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1. Introduction 

Recently, multi-legged robots have gained great popularity in 
engineering applications and have been widely investigated in the 
literature. When the legs of the robot are controlled with a degree 
of autonomy, the robot is able to move and reproduce planned 
tasks [1]. This is why the legged vehicles inspired by the 
physiology and anatomy of various animals are a significant 
group of robots used in different branches of mechanical 
engineering. Most recently, attention paid to the field of robotics, 
especially to legged machines that can imitate human or animal 
movements and substitute people in different tasks, has 
considerably risen [2]. 

Interesting literature reviews regarding crab-like robots are 
presented in some recent papers [2,3]. Aside from numerous 
crab-like robots, also robots with leg structure modeled on the 
basis on the anatomy of mammals can also be distinguished (for 
instance, see papers [1,4,5]). More legs than in quadruped or 
hexapod robots make the octopods able to overcome more 
complex obstacles without losing stability. Namely, to form a 

support polygon and maintain stability of a walking robot, at 
least three legs are needed, whereas four legs are required to 
perform the locomotion. As a result, the octopod can still 
continue its motion even if four of its legs are damaged [5]. 

Legged robots are challenging in terms of control of their 
locomotion. However, they can be used in terrains, where 
wheeled or crawled machines cannot perform their tasks. 
Namely, legged robots can overcome obstacles of heights equal 
to the height of their limbs, whereas wheeled robots can 
overcome obstacles of heights up to the half of the wheel radius 
[5]. In legged robots, the contact between the ground and the 
robot's feet takes a form of contact points, on the contrary to 
wheeled robots, where the contact between the wheels and the 
ground usually has a continuous character [6]. On the other hand, 
a large amplitude of the ground reaction force acting on the feet 
of the robot has a negative influence on the dynamics of the 
robot, and these forces should be minimized if it is possible. In 
general, numerous computer programs are used to prototype 
walking robots before the final construction is created, for 
instance, see paper [7]. Next, different control strategies of 
walking robots, as well as their dynamical parameters, are usually 
tested by different commercial software such as Matlab [1,8], 
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Adams [8,9] or Open Dynamic Engine [10,11], to protect both 
individual components and the entire mechanism of the robot. 

Literature review indicates that studies on walking machines 
are still challenging and focus attention of numerous researchers. 
Walking robots with a mammal-like structure of the limbs are 
characterized by lower stability in comparison to robots with a 
crab-like structure of legs. In addition, expensive commercial 
computer software is commonly used to study the dynamics of 
these vehicles. In this paper, we used Mathematica software to 
develop kinematical and dynamical models of a mammal-like 
octopod robot, which are also suitable for estimating crucial 
parameters of the robot during walking. We studied four central 
pattern generators (CPGs) controlling the robot's legs, including 
stability analysis of the robot by using the concept of the zero 
moment point. Also, we implemented an algorithm suitable for a 
smooth transition between different gait phased of the robot, i.e., 
initial, rhythmic and terminal phases [5]. Following much 
previous research, the employed CPGs have been tested for the 
robot walking on a planar surface [5,6,12]. Eventually, we also 
considered the problem of controlling the direction of the robot 
movement and its vertical position during walking, which is 
suitable for both the navigation and obstacle avoidance matters in 
the natural environment. More information in this area can be 
found in one of the recent papers [2]. 

The article is organized as follows. Section 2 presents the 
kinematic/dynamic models and dynamical stability concept for 
the analysis of the considered mammal-like octopod robot. 
Section 3 consists of a short literature review devoted to the 
chosen methods employed to control walking robots and the 
definitions of the tested CPGs. Section 4 illustrates two (the 
slowest and the fastest) gaits of eight-legged robots and presents 
the architecture of the control system used to control the studied 
robot walking with the tetrapod gait. Some interesting numerical 
simulations of kinematics, stability, dynamics and control of the 
analyzed robot are reported and discussed in Section 5. 
Conclusions from the study are outlined in the last Section 6. 

 

2. Kinematic and dynamic models of an octopod robot 

 

Figure 1 presents a scheme of the studied octopod robot 

embedded in a global Cartesian coordinate system Oxyz, which is 

fixed to the ground. In addition, a local coordinate system Cx'y'z' 

is fixed to the robot's body (trunk) as it is shown in Fig. 1. The 

robot has eight identical legs, i.e., four legs on the left side of the 

trunk (denoted by L1, L2, L3 and L4), and four legs on the right 

side of the trunk  (denoted by R1, R2, R3 and R4). The distances 

between the legs are equal L in the x' - direction, and H in the y' - 

direction. 

 

 
Fig. 1 A scheme of an octopod robot with mammal-like legs. 

