[1] M. P. Paidoussis, G. X. Li, Pipes conveying fluid: a model dynamical problem, Journal of Fluids and Structures, Vol. 7, No. 2, pp. 137-204, 1993.
[2] M. P. Paidoussis, The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across Applied Mechanics, Journal of Sound and Vibration, Vol. 310, No. 3, pp. 462-492, Feb 10, 2008.
[3] Y. Yang, J. Wang, Y. Yu, Wave propagation in fluid-filled single-walled carbon nanotube based on the nonlocal strain gradient theory, Acta Mechanica Solida Sinica, Vol. 31, No. 4, pp. 484-492, 2018.
[4] M. Hosseini, H. H. Gorgani, M. Shishesaz, A. Hadi, Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory, International Journal of Applied Mechanics, Vol. 9, No. 06, pp. 1750087, 2017.
[5] V. Feodos’Ev, Vibrations and stability of a pipe when liquid flows through it, Inzhenernyi Sbornik, Vol. 10, pp. 169-170, 1951.
[6] G. Housener, Bending vibration of a pipeline containing flowing fluid, Journal of Applied Mechancis, Vol. 19, pp. 205, 1952.
[7] F. I. Niordson, 1953, Vibrations of a cylindrical tube containing flowing fluid, Kungliga Tekniska Hogskolans Handlinar (Stockholm),
[8] R. D. Blevins, 1977, Flow-induced vibration, Van Nostrand Reinhold Co., New York
[9] F.-J. Bourrières, 1939, Sur un phénomène d'oscillation auto-entretenue en mécanique des fluides réels, E. Blondel La Rougery,
[10] T. B. Benjamin, Dynamics of a system of articulated pipes conveying fluid. I. Theory, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 261, No. 1307, pp. 457-486, 1961.
[11] T. B. Benjamin, Dynamics of a system of articulated pipes conveying fluid. II. Experiments, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 261, No. 1307, pp. 487-499, 1961.
[12] M. P. Paidoussis, Oscillations of liquid-filled flexible tubes, Thesis, University of Cambridge, 1963.
[13] R. W. Gregory, M. P. Paidoussis, Unstable oscillation of tubular cantilevers conveying fluid I. Theory, Proc. R. Soc. Lond. A, Vol. 293, No. 1435, pp. 512-527, 1966.
[14] R. W. Gregory, M. P. Paidoussis, Unstable oscillation of tubular cantilevers conveying fluid II. Experiments, Proc. R. Soc. Lond. A, Vol. 293, No. 1435, pp. 528-542, 1966.
[15] J. Hill, C. Swanson, Effects of lumped masses on the stability of fluid conveying tubes, Journal of Applied Mechanics, Vol. 37, No. 2, pp. 494-497, 1970.
[16] S. Chen, J. Jendrzejczyk, General characteristics, transition, and control of instability of tubes conveying fluid, The Journal of the Acoustical Society of America, Vol. 77, No. 3, pp. 887-895, 1985.
[17] J. A. Jendrzejczyk, S. S. Chen, Experiments on tubes conveying fluid, Thin-Walled Structures, Vol. 3, No. 2, pp. 109-134, 1985.
[18] Y. Sugiyama, H. Kawagoe, T. Kishi, S. Nishiyama, Studies on the Stability of Pipes Conveying Fluid: The Combined Effect of a Spring Support and a Lumped Mass, JSME international journal. Ser. 1, Solid mechanics, strength of materials, Vol. 31, No. 1, pp. 20-26, 1988.
[19] M. A. G. Silva, Influence of eccentric valves on the vibration of fluid conveying pipes, Nuclear Engineering and Design, Vol. 64, No. 1, pp. 129-134, 1981.
[20] M. P. Paidoussis, C. Semler, Non-linear dynamics of a fluid-conveying cantilevered pipe with a small mass attached at the free end, International Journal of Non-Linear Mechanics, Vol. 33, No. 1, pp. 15-32, 1998.
