[1] Z. Liu, S. Tabakman, K. Welsher, H. Dai, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery, Nano research, Vol. 2, No. 2, pp. 85-120, 2009.
[2] Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, H. Dai, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nature nanotechnology, Vol. 2, No. 1, pp. 47, 2007.
[3] P.-C. Lee, Y.-C. Chiou, J.-M. Wong, C.-L. Peng, M.-J. Shieh, Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody, Biomaterials, Vol. 34, No. 34, pp. 8756-8765, 2013.
[4] S. Peretz, O. Regev, Carbon nanotubes as nanocarriers in medicine, Current Opinion in Colloid & Interface Science, Vol. 17, No. 6, pp. 360-368, 2012.
[5] N. M. Bardhan, D. Ghosh, A. M. Belcher, Carbon nanotubes as in vivo bacterial probes, Nature communications, Vol. 5, pp. 4918, 2014.
[6] A. Sharma, S. Hong, R. Singh, J. Jang, Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin, Analytica chimica acta, Vol. 869, pp. 68-73, 2015.
[7] L. García-Hevia, F. Fernández, C. Grávalos, A. García, J. C. Villegas, M. L. Fanarraga, Nanotube interactions with microtubules: implications for cancer medicine, Nanomedicine, Vol. 9, No. 10, pp. 1581-1588, 2014.
[8] L. Rodriguez-Fernandez, R. Valiente, J. Gonzalez, J. C. Villegas, M. n. L. Fanarraga, Multiwalled carbon nanotubes display microtubule biomimetic properties in vivo, enhancing microtubule assembly and stabilization, ACS nano, Vol. 6, No. 8, pp. 6614-6625, 2012.
[9] F. Gittes, B. Mickey, J. Nettleton, J. Howard, Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape, The Journal of cell biology, Vol. 120, No. 4, pp. 923-934, 1993.
[10] J. M. Berg, J. Tymoczko, L. Stryer, Glycolysis is an energy-conversion pathway in many organisms, Biochemistry. 5th ed. New York: WH Freeman, 2002.
[11] J. A. Kaltschmidt, A. H. Brand, Asymmetric cell division: microtubule dynamics and spindle asymmetry, J Cell Sci, Vol. 115, No. 11, pp. 2257-2264, 2002.
[12] H. Lodish, A. Berk, S. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Collagen: the fibrous proteins of the matrix, Molecular Cell Biology, Vol. 4, 2000.
[13] K. Dastani, M. Moghimi Zand, A. Hadi, Dielectrophoretic effect of nonuniform electric fields on the protoplast cell, Journal of Computational Applied Mechanics, Vol. 48, No. 1, pp. 1-14, 2017.
[14] S. Suresh, Biomechanics and biophysics of cancer cells, Acta Materialia, Vol. 55, No. 12, pp. 3989-4014, 2007.
[15] F. Pampaloni, G. Lattanzi, A. Jonáš, T. Surrey, E. Frey, E.-L. Florin, Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length, Proceedings of the National Academy of Sciences, Vol. 103, No. 27, pp. 10248-10253, 2006.
[16] M. Kurachi, M. Hoshi, H. Tashiro, Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity, Cell motility and the cytoskeleton, Vol. 30, No. 3, pp. 221-228, 1995.
[17] A. I. Aria, H. Biglari, Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory, Applied Mathematics and Computation, Vol. 321, pp. 313-332, 2018.
[18] Q. Wang, V. Varadan, Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes, Smart Materials and Structures, Vol. 16, No. 1, pp. 178, 2007.
[19] M. Ece, M. Aydogdu, Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes, Acta Mechanica, Vol. 190, No. 1-4, pp. 185-195, 2007.
[20] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[21] M. Aydogdu, I. Elishakoff, On the vibration of nanorods restrained by a linear spring in-span, Mechanics Research Communications, Vol. 57, pp. 90-96, 2014.
[22] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016.
[23] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016.
[24] A. Hadi, M. Z. Nejad, M. Hosseini, Vibrations of three-dimensionally graded nanobeams, International Journal of Engineering Science, Vol. 128, pp. 12-23, 2018.
[25] M. Z. Nejad, A. Hadi, A. Farajpour, Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials, Structural Engineering and Mechanics, Vol. 63, No. 2, pp. 161-169, 2017.
[26] M. R. Farajpour, A. Shahidi, A. Farajpour, Resonant frequency tuning of nanobeams by piezoelectric nanowires under thermo-electro-magnetic field: a theoretical study, Micro & Nano Letters, Vol. 13, No. 11, pp. 1627-1632, 2018.
[27] A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[28] M. Farajpour, A. Shahidi, A. Hadi, A. Farajpour, Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms, Mechanics of Advanced Materials and Structures, Vol. DOI: 10.1080/15376494.2018.1432820, 2018.
[29] M. Farajpour, A. Shahidi, A. Farajpour, A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires, Materials Research Express, Vol. 5, No. 3, pp. 035026, 2018.
