate. Considering 

Van-Dyke’s matching principle [41], the solution should be finite 

at x

 . Thus, eigenvalues with positive real part in left 

boundary ( 0)  and negative real part in right boundary ( 1)   
are omitted. The general solution of boundary can be calculated. 

       
3

1 2 i i igen. gen. gen.

i 1

exp( )c V m x
      



  y y y  (51) 

Here i
( 1,2,3)c i


  are three constants of boundary defined 

by boundary conditions. The particular solution of Eq. (43), 

related to first order equation, is simply calculated by 

     
1

1 3 1par.  



y A F . After the substitution of first order 
solution into second order one,  2

F  is consist of nonlinear 

polynomial terms   pol.  and exponential terms by the equal roots 

i
(exp( ))m x

 
 and unequal roots 

j
(exp( ))q x

 
 with characteristic 

equations. Therefore, the particular solution of 
2

O( ) can be 

calculated by undetermined coefficients method as 

       

       

        

        

2 2 2 2

2

2 2 1 0

2

2 2 1 0 im i m i m ii

2

2 2 1 0 jq j q j q jj

pol. exp (m ). exp (q ).

par. par. par. par.

pol.

par.

exp (m i).

par.

exp (q j).

par.

i i ,

exp( )

exp( )

B x B x B

B x B x B m x

B x B x B q x

   



  

  

  

  

  

  














y y y y

y

y

y

 (52) 

subscript “i” and “j” show the number of equal and unequal roots 

with characteristic equations. Undetermined coefficients  
0

B ,

 
1

B and  
2

B can be calculated by substituting  
2 par.

y into Eq. 

(43) -
2

O( ) . 

3.4. Composite solution 

In the MAE method, the composite solution   comp.
y is the 

summation of three calculated expansions (one outer solution

 
O

y  and two inner ones   
0 1

,
  

y y ) minus the overlapped 

parts of them. Outer solution around 0,1x   overlap with inner 

solutions over x

  in a way that the common parts are 

removed from composite solution. Therefore, 

           0 1

comp. O 0 1 O O

 

 

 

 
    y y y y y y  (53) 

where  0O

 
y and  1O

 
y are common parts of inner and outer 

solutions at two ends of the shell which can be determined by Van-
Dyke’s matching principle [41]. Eight constants, consist of three 

constants in general solution of each boundary and two constants 

0
c and 

7
c  should be calculated by the boundary conditions. The 

clamped boundary conditions in “i”th-order solution are: 

 0,1 i i i i
0,1 0 , , , 0 i =1,2x x u w

   
     ( )  (54) 

The unknown vector consists of dimensionless displacement 

field components      
comp.

, , ,u w  y y would be obtained in 
terms of x and z variables. Considering Eq. (3) and definition 

, , 0z x z xU U h , the dimensionless radial and axial displacements 

can be obtained. Using Eqs. (4-6) would yield     1,2,3
, , ,I JF C and 

 E , respectively. The hydrostatic pressure and second Piola–

Kirchhoff stress distribution are also calculated by using Eqs. (10) 

and (15), respectively. Cauchy stress components can be defined 
by       

T

1 Jσ F S F  relation. The mathematical program of 

analytical solution has been written in MAPLE 18 software. 

4. Results and discussion 

4.1. Finite Element Modeling 

In order to validate presented analytical solution and compare 

the results of pressurized thick cylinder with variable thickness 
made of nearly compressible FG hyperelastic material, a 

numerical solution based on finite element method is investigated. 

