[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular biology of the cell. Garland science, New York, pp. 1227-1242, 2007.
[2] H. Haga, S. Sasaki, K. Kawabata, E. Ito, T. Ushiki, T. Sambongi, Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton, Ultramicroscopy, Vol. 82, No. 1-4, pp. 253-258, 2000.
[3] S. Tojkander, G. Gateva, P. Lappalainen, Actin stress fibers–assembly, dynamics and biological roles, J Cell Sci, Vol. 125, No. 8, pp. 1855-1864, 2012.
[4] A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, A. San Paulo, Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy, ACS nano, Vol. 10, No. 3, pp. 3365-3374, 2016.
[5] N. Wang, M. Zhang, Y. Chang, N. Niu, Y. Guan, M. Ye, C. Li, J. Tang, Directly observing alterations of morphology and mechanical properties of living cancer cells with atomic force microscopy, Talanta, Vol. 191, pp. 461-468, 2019.
[6] M. R. Mofrad, Rheology of the cytoskeleton, Annual Review of Fluid Mechanics, Vol. 41, pp. 433-453, 2009.
[7] A. Alessandrini, P. Facci, AFM: a versatile tool in biophysics, Measurement science and technology, Vol. 16, No. 6, pp. R65, 2005.
[8] L. Lu, S. J. Oswald, H. Ngu, F. C.-P. Yin, Mechanical properties of actin stress fibers in living cells, Biophysical journal, Vol. 95, No. 12, pp. 6060-6071, 2008.
[9] K. D. Costa, A. J. Sim, F. C. Yin, Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy, Journal of biomechanical engineering, Vol. 128, No. 2, pp. 176-184, 2006.
[10] Y. M. Efremov, M. Velay-Lizancos, C. J. Weaver, A. I. Athamneh, P. D. Zavattieri, D. M. Suter, A. Raman, Anisotropy vs isotropy in living cell indentation with AFM, Scientific reports, Vol. 9, No. 1, pp. 5757, 2019.
[11] Q. Li, G. Y. Lee, C. N. Ong, C. T. Lim, AFM indentation study of breast cancer cells, Biochemical and biophysical research communications, Vol. 374, No. 4, pp. 609-613, 2008.
[12] M. J. Unterberger, K. M. Schmoller, A. R. Bausch, G. A. Holzapfel, A new approach to model cross-linked actin networks: multi-scale continuum formulation and computational analysis, Journal of the mechanical behavior of biomedical materials, Vol. 22, pp. 95-114, 2013.
[13] C. P. Broedersz, X. Mao, T. C. Lubensky, F. C. MacKintosh, Criticality and isostaticity in fibre networks, Nature Physics, Vol. 7, No. 12, pp. 983, 2011.
[14] E. Conti, F. C. MacKintosh, Cross-linked networks of stiff filaments exhibit negative normal stress, Physical review letters, Vol. 102, No. 8, pp. 088102, 2009.
[15] C. Broedersz, M. Sheinman, F. MacKintosh, Filament-length-controlled elasticity in 3D fiber networks, Physical review letters, Vol. 108, No. 7, pp. 078102, 2012.
[16] S. B. Lindström, A. Kulachenko, L. M. Jawerth, D. A. Vader, Finite-strain, finite-size mechanics of rigidly cross-linked biopolymer networks, Soft Matter, Vol. 9, No. 30, pp. 7302-7313, 2013.
[17] G. Žagar, P. R. Onck, E. van der Giessen, Two fundamental mechanisms govern the stiffening of cross-linked networks, Biophysical journal, Vol. 108, No. 6, pp. 1470-1479, 2015.
[18] M. J. Unterberger, G. A. Holzapfel, Advances in the mechanical modeling of filamentous actin and its cross-linked networks on multiple scales, Biomechanics and modeling in mechanobiology, Vol. 13, No. 6, pp. 1155-1174, 2014.
[19] K. Costa, F. Yin, Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy, Journal of biomechanical engineering, Vol. 121, No. 5, pp. 462-471, 1999.
[20] E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, R. S. Chadwick, Determination of elastic moduli of thin layers of soft material using the atomic force microscope, Biophysical journal, Vol. 82, No. 5, pp. 2798-2810, 2002.
[21] R. Vargas-Pinto, H. Gong, A. Vahabikashi, M. Johnson, The effect of the endothelial cell cortex on atomic force microscopy measurements, Biophysical journal, Vol. 105, No. 2, pp. 300-309, 2013.
[22] J. Humphrey, H. R. Halperin, F. C. Yin, Small indentation superimposed on a finite equibiaxial stretch. Implications for cardiac mechanics, Journal of Applied Mechanics, Transactions ASME, Vol. 58, No. 4, pp. 1108-1111, 1991.
[23] M. Beatty, S. Usmani, On the indentation of a highly elastic half-space, The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 28, No. 1, pp. 47-62, 1975.
[24] R. Batra, Quasistatic indentation of a rubberlike layer by a rigid cylinder, in Proceeding of, 345-357.
[25] J. C. Maxwell, L. on the calculation of the equilibrium and stiffness of frames, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 27, No. 182, pp. 294-299, 1864.
[26] D. Stauffer, A. Aharony, 2018, Introduction to percolation theory, Taylor & Francis,
[27] V. Abaqus, 6.14 Documentation, Dassault Systemes Simulia Corporation, Vol. 651, 2014.
[28] N. Zolfaghari, M. Moghimi Zand, and R. Dargazany. "Local Response of Actin Networks is Controlled by Tensile Strains in The Stress-Fibers: Insights from a Discrete Network Model." International Journal of Applied Mechanics, In press.