[21] Y. Modarres-Sadeghi, C. Semler, M. Wadham-Gagnon, M. P. Païdoussis, Dynamics of cantilevered pipes conveying fluid. Part 3: Three-dimensional dynamics in the presence of an end-mass, Journal of Fluids and Structures, Vol. 23, No. 4, pp. 589-603, 2007.
[22] S. Rinaldi, M. P. Paidoussis, Dynamics of a cantilevered pipe discharging fluid, fitted with a stabilizing end-piece, Journal of Fluids and Structures, Vol. 26, No. 3, pp. 517-525, 2010.
[23] M. H. Ghayesh, M. P. Paidoussis, Y. Modarres-Sadeghi, Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass, Journal of Sound and Vibration, Vol. 330, No. 12, pp. 2869-2899, 2011.
[24] L. Wang, H. L. Dai, Vibration and enhanced stability properties of fluid-conveying pipes with two symmetric elbows fitted at downstream end, Archive of Applied Mechanics, Vol. 82, No. 2, pp. 155-161, 2012/02/01, 2012.
[25] T. Z. Yang, X. D. Yang, Y. H. Li, B. Fang, Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity, Journal of Vibration and Control, Vol. 20, No. 9, pp. 1293-1300, 2014.
[26] R. D. Firouz-Abadi, A. R. Askarian, M. Kheiri, Bending–torsional flutter of a cantilevered pipe conveying fluid with an inclined terminal nozzle, Journal of Sound and Vibration, Vol. 332, No. 12, pp. 3002-3014, 2013/06/10/, 2013.
[27] G. S. Copeland, F. C. Moon, Chaotic flow-induced vibration of a flexible tube with end mass, Journal of Fluids and Structures, Vol. 6, No. 6, pp. 705-718, 1992/11/01/, 1992.
[28] A. E. Mamaghani, S. Khadem, S. Bab, Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink, Nonlinear Dynamics, Vol. 86, No. 3, pp. 1761-1795, 2016.
[29] G. B. Song, P. Zhang, L. Li, M. Singla, D. Patil, H. N. Li, Y. L. Mo, Vibration control of a pipeline structure using pounding tuned mass damper, Journal of Engineering Mechanics, Vol. 142, No. 6, pp. 04016031, 2016.
[30] S. Rechenberger, D. Mair, Vibration Control of Piping Systems and Structures Using Tuned Mass Dampers, ASME 2017 Pressure Vessels and Piping Conference, Hawaii, USA, Vol. PVP2017-65448, pp. V03BT03A035, 2017.
[31] K. Zhou, F. R. Xiong, N. B. Jiang, H. L. Dai, H. Yan, L. Wang, Q. Ni, Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink, Nonlinear Dynamics, pp. 1-22, 2018.
[32] C. Semler, Nonlinear dynamics and chaos of a pipe conveying fluid, McGill University, 1992.
[33] Y. W. Zhang, B. Yuan, B. Fang, L. Q. Chen, Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink, Nonlinear Dynamics, Vol. 87, No. 2, pp. 1159-1167, 2017.
[34] L. Wang, Z. Y. Liu, A. Abdelkefi, Y. K. Wang, H. L. Dai, Nonlinear dynamics of cantilevered pipes conveying fluid: Towards a further understanding of the effect of loose constraints, International Journal of Non-Linear Mechanics, Vol. 95, pp. 19-29, 2017.
[35] Z. Y. Liu, L. Wang, X. P. Sun, Nonlinear Forced Vibration of Cantilevered Pipes Conveying Fluid, Acta Mechanica Solida Sinica, Vol. 31, No. 1, pp. 32-50, February 01, 2018.
[36] Z. Y. Liu, L. Wang, H. L. Dai, P. Wu, T. L. Jiang, Nonplanar vortex-induced vibrations of cantilevered pipes conveying fluid subjected to loose constraints, Ocean Engineering, Vol. 178, pp. 1-19, 2019.
[37] M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version of differential quadrature method, Vol. 3, No. 2, pp. 47-56, 2011.
[38] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[39] M. P. Paidoussis, N. T. Issid, Dynamic stability of pipes conveying fluid, Journal of sound and vibration, Vol. 33, No. 3, pp. 267-294, 1974.