A schematic configuration of a single mammal-like leg (for 

instance, leg L4) with three active degrees of freedom (DOFs) is 

presented in Fig. 2. The mechanism of the robot's leg can be 

analyzed as a multibody system with three DOFs [5,6]. The leg is 

located in Earth’s gravity field with the standard gravity g = 9.81 

m/s2, and the center of the local coordinate system O"x"y"z" is 

fixed to the robot’s body (see Fig. 2). Coordinates of the centers 

of local coordinate systems O"x"y"z" for all robot's legs L1, L2, 

L3, L4, R1, R2, R3 and R4 in the local coordinate system Cx'y'z' 

fixed to the robot body are as follows: O"L1(1.5L, 0.5H, 0), 

O"L2(0.5L, 0.5H, 0), O"L3(-0.5L, 0.5H, 0), O"L4(-1.5L, 0.5H, 0), 

O"R1(1.5L, -0.5H, 0), O"R2(0.5L, -0.5H, 0), O"R3(-0.5L, -0.5H, 0) 

and O"R4(-1.5L, -0.5H, 0). The parameters mi and li (i = 1,2,3) 

denote masses and lengths of the links, respectively. The 

parameters ai denote the distances between the coordinates of 

joints and mass centers of the respective links. Angular positions 

in the joints of the leg are described by the angles φi(t). Rx(t), 

Ry(t) and Rz(t) are the components of the ground reaction force 

acting on the robot’s leg in x-, y- and z- directions, respectively. 

The mass of the trunk (without limbs) is M. Moreover, we 

assumed that the robot is able to transport an additional load with 

mass ML, which is uniformly distributed on the trunk. The values 

of all parameters required in the numerical simulations were 

taken from reference [5] and have been depicted in Tab. 1. 

 

 
 

Fig. 2 A schematic drawing of a single mammal-like robot’s leg. 

 

Tab. 1 Values of the parameters of the considered octopod robot. 

 
Parameters Symbol Unit Value 

Mass of the trunk (without legs) M [kg] 1.0 

Masses of  legs' links (with servos) m1; m2; m3 [kg] 0.111; 0.140; 0.124 

Lengths of legs' links l1; l2; l3 [m] 0.065; 0.100; 0.165 

Positions of links' mass centers a1; a2; a3 [m] 0.052; 0.075; 0.075 

Distances between the legs L; H [m] 0.263; 0.210 

 

Forward kinematics for the “foot” of the leg presented in Fig. 2 

has the form 
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whereas the inverse kinematics is given as follows 

 



D. Grzelczyk and J. Awrejcewicz 

78 

 

1

2 2 2

2 2 3
2

1 2 2

2 2 2

2 3 2
3

2 3

"( )
( ) atan ,

"( )

"( ) [ ( )]
( ) atan acos ,

( ) 2 ( )

[ ( )]
( ) acos ,

2

y t
t

z t

x t l d t l
t

d t l d t

l l d t
t

l l







  
  

 
     

    
   

      
  

 (2) 

 

where d1(t) = 2 2

1[ "( )] [ "( )]y t z t l   and d2(t) = 

2 2

1[ ( )] [ "( )]d t x t . 

In this paper, we investigated a tetrapod gait as one of the 

most popular and also fastest gaits of octopod robots [5,13]. On 

the other hand, it is also the least stable gait, which generates the 

greatest ground reaction forces during walking. In our opinion, 

all these features make it worth investigating. In the case of the 

tetrapod gait, the articulated variables φ1a(t), φ2a(t) and φ3a(t) 

correspond to one group (group a) of the robot's legs (L1, L3, R2 

and R4), whereas the angles φ1b(t), φ2b(t) and φ3b(t) correspond to 

the second group (group b) of the robot’s legs (R1, R3, L2 and 

L4). Therefore, the variables describing positions of the feet of 

the legs from groups a and b in the local coordinate system 

O"x"y"z" are different and equal x"a(t), y"a(t), z"a(t), and x"b(t), 

y"b(t), z"b(t), respectively. A diagram of the control system 

realizing the investigated tetrapod gait is presented in Section 4. 

Coordinates xC(t), yC(t) and zC(t) of the robot’s center (center 

of the trunk), marked by point C in Fig. 1, in the global 

coordinate system Oxyz, in x-, y- and z- directions (i.e., forward, 

lateral and vertical directions, respectively), can be calculated as 

follows 
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In our study, we computed fluctuations in the center of mass of 

the robot. In the case of the investigated octopod robot, the 

coordinates of the vector rCOM(t) = [xCOM(t), yCOM(t), zCOM(t)]T, of 

the spatial position of the center of mass in the global coordinate 

system Oxyz were calculated from the following formula 
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To study the dynamics and control of the legged locomotion, the 

so-called Zero Moment Point (ZMP) concept is more useful [14]. 

This concept assumes the planar contact area and friction high 

enough to keep the feet from sliding on the ground. This is why 

we also introduced these assumptions in our study. It should be 

noted that during walking of the robot, the values of derivatives 

of moments of the momentum of each segment of the robot are 

relatively small [15]. Therefore, the coordinates xZMP(t) and 

yZMP(t) of the zero moment point in the global coordinate system 

Oxyz were calculated from the formula 
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Due to the considered planar walking surface and Earth's gravity 

field, gx = 0, gy = 0 and gz = g. 