The ANSYS 16 package is used in the static analysis of thick 

hollow cylinder with variable thickness under non-uniform 

internal pressure. The PLANE183 element in the axisymmetric 

mode, which is an element with eight nodes and two translational 
degrees of freedom in the axial and radial directions per each node, 

has been used to model the mechanical part of the analysis. It has 

also mixed formulation capability for simulating deformations of 

nearly incompressible hyperelastic materials. The cylinder with 

variable thickness consists of some coherent homogeneous layers 

which properties, at the contact location of the layers, are the 
average of left and right limit of two layer boundaries. In order to 

model FG hyperelastic cylinder, an innovative application for 

multilayering the thickness in the axial direction has been 

performed. Homogenous layers with identical thickness and step-

variable properties have been merged by this method. In order to 

consider neo-Hookean elastic model in nearly incompressible 
condition for each homogenous layer, two constants including 

and d should be defined for ANSYS software. The constant   

related to 
1n

C  could be calculated from Eq. (8) in each layer. d

is material incompressibility parameter by relation with bulk 

modulus as . 2
n

k d   [8] which could be calculated from Eq. (12) 

in each layer. For non-uniform internal pressure, the pressure 
functions have been defined and applied to the internal layer 

nodes. Clamped boundary conditions have been exerted by 

preventing the nodes around the two ends of the cylinder from 
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movement. The numerical results (FEM) and analytical results 

(MAE) have been investigated for different case studies in the next 

sections. 

4.2. Case studies 

In order to illustrate the effects of material constant, gradient 

index, thickness profile type and pressure loading distribution on 

the mechanical behavior of hyperelastic pressure vessel, thick 
cylindrical shell with various non-uniform thickness and internal 

pressure profiles made of different materials constants and 

inhomogeneity index have been studied. In these case studies, 

unless otherwise notified, constant geometry parameters are 

considered as 
i

47mmr   and 400mmL  . Clamped boundary 

conditions are applied to the ends of the shell. The materials are 
assumed to be functionally graded hyperelastic ones with neo-

Hookean model in nearly incompressible conditions. During the 

computation of numerical results, different material contestants 

according to various references presented in Table 1 are 

considered. The material constants are considered based on two 

state: 1) mentioned directly in these articles or 2) determined by 
authors from different test results (mentioned in these references) 

using least square method. The material parameters of FG neo-

Hookean model are fixed at the internal surface. Authors consider 

10 MPak   for the cases with no compressibility parameter 

determination in Table 1 [9, 42].  

Table 1. The characteristic of material constants. 

Material 
Constants 

ID 
Ref. 

(MPa)


 

(MPa)

k
 Material Sample 

1MC  [9] 1.55 10 Rubbers 

2MC  [2, 7] 1.38 10 Rubber seals 

3MC  [8] 1.13 9.3 TDM 600 

4MC  [13] 0.90 10 
Aneurysmal 

Abdominal Artery  

5MC  [18] 0.82 10 Vulcanized rubbers 

6MC  [43] 0.662 10 Natural gum rubbers 

7MC  [21] 0.398 10 Silicone rubbers 

8MC  [42] 0.346 10.5 Silicone elastomers 

 

Internal pressure distribution and thickness profile varies non-

uniformly along axial direction of the shell. Various pressure 

profiles are applied to the cylindrical shell in the range of 

5kPa 13kPa . Dimensionless Cauchy stresses and hydrostatic 
pressure are defined as:  

i0 i0

,
P

P
P P

 
σ

σ  (55) 

i0P  is considered 9kPa which is the average of maximum and 

minimum pressure distributions. The variations of thickness 

profiles are in the range of 6mm 12mm . Tables 2 and 3 show the 

characteristic of applied non-uniform pressure and thickness 

profiles, respectively. Distribution of non-uniform thickness 

functions along axial direction are depicted in Fig. 2. 

