[1] F. Tedeschi, G. Carbone, Design of a novel leg-wheel hexapod walking robot, Robotics, Vol. 6, No. 4, pp. 40, 2017.
[2] K. Lagaza, A. Pandey, A literature review on motion planning of hexapod machines using different soft computing methods, Global Journal of Engineering, Science and Social Science Studies, Vol. 3, No. 1, pp. 1-10, 2018.
[3] X. Chen, L. Wang, X. Ye, G. Wang, H. Wang, Prototype development and gait planning of biologically inspired multi-legged crablike robot, Mechatronics, Vol. 23, No. 4, pp. 429-444, 2013.
[4] G. Chen, B. Jin, Y. Chen, Tripod gait-based turning gait of a six-legged walking robot, Journal of Mechanical Science and Technology, Vol. 31, No. 3, pp. 1401-1411, 2017.
[5] D. Grzelczyk, J. Awrejcewicz, Modeling and control of an eight-legged walking robot driven by different gait generators, International Journal of Structural Stability and Dynamics, Vol. 19, No. 5, pp. 1941009-1 - 1941009-23, 2019.
[6] D. Grzelczyk, O. Szymanowska, J. Awrejcewicz, Kinematic and dynamic simulation of an octopod robot controlled by different central pattern generators, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, Vol. 233, No. 4, pp. 400-417, 2019.
[7] A. Mahapatra, S.S. Roy, Computer aided dynamic simulation of six-legged robot, International Journal of Recent Trends in Engineering, Vol. 2, No. 2, pp. 146-151, 2009.
[8] X. Rong, Y. Li, J. Ruan, B. Li, Design and simulation for a hydraulic actuated quadruped robot, Journal of Mechanical Science Technology, Vol. 26, No. 4, pp. 1171-1177, 2012.
[9] W. Chen, G. Ren, J. Zhang, J. Wang, Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm, Journal of Intelligent & Robotic Systems, Vol 67, No. 3-4, pp. 255-270, 2012.
[10] Ig Mo Koo, Tran Duc Trong, Tae Hun Kang, GiaLoc Vo, Young Kuk Song, Chang Min Lee, Hyouk Ryeol Choi, 2007, Control of a quadruped walking robot based on biologically inspired approach, in: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, October 29 – November 2, 2007, 2969-2974.
[11] Ig Mo Koo, Tae Hun Kang, Gia Loc Vo, Tran Duc Trong, Young Kuk Song, Hyouk Ryeol Choi, Biologically inspired control of quadruped walking robot, International Journal of Control, Automation and Systems, Vol. 7, No. 4, pp. 577-584, 2009.
[12] S.S. Roy, D.K. Pratihar, Kinematics, dynamics and power consumption analyses for turning motion of a six legged robot, Journal of Intelligent & Robotic Systems, Vol. 74. No. 3-4, pp. 663-688, 2014.
[13] V.A. Makarov, E.D. Rio, M.G. Bedia, M.G. Velarde, W. Ebeling, Central pattern generator incorporating the actuator dynamics for a hexapod robot, International Journal of Electrical and Computer Engineering, Vol. 2. No. 3, pp. 498-503, 2008.
[14] M. Vukobratovic, B. Borovac, Zero-Moment point – thirty five years of its live, International Journal of Humanoid Robotics, Vol. 1, No. 1, pp. 157-173, 2004.
[15] J.H. Park, Y.K. Rhee, ZMP trajectory generation for reduced trunk motions of biped robots, in: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'98), Victoria, Canada, 1998, 90-95.
[16] A.D. Kuo, The relative roles of feedforward and feedback in the control of rhythmic movements, Motor Control, Vol. 6, No. 2, pp. 129-145, 2002.
[17] K. Nakada, T. Asai, Y. Amemiya, An analog neural oscillator circuit for locomotion controller in quadruped walking robot, in: Proceedings of the International Joint Conference on Neural Networks, Portland, OR, USA, 20-24 July 2003, 2: 983-988 (10.1109/IJCNN.2003.1223824), 2003.