All components of ground reaction forces acting on the 

robot’s legs were estimated with the use of an inverse dynamics 

concept, based on the following vector equation written in the 

global coordinate system Oxyz 

 

 
4 3 4 3

(L ) (R )

1 1 1 1

4 4 3
(L ) (R )

1 1 1

( ) ( ) ( )

( ) ( ) 8 ,

j j
L C i i i i

j i j i

j j
L i

j j i

M M t m t m t

t t M M m

   

  

   

 
     

 

 

  

r r r

R R g

 (16) 

 

where rC(t) = [xC(t), yC(t), zC(t)]T denotes the vector of the center 

(point C) of the trunk of the robot, ri
(Lj)(t) = [xi

(Lj)(t), yi
(Lj)(t), 

zi
(Lj)(t)]T and ri

(Rj)(t) = [xi
(Rj)(t), yi

(Rj)(t), zi
(Rj)(t)]T are vectors of the 

positions of the mass centers of individual links of the robot’s 

legs on the left and right side of the trunk, respectively, R(Lj)(t) = 

[Rx
(Lj)(t), Ry

(Lj)(t), Rz
(Lj)(t)]T and R(Rj)(t) = [Rx

(Rj)(t), Ry
(Rj)(t), 

Rz
(Rj)(t)]T denote ground reaction forces acting on the feet during 

the interaction with the ground, whereas g = [0, 0, -g]T is the 

vector of Earth's gravity. The above-presented vector equation 

can be rewritten in the following scalar forms 
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The robot’s legs are in stance (i.e., in contact with the ground) in 

one gait phase, whereas they perform swing movements (i.e., 

there is no contact with the ground) in the other phase. Because 

of the symmetrical distribution of the robot’s legs, the lack of 

rotation of the robot’s trunk during walking, as well as partial 

mutual compensations of the movements of individuals segments 

of the robot legs, we can assume that 
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In order to assess the dynamic properties of the investigated 

CPGs, we introduced functions μax(t), μbx(t), μay(t) and μby(t), 

calculated for the legs which are in contact with the ground 
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The detailed analysis of these functions allowed us to estimate 

the minimum value of the friction coefficient in each phase of the 

robot gait, which is necessary to avoid slipping between the 

ground and the robot’s feet. When the robot moves in an arbitrary 

direction, all components Rx(t), Ry(t) and Rz(t) of ground reaction 

forces should be considered. Therefore, the minimum value of 

the coefficient of friction that makes it possible to avoid slipping 

between the ground and the feet of the robot in each phase of gait 

(i.e., phase a and phase b), can be computed from the following 

formula 
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3. Central pattern generators 

 

In order to control angular positions in the joints of individual 

robot's legs, we employed a method based on the inverse 

kinematic relations with periodic functions forming a network. 

This approach resembles the operation of neural networks that 

generate rhythmic outputs in the absence of rhythmic input 

[16,17]. Such networks have been found by biologists in different 

biological periodic processes, including swimming, running, 

breathing, flying, chewing or walking. These processes are 

controlled by a part of a spinal cord for the vertebrate or by the 

ganglion for the invertebrate, known as the Central Pattern 

Generator (CPG) [18,19], which is the source of tightly-coupled 

patterns of neural activity that does not require sensory 

information [5,17]. For four last decades, this concept has been 

commonly applied to control different kinds of bio-inspired 

walking robots. Also recently, some researchers have employed 

this approach to control the robot’s legs. In general, CPGs as 

locomotion controllers have been developed with digital 

processors or analog circuits (see, for instance, papers [13,17]). 

In our study, we selected and employed three popular nonlinear 

oscillators working as CPG models, i.e. Hopf oscillator [9,20], 

hybrid van der Pol-Rayleigh oscillator [21] and Toda-Rayleigh 

lattice [22-24]. Then, we proposed a novel model of CPG that 

can be used to control the robot locomotion, and next, we 

compared it with the above-mentioned nonlinear oscillators. 

Two uncoupled Hopf oscillators are governed by the 

following first-order ordinary differential equations (ODEs) 
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

   

 (29) 

 

and are further referred to as CPG1. Two uncoupled hybrid van 

der Pol-Rayleigh oscillators are described by the first-order 

ODEs 

 

   
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
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


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 (30) 

 

and are further referred to as CPG2. The Toda-Rayleigh lattice is 

governed by the first-order ODEs 
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   

( ) ( ) ( ) ( )2 2

( ) ( ) ( ) ( )2 2

( ) ( ),

( ) 1 ( ) ( ),

( ) ( ),

( ) 1 ( ) ( ),

b a a b

a b b a

a a

u t u t u t u t

a a a

b b

u t u t u t u t

b b b

u t v t

v t e e v t v t

u t v t

v t e e v t v t

 

 

 

 




   



    


 (31) 

 

and is further referred to as CPG3. In turn, the proposed CPG 

model (further referred to as CPG4) is governed by the following 

periodic functions 

 

 

 

 
1

( ) mod[ , ] ,

( ) mod[ , ] ,

( ) ( ),

( ) mod[ , ] ,

a x

a za

b

b zb

u t f t T

v t f t T

u t u t

v t f t T

 

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

 
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
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( ) (mod[ 0.5 , ])zb zaf t f t T T  , (35) 

 

are the functions defined in the time range t ϵ [0, T] (T is the 

period of a single robot stride). The proposed model of CPG is 

relatively simple in comparison to other nonlinear oscillators 

working as CPGs. On the contrary to classical nonlinear 

oscillators working as CPGs, the proposed model does not 

require solving nonlinear differential equations, which is 

advantageous when it comes to implementing control algorithms 

in a form of a program written for a microcontroller with limited 

computing power. 

