[1] R. Valiev, A. Korznikov, R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Materials Science and Engineering: A, Vol. 168, No. 2, pp. 141-148, 1993.
[2] M. J. Zehetbauer, R. Z. Valiev, 2006, Nanomaterials by severe plastic deformation, John Wiley & Sons,
[3] J. Lee, J. Park, Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement, Journal of Materials Processing Technology, Vol. 130, pp. 208-213, 2002.
[4] D. H. Shin, J.-J. Park, Y.-S. Kim, K.-T. Park, Constrained groove pressing and its application to grain refinement of aluminum, materials Science and Engineering: A, Vol. 328, No. 1-2, pp. 98-103, 2002.
[5] E. Rafizadeh, A. Mani, M. Kazeminezhad, The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet, Materials Science and Engineering: A, Vol. 515, No. 1-2, pp. 162-168, 2009.
[6] F. Khakbaz, M. Kazeminezhad, Strain rate sensitivity and fracture behavior of severely deformed Al–Mn alloy sheets, Materials Science and Engineering: A, Vol. 532, pp. 26-30, 2012.
[7] M. Borhani, F. Djavanroodi, Rubber pad-constrained groove pressing process: Experimental and finite element investigation, Materials Science and Engineering: A, Vol. 546, pp. 1-7, 2012.
[8] S. S. Kumar, T. Raghu, Mechanical behaviour and microstructural evolution of constrained groove pressed nickel sheets, Journal of Materials Processing Technology, Vol. 213, No. 2, pp. 214-220, 2013.
[9] Z. S. Wang, Y. J. Guan, L. B. Song, P. Liang, Finite Element Analysis and Deformation Homogeneity Optimization of Constrained Groove Pressing, in Proceeding of, Trans Tech Publ, pp. 505-513.
[10] H. Siddesha, M. Shantharaja, optimization of cyclic constrained groove pressing parameters for tensile properties of Al6061/sic metal matrix composites, Procedia Materials Science, Vol. 5, pp. 1929-1936, 2014.
[11] K. S. Fong, M. J. Tan, B. W. Chua, D. Atsushi, Enabling wider use of Magnesium Alloys for lightweight applications by improving the formability by Groove Pressing, Procedia CIRP, Vol. 26, pp. 449-454, 2015.
[12] K.-h. Yang, J.-m. Zeng, W.-z. Chen, Y.-t. Huang, Influence of die construction on equivalent strain, microstructures, and tensile properties of 5052 aluminum alloy processed by groove pressing, 2016.
[13] E. Salvati, H. Zhang, K. S. Fong, R. J. Paynter, X. Song, A. M. Korsunsky, Fatigue and Fracture behaviour of AZ31b Mg alloy plastically deformed by Constrained Groove Pressing in the Presence of Overloads, Procedia Structural Integrity, Vol. 2, pp. 3772-3781, 2016.
[14] K. Hajizadeh, S. Ejtemaei, B. Eghbali, Microstructure, hardness homogeneity, and tensile properties of 1050 aluminum processed by constrained groove pressing, Applied Physics A, Vol. 123, No. 8, pp. 504, 2017.
[15] P. Lin, T. Tang, Z. Zhao, W. Wang, C. Chi, Refinement Strengthening of AZ31 Magnesium Alloy by Warm Constrained Groove Pressing, Materials Science, Vol. 23, No. 1, pp. 84-88, 2017.
[16] H. Pouraliakbar, M. R. Jandaghi, G. Khalaj, Constrained groove pressing and subsequent annealing of Al-Mn-Si alloy: microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance, Materials & Design, Vol. 124, pp. 34-46, 2017.
[17] N. Kotkunde, A. D. Deole, A. K. Gupta, Prediction of Forming Limit Diagram for Ti-6Al-4V Alloy Using Artificial Neural Network, Procedia materials science, Vol. 6, pp. 341-346, 2014.
[18] P. Mandal, Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression, Engineering Structures, Vol. 152, pp. 843-855, 2017.
[19] K. Wakchaure, A. Thakur, V. Gadakh, A. Kumar, Multi-Objective Optimization of Friction Stir Welding of Aluminium Alloy 6082-T6 Using hybrid Taguchi-Grey Relation Analysis-ANN Method, Materials Today: Proceedings, Vol. 5, No. 2, pp. 7150-7159, 2018.
[20] A. A. Lakshmi, C. S. Rao, M. Srikanth, K. Faisal, K. Fayaz, S. K. Singh, Prediction of mechanical properties of ASS 304 in superplastic region using artificial neural networks, Materials Today: Proceedings, Vol. 5, No. 2, pp. 3704-3712, 2018.
[21] S. Yaghoubi, F. Fereshteh-saniee, An Investigation on the Effects of Optimum Forming Parameters in Hydro-mechanical Deep Drawing Process Using the Genetic Algorithm, Journal of Computational Applied Mechanics, Vol. 49, No. 1, 2018.
[22] A. Sajadi, M. Ebrahimi, F. Djavanroodi, Experimental and numerical investigation of Al properties fabricated by CGP process, Materials Science and Engineering: A, Vol. 552, pp. 97-103, 2012.
[23] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, University of Michigan press Ann Arbor, 1975.
[24] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley& Sons, Inc., New York, NY, 2001.