[18] S.L. Hooper, Central pattern generators, Current Biology, Vol. 10, No. 5, pp. R176-R179, 2000.
[19] S. Rossignol, Locomotion and its recovery after spinal injury, Current Opinion in Neurobiology, Vol. 10, No. 6, pp. 708-716, 2000.
[20] J. Buchli, L. Righetti, A.J. Ijspeert, Engineering entrainment and adaptation in limit cycle systems - from biological inspiration to applications in robotics, Biological Cybernetics, Vol. 95, No. 6, pp. 645-664, 2006.
[21] A.C. de Pina Filho, M.S. Dutra, Application of hybrid van der Pol-Rayleigh oscillators for modeling of a bipedal robot, in: Mechanics of Solids in Brazil 2009, edited by H.S. da Costa Mattos, Marcílio Alves, Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-43-7, 209-221, 2009.
[22] V.A. Makarov, W. Ebeling, M.G. Velarde, Soliton-like waves on dissipative toda lattice, International Journal of Bifurcation and Chaos, Vol. 10, No. 5, pp. 1075-1089, 2000.
[23] A. Dvorak, P. Kuzma, P. Perlikowski, V. Astakhov, T. Kapitaniak, Dynamics of three Toda oscillators with nonlinear unidirectional coupling, The European Physical Journal Special Topics, Vol. 222, No. 10, pp. 2429-2439, 2013.
[24] A. Dvorak, V. Astakhov, P. Perlikowski, T. Kapitaniak, Nonlinear resonance and synchronization in the ring of unidirectionally coupled Toda oscillators, The European Physical Journal Special Topics, Vol. 225, No. 13-14, pp. 2635-2643, 2016.
[25] S. Rutishauser, L. Righetti, A.J. Ijspeert, Passive compliant quadruped robot using central pattern generators for locomotion control, in: Proceeding of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 19-22 October 2008, Scottsdale, AZ, USA, 710-715, 2008.
[26] K. Seo, S-J. Chung, J-J.E. Slotine, CPG-based control of a turtle-like underwater vehicle, Autonomous Robots, Vol. 28, No. 3, pp. 247-269, 2010.
[27] B. Zhong, S. Zhang, M. Xu, Y. Zhou, T. Fang, W. Li, On a CPG-based hexapod robot: amphiHex-II with variable stiffness legs, IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 2, pp. 542-551, 2018.
[28] Y. Zhu, Y. Wu, Q. Liu, T. Guo, R. Qin, J. Hui, A backward control based on σ-Hopf oscillator with decoupled parameters for smooth locomotion of bio-inspired legged robot, Robotics and Autonomous Systems, Vol. 106, pp. 165-178, 2018.
[29] P. Veskos, Y. Demiris, Robot swinging using van der Pol nonlinear oscillators, in: Proceedings of the Third International Symposium on Adaptive Motion of Animals and Machines, September 25-30, 2005, Ilmenau, Germany, 4 pages, 2005.
[30] P. Veskos, Y. Demiris, Experimental comparison of the van der Pol and Rayleigh nonlinear oscillators for a robotic swinging task, in: Proceedings of the AISB 2006 Conference, Adaptation in Artificial and Biological Systems, 3-6 April 2006, Bristol, England, 197-202, 2006.
[31] C. Liu, Q. Chen, J. Zhang, Coupled van der Pol oscillators utilised as central pattern generators for quadruped locomotion, in: Proceedings of the 2009 Chinese Control and Decision Conference, 17-19 June 2009, Guilin, China, 3677-3682, 2009.
[32] N. Kuwata, Y. Hoshi, B.T. Nohara, Analysis of coupled van der Pol oscillators and implementation to a myriapod robot, in: Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, July 6-11, 2008, 767-772..
[33] M. Piątek, A. Turnau, Hexapod - six-legged walking robot controlled with Toda-Rayleigh lattice, Bio-Algorithms and Med-Systems, Vol. 8, No. 1, pp. 111-121, 2012.
[34] J. Nishii, Legged insects select the optimal locomotor pattern based on the energetic cost, Biological Cybernetics, Vol. 83, No. 5, pp. 435-442, 2000.