In the above CPGs, ua(t), va(t), ub(t) and vb(t) denote 

dimensionless variables, whereas σ, ε, δ, η and ω are constant 

dimensionless parameters. Examples of stable periodic orbits of 

the considered CPGs are reported in Fig. 3. The values of 

abovementioned parameters (σ = 6, ε  = 4, δ = 0.4, η = 6 and ω = 

2) were based on the literature and were set so as to obtain 

significant differences between the trajectories plotted by the 

robot’s feet. 

 

 
 

 
 

Fig. 3 Normalized stable periodic orbits used as CPGs (σ = 6, ε  = 

4, δ = 0.4, η = 6 and ω = 2). 

 

One can find numerous papers focused on implementing the 

Hopf oscillator [25-28], the van der Pol oscillator [21,29-32], the 

Rayleigh oscillator [21,29,30], the Toda-Rayleigh lattice 

[6,13,33], and many others, to generate rhythmic movements of 

the bio-inspired machines. The CPG model proposed in this 

paper has some advantages in comparison to the above-

mentioned examples, which is illustrated and discussed in further 

sections of this paper. 

 

4. Architecture of the control system of a robot walking with 
a tetrapod gait 

 

Since control of mobile robots is a complex engineering problem 

that requires high coordination of all robot's legs, the control 

system must select one of numerous alternative movements, 

depending on the actual situation and/or energetic cost [34]. For 

instance, a good example of naturally occurring transitions of 

rhythmic movements can be observed in a horse which can use 

various gaits, including walk, trot and gallop [17]. 

Different kinds of gait can be presented schematically by so-

called gait timing diagrams [9]. In addition, a duty factor β is 

usually defined, which denotes the fraction of the cycle time that 

each foot spends touching the ground (i.e., in the stance). To 

illustrate it schematically, we presented two typical gaits of the 

eight-legged robots, i.e., the slowest wave gait (β = 7/8) and the 

fastest tetrapod gait (β = 1/2) in Fig. 4. 

 

(a) wave gait 
 

R4     
 

R3      
 

R2     
 

R1    
 

L4    
 

L3    
 

L2    
 

L1    
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                                                                                                                time 
(b) tetrapod gait 
 

R1            
 

R2            
 

R3            
 

R4            
 

L4            
 

L3            
 

L2            
 

L1            

                                                                                                                time 

(c) 

  
The robot supported by the legs 

L1,L3,R2,R4 during tetrapod gait 

The robot supported by the legs 

R1,R3,L2,L4 during tetrapod gait 

 

Fig. 4 Diagrams showing the slowest wave gait (a) and the fastest 

tetrapod gait (b) of an octopod, as well as configurations of the 

robot’s legs in two different phases of the tetrapod gait (c). On 

the presented diagrams, white color denotes the stance, whereas 

black color denotes the swing of the robot’s legs. 

 

Figure 5 shows schematically a method to generate articulated 

variables for the joints of each robot’s leg. 

 

 
 

Fig. 5 Algorithm presenting the generation of values of angular 

positions for each joint driving the legs of the investigated robot. 

 

The normalized periodic orbits of the CPG with the regulated 

time period T are converted into the workspace of the robot leg, 

taking into account the parameters lstride, hstride, θ, and function 

h(t). The parameters lstride and hstride are responsible for the length 

and the height of a single robot stride, the angle θ controls the 

direction of movement of the robot with respect to the global 

coordinate system Oxyz fixed to the ground, while the function 

h(t) controls the vertical position of the robot. Variables x"a(t), 

x"b(t), y"a(t), y"b(t), z"a(t) and z"b(t) are obtained by converting the 

variables ua(t), va(t), ub(t), vb(t) of the CPG to the workspace of 

the leg’s mechanism by using the following formula 

 

stride" ( ) ( ) cosa ax t l u t    , (36) 

 

stride" ( ) ( ) cosb bx t l u t    , (37) 

 

stride" ( ) ( ) sina ay t l u t    , (38) 

 

stride" ( ) ( ) sinb by t l u t    , (39) 

 

stride" ( ) ( ) ( )a az t h v t h t   , (40) 

 

stride" ( ) ( ) ( )b bz t h v t h t   . (41) 

 