[30] M. R. Farajpour, A. R. Shahidi, A. Farajpour, Frequency behavior of ultrasmall sensors using vibrating SMA nanowire-reinforced sheets under a non-uniform biaxial preload, Materials Research Express, Vol. 6, pp. 065047, 2019.
[31] M. R. Farajpour, A. R. Shahidi, A. Farajpour, Frequency behavior of ultrasmall sensors using vibrating SMA nanowire-reinforced sheets under a non-uniform biaxial preload, Materials Research Express, Vol. 6, No. 6, pp. 065047, 2019/03/29, 2019.
[32] C. Wang, C. Ru, A. Mioduchowski, Orthotropic elastic shell model for buckling of microtubules, Physical Review E, Vol. 74, No. 5, pp. 052901, 2006.
[33] H. Jiang, L. Jiang, J. D. Posner, B. D. Vogt, Atomistic-based continuum constitutive relation for microtubules: elastic modulus prediction, Computational Mechanics, Vol. 42, No. 4, pp. 607-618, 2008.
[34] T. Li, A mechanics model of microtubule buckling in living cells, Journal of biomechanics, Vol. 41, No. 8, pp. 1722-1729, 2008.
[35] B. Akgöz, Ö. Civalek, Application of strain gradient elasticity theory for buckling analysis of protein microtubules, Current Applied Physics, Vol. 11, No. 5, pp. 1133-1138, 2011.
[36] M. Taj, J. Zhang, Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model, journal of the mechanical behavior of biomedical materials, Vol. 30, pp. 300-305, 2014.
[37] A. Farajpour, A. Rastgoo, M. Mohammadi, Surface effects on the mechanical characteristics of microtubule networks in living cells, Mechanics Research Communications, Vol. 57, pp. 18-26, 2014.
[38] A. G. Arani, M. Abdollahian, M. Jalaei, Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory, Journal of theoretical biology, Vol. 367, pp. 29-38, 2015.
[39] Ö. Civalek, C. Demir, A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method, Applied Mathematics and Computation, Vol. 289, pp. 335-352, 2016.
[40] M. A. Jordan, L. Wilson, Microtubules as a target for anticancer drugs, Nature Reviews Cancer, Vol. 4, No. 4, pp. 253, 2004.
[41] C. Lim, G. Zhang, J. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, Vol. 78, pp. 298-313, 2015.
[42] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[43] L. Li, Y. Hu, L. Ling, Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 75, pp. 118-124, 2016.
[44] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[45] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[46] S. R. Asemi, A. Farajpour, Vibration characteristics of double-piezoelectric-nanoplate-systems, IET Micro & Nano Letters, Vol. 9, No. 4, pp. 280-285, 2014.
[47] S. R. Asemi, A. Farajpour, M. Borghei, A. H. Hassani, Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics, Latin American Journal of Solids and Structures, Vol. 11, No. 4, pp. 704-724, 2014.
[48] M. Hosseini, A. Hadi, A. Malekshahi, M. Shishesaz, A review of size-dependent elasticity for nanostructures, Journal of Computational Applied Mechanics, Vol. 49, No. 1, pp. 197-211, 2018.
[49] N. Kordani, A. Fereidoon, M. Divsalar, A. Farajpour, Forced vibration of piezoelectric nanowires based on nonlocal elasticity theory, Journal of Computational Applied Mechanics Vol. 47, pp. 137-150, 2016.
[50] A. Farajpour, A. Rastgoo, M. Farajpour, Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics, Composite Structures, Vol. 180, pp. 179-191, 2017.
[51] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, Journal of Solid Mechanics, Vol. 6, pp. 98-121, 2014.
[52] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, No. 9, pp. 1515-1540, 2014.
[53] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature effect on vibration analysis of annular graphene sheet embedded on visco-Pasternak foundation, Journal of Solid Mechanics, Vol. 5, No. 3, pp. 305-323, 2013.
[54] A. Farajpour, A. Rastgoo, Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory, Results in physics, Vol. 7, pp. 1367-1375, 2017.
[55] M. Farajpour, A. Shahidi, F. Tabataba’i-Nasab, A. Farajpour, Vibration of initially stressed carbon nanotubes under magneto-thermal environment for nanoparticle delivery via higher-order nonlocal strain gradient theory, The European Physical Journal Plus, Vol. 133, No. 6, pp. 219, 2018.
[56] A. C. Eringen, 2002, Nonlocal continuum field theories, Springer Science & Business Media,
[57] C. Li, C. Ru, A. Mioduchowski, Length-dependence of flexural rigidity as a result of anisotropic elastic properties of microtubules, Biochemical and biophysical research communications, Vol. 349, No. 3, pp. 1145-1150, 2006.
[58] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, Journal of the American Chemical Society, Vol. 117, No. 19, pp. 5179-5197, 1995.