As current research studies the manner of pressurized rubber 

vessels in dimensionless state, the results of FSDT and MAE 

solution may be suitable for investigating some case studies of 

blood vessels. In particular, authors use proposed method to 

examine the inflation of a cylindrical tube at various internal 

pressure profiles and to compute the evolution of the inner radius 

(critical layer) under the internal pressure. Although the material 

models of blood vessels such as arteries have commonly 

exponential form to model the stiffening of the soft tissues, simple 

model such as neo-Hookean one is considered in numerous 

research for isotropic parts of blood vessels [14, 44]. Hence, case 

studies with variable thickness and pressure are selected similar to 
that of common elastic arteries (as unite layer) in current research 

in order to cover pressure vessels to blood vessels. The thick and 

thin parts of the vessels cover the average thickness of the layers 

in common elastic arteries. The pressure profiles vary in the range 

of 5kPa(40mmHg) 13kPa(100mmHg)  which are the mean 

pressures of blood vessels related to human soft tissues. 100 mmHg

is the mean of systolic/diastolic pressure and 40 mmHg may be 

occurred in hypotension pressure of arteries [45, 46]. Considering 

the applicability of the rubber elasticity theory to aortic soft tissues 

as one layer or multilayer vessel with variable material properties 

along thickness, the behavior of blood vessels under non-uniform 

pressure distribution could be demonstrated from current research. 
Furthermore, current study will present helpful results for 

estimating the wall degeneration of arteries within the aneurysm 

wall that affects the thickness profile of the tissue, which can be 

mostly analyzed as variable thickness blood vessels [11, 44]. 

Table 2. The characteristic of non-uniform internal pressure profiles. 

Pressure 
Profile ID 

Pressure Profile Function 
Load  

Constants (kPa)  

i 0P  
i i0( ) constantP x P   

i0 9P   

i1P   i ( ) a a bP x P P P x    13 , 5a bP P   

i 2P    2
i( ) a a bP x P P P x    13, 5a bP P   

i3P    3
i( ) a a bP x P P P x    13, 5a bP P   

i 4P    2
i ( ) 4a a abP x P P P x x     5, 13a b abP P P    

i5P     i ( ) sina a abP x P P P x    13, 5a b abP P P    

Table 3. The characteristic of non-uniform thickness profiles. 

Thickness 
Profile ID 

Thickness Profile Function 
Geometry 

Constants (mm)  

0h  
0( ) constanth x h   

0 6h   

1h   ( ) a a bh x h h h x    12, 6a bh h   

2h    2( ) a a bh x h h h x    12, 6a bh h   

3h    3( ) a a bh x h h h x    12, 6a bh h   

4h    2( ) 4a a abh x h h h x x     6, 12a b abh h h    

5h     ( ) sina a abh x h h h x    12, 6a b abh h h    

 

 
Figure 2. Distribution of non-uniform thickness functions along axial 

direction. 
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4.3. Effect of material constants and inhomogeneity index 

In order to investigate the material constants effect on the 

approximation of the current solution and behaviour of shell, 

maximum values of radial and axial displacements for different 

material constants resulted from FSDT and FEM is presented in 

Tables 4 and 5. As the maximum values of displacements and 

maximum difference of analytical and numerical analysis in 

pressure vessels occur at the internal layer, the results of Tables 4 

and 5 define the validity range of the proposed solution. Material 

constants, applied pressures and geometry of the cylinder are 

considered in the range of 5 20R   and 
i

1/ 400 1/100P    

[10, 20, 46]. The difference percentage of dimensionless radial 

and axial displacement resulting from the numerical and analytical 

solution i.e.  MAE FEM FEM

,x , , ,
Diff (%) 100

z z x z x z x
U U U U    for 

mentioned R and 
i

P   are less than 10%. For R values of more 

than 20 (thickness limit for thick cylinder) and less than 3 (very 

thick shells) solution accuracy may decrease. In fact, accuracy of 

MAE descend for great values of R because of intensifying 

nonlinear behavior of the cylinder while for small R , the 

accuracy of shear deformation theory decrease in analyzing thick 

cylindrical shells. Ascending R lead in higher deformations and 

lower effect of clamped conditions on deformations and the peak 

points of displacements occurs far away from boundaries. An 

increase in 
i

P   and k or decrease in   ascend displacement 

values and nonlinearity while descend the accuracy. However, 

descending   values, for an equal ratio of 
i

P  , decrease 

displacements. 