In the next step, the obtained variables are converted into the 

joint space φ1a(t), φ2a(t), φ3a(t) and φ1b(t), φ2b(t), φ3b(t) by using 

the inverse kinematics relations (2). The angles φ1a(t), φ2a(t), 

φ3a(t) control the joints of the legs L1, L3, R2 and R4 (the group 

a of the robot legs), whereas the angles φ1b(t), φ2b(t), φ3b(t) 

control the joints of the legs R1, R3, L2 and L4 (the group b of 

the robot legs). As a result, the robot is supported by the legs 

from the group a in one phase, and by the legs from group b in 

the other one (see Fig. 4). Figure 6 illustrates examples of 

trajectories plotted by a single robot leg in the local coordinate 

system O"x"y"z", both in x"-z" and y"-z" planes. Time histories of 

the articulated angular positions φ1a(t), φ2a(t), φ3a(t) and φ1b(t), 

φ2b(t), φ3b(t) are presented in Fig. 7. The articulated variables 

applied to the legs' joints cause the robot movement in the global 

coordinate system Oxyz, along the direction defined by the angle 

θ. In our control method, the axes x', y', z' of the local coordinate 

system Cx'y'z' are parallel to the axes x, y, z of the global 

coordinate system Oxyz during the whole locomotion process. As 

a result, we focus on forward, lateral and oblique movements of 

the robot, while the rotation of the robot's trunk in the coordinate 

system Oxyz is outside of the area of interest of this study. 

 

(a)                                          (b) 

 
 

Fig. 6 The periodic orbits of different CPGs converted into the 

workspace of a single robot leg in the plane x"-z" (a), and in the 

plane y"-z" (b). The trajectories were calculated for the following 

parameters: T = 2 s, lstride = 0.2 m, hstride = 0.05 m, θ = π/8 and h(t) 

= 0.3 m. 

 

  (a)                                                (b) 

 

  (c)                                                (d) 

 
 

Fig. 7 Time histories of the angles φ1a(t), φ2a(t), φ3a(t) and φ1b(t), 

φ2b(t), φ3b(t) in a single stride for T = 2 s, lstride = 0.2 m, hstride = 

0.05 m, θ = π/8 and h(t) = 0.3 m and different CPGs, i.e. CPG1 

(a); CPG2 (b); CPG3 (c) and CPG4 (d). 
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5. Numerical simulations 

 

Figure 8 shows the developed 3D full parametric simulation 

model of the investigated octopod robot implemented in 

Mathematica. The created model allowed us to visualize the 

robot during walking as well as control the correctness of the 

simulated results, especially the spatial position of individual 

elements of the robot and the configurations of the legs. The 

robot located in the coordinate system Oxyz fixed to the ground 

(green surface) is represented by the trunk (gray cuboid) and 

eight legs (each leg is composed of three links represented by 

red, green and blue lines, respectively). We also animated all 

joints of the legs (yellow cylinders), centers of masses of the 

legs’ links (gray balls) and the supporting polygon (bounded by 

black dashed lines). 

 

 

 

Fig. 8 Simulation model of the investigated octopod robot, 

created in Mathematica. 

 

Figures 9-11 show time histories of displacements xC(t), yC(t), 

zC(t), velocities vxC(t), vyC(t), vzC(t) and accelerations axC(t), ayC(t), 

azC(t) of the robot’s center (point C in Fig. 1) in the x-, y- and z- 

directions, respectively. These kinematic quantities were 

obtained for a single robot stride of the rhythmic tetrapod gait (in 

time from 0 to T) and for different CPGs. We assumed that the 

beginning of a stride corresponds to the beginning of the support 

by the legs L1, L3, R2 and R4, and that it starts from the initial 

position, i.e., xC(t) = 0 and yC(t) = 0. Due to the changing 

supporting polygon of the robot, time histories of the crucial 

kinematic parameters have nonsmooth or discontinuous 

character. Significant differences between the presented 

parameters are clearly visible for the three well-known nonlinear 

oscillators, i.e., CPG1, CPG2 and CPG3. Moreover, fluctuations 

in the vertical position of the robot are also clearly visible for 

these CPGs, although h(t) = const. Fluctuations in both the 

velocities and the accelerations are not observed for the robot's 

motion driven by the proposed CPG models. 

 

               (a)                                                            (b)                                                             (c) 

 
 

Fig. 9 Fluctuations in displacements xC(t) (a), yC(t) (b), and zC(t) (c) of the robot in the forward, lateral and vertical directions, 

respectively, obtained for a single stride of the robot driven by different CPGs. 

 

               (a)                                                            (b)                                                             (c) 

 
 

Fig. 10 Fluctuations in velocities vxC(t) (a), vyC(t) (b), and vzC(t) (c) of the robot in the forward, lateral and vertical directions, 

respectively, obtained for a single stride of the robot driven by different CPGs. 

 

                (a)                                                             (b)                                                             (c) 
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Fig. 11 Fluctuations in accelerations axC(t) (a), ayC(t) (b), and azC(t) (c) of the robot in the forward, lateral and vertical directions, 

respectively, obtained for a single stride of the robot driven by different CPGs. 

 

Figure 12 presents the curves of trajectories of the ZMP, 

plotted for all four investigated CPGs, as well as supporting 

polygons of the robot, which are represented by black dashed 

lines. In these simulations, we used the same values of 

parameters as before. For all used models of CPGs, the 

trajectories of the ZMP points lie inside the supporting polygon 

of the robot. Therefore, the movement of the robot is stable in all 

presented cases. It should be noted that in the case of CPG4, the 

fluctuations in the ZMP are the lowest and farthest from the 

edges of the supporting polygons. Therefore, when the robot is 

driven by the proposed CPG, its movement is the most stable. 

 

(a) 

 
 

(b) 

 
 

Fig. 12 Fluctuations in the ZMP calculated for the phase a (a) 

and the phase b (b) of a single stride of the robot driven by 

different CPGs. 

 

A more detailed analysis of the dynamical stability of the 

robot comprises the investigation of the trajectories xZMP(t)-

yZMP(t), plotted in the coordinate system Oxyz, including the 

supporting polygons of the robot. By using the simulation model 

developed in Mathematica, in Fig. 13, we plotted the position of 

the ZMP (red dot), the projection of the position of the center of 

mass (blue dot), the projection of the position of the center of the 

robot body (black dot), the contour of the robot's trunk (gray 

rectangle) as well as the supporting polygon (gray dashed lines), 

on the plane x-y of the coordinate system Oxyz. The supporting 

legs are represented by the solid (red, green and blue) lines, while 

the legs in the swing phase are represented by the dashed (red, 

green and blue) lines, respectively. Moreover, the red line 

represents the distance between the edge of the supporting 

polygon and the ZMP, calculated in the direction of the robot's 

movement. The calculated distance DSM(t) is the dynamic 

stability margin (DSM). 

 

(a) phase a of a single robot stride 

   
t = 0 s t = 0.4 s t = 0.8 s 

 

(b) phase b of a single robot stride 

   
t = 1.2 s t = 1.6 s t = 2.0 s 

 

Fig. 13 Top view of the walking process of the investigated robot simulated in Mathematica and captured at regular time intervals. 

 

The computed distance representing the dynamical stability 

margin changes in time, in both phases of a single rhythmic robot 

stride (see Fig. 14). For all used CPGs, for t = T/2, discontinuity 

of the functions DSM(t) can be observed, which results from 

changes in the supporting polygon. 
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Fig. 14 DSM(t) obtained for a single rhythmic stride of the robot 

driven by different CPGs. 

 

The stability analysis can be interpreted by different coefficients. 

In our study, we calculated the minimum value of the function 

DSM(t) in the range of the time of a single stride, namely 

 

min
[0, ]

min ( )
t T

DSM DSM t


 , (42) 

 

which can be used as a coefficient assessing the dynamical 

stability of the robot. Figure 15 shows values of the introduced 

parameter DSMmin obtained for the angles θ in the range θ ϵ [0, 

2π]. An analysis of the presented results shows that, regardless of 

the used CPG, the value of the parameter DSMmin (i.e., dynamical 

stability margin) changes significantly with the change in the θ 

parameter. The robot has the largest stability during walking in 

the forward direction (θ = 0 and θ = 2π) and the backward 

direction (θ = π). In turn, it is characterized by the smallest 

stability during walking in the lateral directions (i.e. θ = π/2 and θ 

= 3π/2). However, regardless of the parameter θ, the robot's 

stability is significantly larger when the robot is driven by the 

proposed CPG model. 

 

 
 

Fig. 15 Values of the DSMmin calculated for different directions 

of the robot controlled by the parameter θ for different CPGs 

controlling the robot’s legs. 

In our study, we also calculated DSMmin for different values of 

parameters ML, T, lstride and hstride of a robot walking in different 

directions θ and driven by different CPGs. Through a detailed 

analysis of the results presented in Figs. 16-19, it can be stated 

that the used CPGs, different directions θ of the robot movements 

and the parameters ML, T, lstride and hstride have a significant 

influence on the calculated values of the coefficient DSMmin. The 

benefits of using the proposed CPG model are especially visible 

for small values of the parameter T, i.e., when the robot is 

moving at relatively high speed. Moreover, among the three 

tested cases of the movement direction θ, the robot has the 

highest stability during walking in the forward direction, i.e., for 

θ = 0, while the smallest stability was detected for the lateral 

direction, i.e., θ = π/2. 

 

 

                (a)                                                           (b)                                                            (c) 

 
 

Fig. 16 DSMmin calculated for different values of the parameter ML, different CPGs and different directions θ of the robot gait: (a) 

θ = 0; (b) θ = π/4; (c) θ = π/2. 

 

                (a)                                                           (b)                                                            (c) 

 

 

Fig. 17 DSMmin calculated for different values of the parameter T, different CPGs and different directions θ of the robot gait: (a) θ = 0; 

(b) θ = π/4; (c) θ = π/2. 

 

                (a)                                                           (b)                                                            (c) 
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Fig. 18 DSMmin calculated for different values of the parameter lstride, different CPGs and different directions θ of the robot gait: (a) θ = 

0; (b) θ = π/4; (c) θ = π/2. 