In order to show the displacements and stresses distribution in 

FG hyperelastic cylinder with variable thickness under non-

uniform internal pressure, linear increase of thickness through x

direction is considered proportional to linear pressure profile with 

positive inhomogeneity index ( 2)n  . The material constants 

2
MC  are considered for FG neo-Hookean model. The distribution 

of dimensionless displacements resulted from FSDT and FEM are 

plotted in Fig. 3 at different layers. Because of greater radial 

displacements around left boundary, it can be concluded that 

pressure profile is more effective than thickness variation on shell 

displacement. According to Fig. 3(b), the axial displacement at 

points away from the boundaries is nearly independent from 

radius. Layers close to maximum pressure and clamped conditions 

are in axial tension; therefore, axial compression is dominants at 

the shell except in 0z   around left boundary. Fig. 4 shows 

dimensionless Cauchy stress and hydrostatic pressure at different 

layers along axial direction. Circumferential and axial stresses 

(Fig. 4(a and b)), similar to hydrostatic pressure (Fig. 4(d)) as an 

average of principal stresses, have positive values in nearly all 

points of the shell except around boundaries at the outer layer 

away from loading. The reason is that the elements are in tensile 

state, but clamped conditions near boundaries at the layer away 

from loading cause resistance against displacement which lead in 

compressive stresses. In this state, inner layer of the shell in 

contact with pressure load have higher displacements and stresses 

than others. It is obviously observed that the circumferential stress 

is the largest component of the stress at points away from the 

boundaries while around the boundaries, the axial stress is the 

largest one. Existence of shear stress near boundaries (Fig. 4(c)) 

reveals the advantage of shear deformation theory respect to 

theories that neglect shear stress effect. Non-uniform peaks of 

displacements and stresses appear at the points away from 

boundaries where no shear stresses exist. Difference of MAE and 

FEM results increase at the points of internal and external layers 

away from boundaries. Although FSDT is suitable for 

displacement analysis rather than stress one, the results of MAE 

are more realistic around boundaries respect to FE solution. Fig. 5 

shows the effect of MAE order on approximating the radial 

Cauchy stress distribution of middle layer. It can be concluded that
1

O( )  solution is suitable for linear analysis while 2
O( )  have 

acceptable approximation for problems with nonlinear kinematics 

and constitutive relations.  

 

Table 4. Analytical and numerical values of maximum radial displacements for different material constants. 

Mat. 

ID max,zU  
i 1 100P     i 1 200P     i 1 400P    

5R   10R   20R    5R   10R   20R    5R   10R   20R   

1MC  FSDT 0.0792 0.3192 1.2895  0.0393 0.1587 0.6324  0.0196 0.0778 0.3100 
FEM 0.0799 0.3207 1.3038  0.0394 0.1579 0.6325  0.0195 0.0777 0.3099 

2MC  FSDT 0.0770 0.3144 1.3093  0.0388 0.1561 0.6230  0.0193 0.0770 0.3067 
FEM 0.0791 0.3174 1.3327  0.0387 0.1553 0.6244  0.0192 0.0769 0.3059 

3MC  FSDT 0.0768 0.3102 1.2550  0.0382 0.1538 0.6164  0.0191 0.0766 0.3049 
FEM 0.0778 0.3126 1.3053  0.0383 0.1536 0.6173  0.0190 0.0767 0.3024 

4MC  FSDT 0.0745 0.3023 1.2545  0.0371 0.1497 0.5992  0.0184 0.0745 0.2980 
FEM 0.0764 0.3039 1.2809  0.0378 0.1489 0.6020  0.0186 0.0744 0.2955 