 

                (a)                                                           (b)                                                            (c) 

 
 

Fig. 19 DSMmin calculated for different values of the parameter hstride, different CPGs and different directions θ of the gait: (a) θ = 0; (b) 

θ = π/4; (c) θ = π/2. 

 

Figures 20-21 show time histories of the components Rx(t), 

Ry(t) and Rz(t) of the ground reaction forces (GRFs) acting on the 

robot's legs, obtained for different CPGs. The results were 

calculated in Mathematica as a solution to the inverse dynamic 

problem for the following values of parameters: T = 2 s, lstride = 

0.1 m, hstride = 0.05 m, θ = π/8 and h(t) = 0.3 m. In all presented 

cases, fluctuations in all components of the GRFs were detected, 

but relatively large fluctuations are present for CPG1, CPG2 and 

CPG3, in comparison to the CPG4. The values of the components 

Rz(t) fluctuate around the value resulting from the robot weight 

per one supporting leg, i.e., Rgr(t) = 9.81 N. 

 

    (a)                                            (b) 

 
 

    (c)                                            (d) 

 
 

Fig. 20 The components Rx(t) and Ry(t) of the ground reaction 

force acting of the legs of the robot driven by different CPGs: (a) 

CPG1; (b) CPG2; (c) CPG3; (d) CPG4. 

 

  (a)                                           (b) 

 
 

 

 

 

 

 

  (c)                                           (d) 

 
 

Fig. 21 The components Rz(t) of the ground reaction force acting 

of the legs of the robot driven by different CPGs: (a) CPG1; (b) 

CPG2; (c) CPG3; (d) CPG4. 

 

Figure 22 shows curves of the functions μx(t) and μy(t), which are 

suitable to estimate the minimum value of the friction coefficient 

between the ground and the feet of the robot, which guarantees 

that the robot will not slip on the ground during the locomotion 

process. The smallest oscillations of the values of μx(t) and μy(t) 

were observed for the proposed CPG4. Therefore, the robot 

controlled by the proposed model of CPG is able to move on a 

surface with a relatively low coefficient of friction between its 
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feet and the ground and without unnecessary accelerations or 

decelerations in any direction. 

 

   (a)                                           (b) 

 
 
   (c)                                           (d) 

 
 

Fig. 22 Time histories of the functions μ(t) obtained for different 

CPGs: (a) CPG1; (b) CPG2; (c) CPG3; (d) CPG4. 

 

In further analysis we computed abovementioned the minimum 

value of the friction coefficient μmin between the ground and the 

feet of the robot, which guarantees that the robot will not slip on 

the ground during locomotion process, in the following way 

 

min
[0. ] [0. ]

max ( ) max ( )a b
t T t T

t t  
 

  , (43) 

 

since, the functions μa(t) and μb(t) are similar in the rhythmic 

phase of gait, i.e., they are only shifted in time. Moreover, taking 

into account the adopted assumptions introduced in Section 2, the 

coefficient μmin is the same for all robot's legs. Time histories of 

μa(t) and μb(t), and values of the parameter μmin for all tested 

CPGs are presented in Fig. 23. 

 

(a) 

 
(b) 

 

(c) 

 
 

Fig. 23 Time histories of the function μa(t) (a) and μb(t) (b) in 

different phases of a single robot stride, and the coefficient μmin 

(c) calculated for different CPGs. 

 

In our study, we also considered the problem of planning the 

trajectory of the robot (i.e., the coordinates xC(t), yC(t), zC(t) in the 

global coordinate system Oxyz) during the walking process of the 

robot. Here we studied only the robot driven by the proposed 

model of CPG, i.e., CPG4. In our model, the forward and lateral 

fluctuations of the robot are controlled by the value of the angle 

θ, whereas the vertical fluctuations of the robot are controlled by 

regulating the function h(t). The possibility of controlling the 

direction of the robot movement by changing the value of the 

angle θ has been already presented in detail in Section 4. This is 

why, in this section, we focused only on the ability to control the 

robot movement in the vertical direction. Therefore, as an 

example, we used θ = π/8 and h(t) = (0.21 - 0.1e-0.3tsin2t + 0.015t) 

m. Moreover, we also considered initial and terminal phases of 

the robot gait, i.e., the change in the configuration of the robot’s 

legs during the transition from the initial configuration (the same 

configurations of all legs) to the rhythmic phase of gait (n full 

cycles), as well as the transition from the rhythmic phase of gait 

to the initial phase of gait, respectively. To do it, both the length 

and the height of a single robot stride in were calculated from the 

following formula 

 

stride max( ) ( )l t l P t , (44) 

 

stride max( ) ( )h t h P t , (45) 

 

where lmax and hmax denote the maximum length and height of a 

single robot stride, respectively, whereas P(t) is a function given 

by the following relation 

 

2
if [0, 0.5 ],

( ) 1 if (0.5 , ( +0.5) ],

2
1 ( ( +0.5) ) if (( +0.5) , ( +1) ].