5MC  FSDT 0.0738 0.3002 1.2171  0.0367 0.1487 0.5956  0.0183 0.0740 0.2961 
FEM 0.0761 0.3052 1.2461  0.0374 0.1491 0.5977  0.0184 0.0741 0.2937 

6MC  FSDT 0.0723 0.2961 1.2034  0.0359 0.1465 0.5897  0.0179 0.0721 0.2915 
FEM 0.0758 0.3016 1.2458  0.0371 0.1475 0.5909  0.0182 0.0723 0.2901 

7MC  FSDT 0.0694 0.2901 1.1852  0.0346 0.1434 0.5798  0.0172 0.0713 0.2876 
FEM 0.0730 0.2952 1.2312  0.0366 0.1440 0.5799  0.0178 0.0716 0.2848 

8MC
 

FSDT 0.0680 0.2899 1.1787  0.0338 0.1426 0.5733  0.0168 0.0705 0.2856 
FEM 0.0728 0.2947 1.2260  0.0357 0.1430 0.5754  0.0174 0.0713 0.2824 
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Table 5. Analytical and numerical values of maximum axial displacements for different material constants. 

Mat. 

ID max,xU  
i 1 100P     i 1 200P     i 1 400P    

5R   10R   20R    5R   10R   20R    5R   10R   20R   

1MC  FSDT 0.0154 0.0469 0.1023  0.0078 0.0249 0.0632  0.0039 0.0122 0.0343 
FEM 0.0159 0.0476 0.1089  0.0080 0.0250 0.0637  0.0040 0.0126 0.0343 

2MC  FSDT 0.0153 0.0463 0.1018  0.0077 0.0245 0.0626  0.0039 0.0119 0.0336 
FEM 0.0158 0.0474 0.1085  0.0080 0.0249 0.0633  0.0038 0.0125 0.0337 

3MC  
FSDT 0.0141 0.0455 0.1011  0.0076 0.0242 0.0624  0.0038 0.0118 0.0332 
FEM 0.0149 0.0471 0.1082  0.0078 0.0248 0.0629  0.0038 0.0125 0.0337 

4MC  FSDT 0.0148 0.0447 0.1006  0.0074 0.0241 0.0613  0.0037 0.0117 0.0329 
FEM 0.0150 0.0467 0.1073  0.0076 0.0245 0.0621  0.0038 0.0124 0.0333 

5MC  FSDT 0.0146 0.0447 0.1006  0.0073 0.0240 0.0610  0.0037 0.0117 0.0329 
FEM 0.0150 0.0466 0.1071  0.0076 0.0244 0.0618  0.0038 0.0124 0.0332 

6MC  FSDT 0.0143 0.0445 0.1003  0.0072 0.0228 0.0607  0.0036 0.0115 0.0323 
FEM 0.0149 0.0461 0.1065  0.0075 0.0233 0.0613  0.0038 0.0121 0.0329 

7MC  FSDT 0.0137 0.0441 0.1001  0.0068 0.0225 0.0602  0.0034 0.0113 0.0321 

FEM 0.0148 0.0459 0.1057  0.0074 0.0230 0.0606  0.0037 0.0119 0.0327 

8MC  
FSDT 0.0135 0.0440 0.0998  0.0067 0.0224 0.0602  0.0033 0.0113 0.0323 
FEM 0.0148 0.0458 0.1053  0.0074 0.0229 0.0603  0.0037 0.0121 0.0332 

 

  
Figure 3. Distribution of displacements along axial direction (

i i1 1 2
2, ( ) , ( ) ,MCn P x P h x h   ). 

 

  

  
Figure 4. Distribution of (a) circumferential (b) axial (c) shear Cauchy stress and (d) hydrostatic pressure  

along axial direction (
i i1 1 2

2, ( ) , ( ) , MCn P x P h x h   ). 