t t T
T

P t t T n T

t n T t n T n T
T





 

   


 (46) 

 

As a result, we considered the proposed CPG model in the 

following form 

 

 

 

 
1

( ) ( ) ,

( ) ( ) ,

( ) ( ),

( ) ( ) ,

a x m

a za m

b

b zb m

u t f t t

v t f t t

u t u t

v t f t t

 





 
 

, (47) 
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where 

 

( )

0.5mod( , ) if [0, 0.5 ] (( +0.5) , ( +1) ],

mod( 0.25 , ) if (0.5 , ( +0.5) ].

mt t

t T t T n T n T

t T T t T n T



 


 

 (48) 

 

The simulated configurations of the robot walking on a planar 

surface, moving in the vertical direction due to the function h(t), 

captured at regular time intervals, are illustrated in Fig. 24. As 

can be seen, the supporting legs touch the ground, while the 

vertical position of the point C of the robot is accurately reflected 

based on the defined function h(t). As a result, we can control the 

position of the center of the robot’s trunk (marked by point C) in 

all directions, which can be useful to control walking of the robot 

in the natural environment. 

 

 

 

 

  
 

t = 0 s t = 1.2 s t = 2.4 s 

   
t = 3.6 s t = 4.8 s t = 6 s 

 

Fig. 24 Simulated configurations of the investigated robot in different phases of gait during walking according to the planned trajectory 

in the forward, lateral and vertical directions, captured at regular time intervals. 

 

Figures 25-26 present some kinematic and dynamic dependencies 

of the parameters of the walking robot, which indicate the 

influence of forward, lateral and vertical fluctuations of the robot 

on its kinematic and dynamic parameters. Figure 25 shows time 

histories of articulated angles applied to the joints of the robot's 

legs. As can be seen, the presented time histories have irregular 

character resulting from the time-varying function h(t). Figure 26 

shows fluctuations in displacements xC(t), yC(t), zC(t) and 

velocities vxC(t), vyC(t), vzC(t) of the walking robot. The presented 

time histories can be divided into three phases of gait, namely: 

the initial phase of gait (t = 0...1 s), the rhythmic gait with two 

cycles (t = 1...5 s) as well as the terminal phase of gait (t = 5...6 

s). In the first, initial phase of gait, speeds of the robot in the 

forward and lateral direction increase linearly, i.e., from 0 to 

2lstridecosθ/T = 0.092 m/s and 2lstridesinθ/T = 0.038 m/s, 

respectively. It the second, rhythmic phase of gait, these speeds 

are constant (0.092 m/s and 0.038 m/s, respectively). In turn, in 

the last, terminal phase, these speeds decrease linearly from 

0.092 m/s to 0 and from 0.038 m/s to 0, respectively. As a result, 

fluctuations in the robot speeds are not observed, which has a 

significant and positive impact on the robot stability and its other 

dynamical parameters. When it comes to vertical fluctuation zC(t) 

in the robot position, it is accurately reflected based on the 

function h(t). 

 

  (a)                                              (b) 

 
 

Fig. 25 Time histories of angular positions applied to individual 

joints of the legs (a) and positions of the robot’s feet, plotted in 

the local coordinate system O"x"y"z" of a single robot’s leg. 

 

  (a)                                             (b) 

 
 

Fig. 26 Time histories of the displacements xC(t), yC(t), zC(t) of 

the robot’s center C (a) and velocities vxC(t), vyC(t), vzC(t) of the 

robot’s center C (b) in the forward, lateral and vertical directions, 

respectively. 

 

 

6. Conclusions 

 

In this paper, we have investigated numerically a bio-inspired 

model of a mammal-like octopod, including kinematic/dynamic 

parameters of the robot locomotion, its stability, and the 

possibility of controlling during walking. The simulation model 

of the robot has been developed in Mathematica and the gait has 

been generated by four different models of CPG. The proposed 

CPG model is relatively simple in comparison to the other three 

investigated CPGs constructed based on the nonlinear oscillators. 

For instance, our CPG model does not require solving nonlinear 

differential equations, and it is especially advantageous during 

the implementation of the CPG in the form of a program written 

for a microcontroller with limited computing power. Moreover, 

the proposed model does not produce unnecessary fluctuations in 

the velocity both in the vertical and horizontal (i.e., movement 

and lateral) directions of the robot. As a result, it has also a 

positive impact on the dynamical parameters of the robot. In the 

case of practical realization of the control system of the robot, 

some deviations can be present, which can be caused by control 

errors, dynamics of drives installed in the individual robot's 

joints, etc. In our future investigations, for instance, more 
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detailed cases of the robot gait and control of the position of the 

robot walking on irregular terrains are worth taking into account. 

Although in our study we adopted some assumptions to simplify 

the dynamic model of the robot, the obtained results are 

sufficient to compare the crucial dynamic parameters of the 

studied octopod robot. Eventually, the proposed method can be 

simply adapted to control other walking machines such as bipeds, 

quadrupeds or hexapods. 
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