 

 
Figure 5. Effect of MAE order on radial Cauchy stress of middle layer. 
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Fig. 6(a-c) shows the effect of inhomogeneity index on 

displacements and hydrostatic pressure of internal layer (critical 
layer). The linear thickness and pressure profile along with 

1
MC

material constants are considered for shell. Fig. 6(d) shows the 

variations of dimensionless material constants (normalized to 

internal layer ones) with power-law distribution along radial 

direction of a heterogeneous cylinder for integer values of n  in 

the arbitrary range of 4 4n    . The extremum properties of 
outer layer could be determined through the intersection of 

vertical line plotted from radius of the point and graph of arbitrary
n . Positive values of gradient index increase strength of material 

under mechanical loading toward outer layer of shell, while the 

reverse holds true for negative values of n . Hence, variation of 

inhomogeneity index from negative values to positive ones cause 
displacements, hydrostatic pressure and consequently stresses of 

the cylinder to be reduced. Greater values of n  intensify 

improvement or reduction in response of FG shell respect to 

homogenous one.  

Table 6 presents the values of maximum displacements and 

hydrostatic pressure of layers for different inhomogeneity index 

and 
5

MC  material constants. Linear decrease in radial 

displacement and smooth reduction in axial displacement can be 

observed from internal layer to the external one for different 

values of n . Positive values of n  cause more uniform hydrostatic 

pressure distribution of the layers and less maximum values of 

hydrostatic pressure compared with negative ones. Therefore, It 

could be concluded that internal layer (in contact with loading) is 

critical one and positive values of n  are more appropriate from 

the viewpoint of minimal values and uniform distribution of 

displacements and stresses in heterogeneous cylinder. 

 

 
 

 
 

Figure 6. The effect of inhomogeneity index on (a) radial displacement (b) axial displacement (c) hydrostatic pressure (along axial direction of internal layer) 

and (d) material properties (along radial direction) (
i i1 1 1
( ) , ( ) , MCP x P h x h  ). 

 
Table 6. Maximum displacements and hydrostatic pressure of layers  

for different inhomogeneity index (
i i1 1 5
( ) , ( ) , MCP x P h x h  ). 

 
at 0.15zU x    at 0.65xU x    at 0P x   

0.5z    0z   0.5z     0.5z    0z   0.5z     0.5z    0z   0.5z    

4n    0.1194 0.1112 0.1029  -0.0398 -0.0394 -0.0389  11.340 2.397 -6.544 

2n    0.1495 0.1391 0.1287  -0.0482 -0.0475 -0.0468  13.408 2.235 -8.937 

0n   0.1847 0.1717 0.1588  -0.0578 -0.0568 -0.0559  15.673 1.779 -12.114 

2n    0.2251 0.2092 0.1932  -0.0687 -0.0674 -0.0662  18.127 0.918 -16.291 

4n    0.2707 0.2514 0.2321  -0.0809 -0.0793 -0.0777  20.760 -0.483 -21.726 

 

4.4. Effect of geometry and pressure profiles 

The effect of thickness profile on the distribution of 
displacements under 

i1
P  loading are illustrated in Figs. 7 and 8 for 

heterogeneous cylinder with 2n   and 
2

MC materials properties. 

Considering Fig. 7 prove that changes of concave thickness profile 

to convex one cause reduction in radial displacement. Low 

thickness in addition to maximum pressure ascends 
z

U  near 0x   

in 
4

h  thickness profile. It is obviously observed that constant 

thickness 
0

( )h have the greatest displacements and stresses under

i1
P . No considerable variations in axial displacements are 

observed between non-uniform thickness profiles. Considering 

Figs. 7 and 8 reveal that pressure profiles increment is more 
effective on the response of shell respect to thickness profiles 
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variation; i.e. descending pressure causes more reduction in 

displacements and stresses respect to the thickness variations.  

Table 7 presents the effect of pressure profile on the 

distribution of displacements and hydrostatic pressure in FG 

cylinder with the same thickness profile for 
6

MC . The axial 

sections are selected based on extremum points of displacements 
and hydrostatic pressure distribution. The numerical results in 

different sections of internal layer show that similar thickness and 

pressure patterns lead in uniform distributions of displacements 

and hydrostatic pressure along length of the shell. It is observed 

that linear variation of pressure and thickness counteracts each 

other effect. This counterbalance descends for nonlinear pressure 
profiles with similar range of applied pressure. Therefore, radial 

displacement and hydrostatic pressure ascend form 
i1 1

,P h  to 

i 4 4
,P h  profiles at points far away from boundaries and the effect 

of pressure profile is dominant. However, the peak values of radial 

displacement and hydrostatic pressure are nearly close to each 

other for 
i1 1

,P h  to 
i 3 3

,P h . Considering Table 7, 
i 5 5

,P h  profiles 
have the least hydrostatic pressure. In fact, whatever maximum 

pressure and thickness are considered near clamed boundaries, 

more counterbalance of thickness and pressure effect occurs. It 

can be concluded that 
i 5 5

,P h  and 
i1 1

,P h are appropriate profiles in 

designing current hyperelastic FG shell.  

However, we are not concerned here with possible manufacture 
processes of FG materials, as well as experimental tests. Authors 

believe that, when the FG elastomers start to be widely employed 

in industry or in engineering applications, our formulation is a 

reliable numerical tool to predict their mechanical behavior (in 

terms of accuracy). But it is important to note that method 

presented here will be useful to material scientists in designing 
new materials, stress analysts, and designers in two states. One can 

use similar solution procedure to calculate displacements and 

stresses for FG material models with the given constants functions 

applied instead of power law distribution. Furthermore, one can 

control the through-the-thickness distribution of displacements 

and stresses as objective parameters by tailoring the through-the-

thickness variation of the material constants by trial and error to 

achieve appropriate distribution of FGM constants. In the material 

tailoring problem, one has found through-the-thickness variation 

of material constants to achieve a desired variation of stress 

components, frequency of free vibrations, deformation or an 

objective function to be optimized [47]. This method is going to 
be extended in FG elastomers and biological tissues. Bilgili [18] 

also suggest that the presence of material non-homogeneity in test 

specimens might be reason for the conflicting experimental results 

in the technical literature regarding the nature of the rubber-elastic 

response functions. Hence, he developed comprehensive 

experimental and theoretical program to characterize the response 
functions of non-homogeneous rubber components and 

introduced a design code based on especial (power variation) 

material model which can explain the essential physics–chemistry 

behind the intended functionality. This kind of design code yields 

essential information about the grading which in turn can be used 

as input into the design of a fabrication process. Thus, our method 
along with mentioned studies could direct further research toward 

the design, optimization, and manufacture of graded rubber-like 

materials. 

In recent years, researchers have developed artificial blood 

vessels made from special elastomer material and the usage of 

artificial vascular prostheses in vascular graft [48]. Some parts of 
mentioned prostheses don’t have complicated geometries and can 

be models as regular shells with acceptable tolerances and 

imperfections. Authors believe that current method could have the 

potential of helping researchers in the future to analyze and obtain 

useful information about (a) more realistic hyperelastic material 

models of blood vessels (artificial or natural, isotropic or 
anisotropic, homogenous or non-homogeneous); (b) especial 

variation in internal and /or external profiles of blood vessels 

resulted from atherosclerotic plaque, aortic aneurysm, aging 

deformation and so on; (c) maybe future non-homogeneous 

prosthesis with position dependent functionality. 

 

 
 

 
Figure 7. The effect of thickness profile on dimensionless radial displacement (

i i1 2
2, ( ) ,MCn P x P  ).  
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Figure 8. The effect of thickness profile on dimensionless axial displacement (

i i1 2
2, ( ) ,MCn P x P  ). 

 
Table 7. Numerical results for similar pressure and thickness profiles at the sections of internal layer (

6
2, MCn  ). 

 
zU   

xU   P  

0.15x   0.5x   0.85x    0.05x   0.25x   0.7x    0x   0.5x   1x   

i0 0,P h  0.2483 0.2403 0.2483  0.0408 0.0159 -0.0125  22.595 6.942 22.595 

i1 1,P h  0.1820 0.1607 0.1372  0.0266 -0.0205 -0.0601  14.484 5.459 13.016 

i 2 2,P h  0.1822 0.1695 0.1443  0.0289 -0.0105 -0.0634  14.827 6.096 13.573 

i3 3,P h  0.1812 0.1727 0.1505  0.0303 -0.0072 -0.0595  14.813 6.401 14.107 

i 4 4,P h  0.1609 0.1782 0.1608  0.0422 0.0389 -0.0319  14.762 6.582 14.762 

i5 5,P h  0. 1708 0.1196 0.1708  0.0085 -0.0301 0.0297  5.617 4.256 5.618 

 

5. Conclusions 

In current research, the heterogonous hyperelastic hollow 
cylinders with variable thickness under non-uniform internal 

pressure and clamped boundary conditions have been analyzed by 

FSDT. Two-term Mooney-Rivlin type material in nearly 

incompressible condition is considered which is a suitable 

hyperelastic model for rubbers. The material properties are graded 

along the radial direction according to a power law function. 
Match Asymptotic Expansion of the perturbation theory is used for 

solving the governing equations analytically. The advantages of 

this method are fast convergence, closed form solution and 

compatibility with physics of shell. A new ingenious formulation 

and parameters have been defined during current study to simplify 

and abbreviate the representation of inner and outer equations 
components in MAE. In addition, the terms of variable thickness 

and non-uniform pressure have been presented in separate 

representation. The results prove the effectiveness of FSDT and 

MAE combination to derive and solve the governing equations of 

nonlinear problems such as nearly incompressible hyperelastic 

shells. The acceptable range of the current analysis for the 
geometry, loading and materials properties is about 4 20R   and 

i
0.01P    by considering difference percentage of deformations 

resulted from current analytical solution and FEM less than 10%. 

An increase in 
i

P   and k or decrease in   ascend the 

nonlinearity and difference percentage of numerical and analytical 

solution. The accuracy of MAE descend for great values of R  
because of intensifying nonlinear behavior of the cylinder while 

for small R , the accuracy of shear deformation theory decrease in 
analyzing thick cylindrical shells. It can be concluded that positive 

values of gradient index are more appropriate from the viewpoint 

of less values and more uniform distribution of displacements and 

stresses in heterogeneous cylinder. It can be concluded that the 

sequence of effectiveness on the response of shell is pressure 

profile, thickness variation and finally inhomogeneity index, 
respectively. Furthermore, changes of concave thickness profile to 

convex one lead in descending maximum displacement, stresses 

and hydrostatic pressure. It can be concluded that radial 

displacement and hydrostatic pressure patterns follow the pattern 

of the applied pressure function along the length of shell. The 

behavior of hyperelastic FG vessels under non-uniform pressure 
distribution show that similar profile of variable thickness and 

non-uniform applied pressure result in minor displacement and 

stress quantities and uniform distributions which could be a 

suitable criterion in designing thickness profile of pressurized 

vessels. Applying maximum pressure and thickness near the 

boundaries of shell are suitable profiles for designing hyperelastic 
FG shells. It is considered that the current methodology could have 

potential to illustrate the performance of the potentials and their 

reliability for the prediction of the state of deformation and stress 

in hyperelastic vessels from rubber pressure vessels to artery blood 

vessels. Authors believe that current method along with studies 

mentioned in the literature could direct further researches toward 
the design, optimization, and manufacture of graded rubber-like 

materials. 
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Appendix 

The non-homogeneity vectors of 
2

O( )  equations in outer and 

inner expansions are as follows: 
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