Dynamical stability of cantilevered pipe conveying fluid in the presence of linear dynamic vibration absorber

Z.Y. Liua,b, K. Zhoua,b, L. Wanga,b, *T.L. Jianga,b and H.L. Daia,b

* Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
* Hubei Key Laboratory for Engineering Structural Analysis and Safety Assessment, Wuhan 430074, China

ARTICLE INFO

When the velocity of fluid flow in a cantilevered pipe is successively increased, the system may become unstable and flutter instability would occur at a critical flow velocity. This paper is concerned with exploring the dynamical stability of a cantilevered fluid-conveying pipe with an additional linear dynamic vibration absorber (DVA) attachment. It is endeavoured to show that the stability of the pipe may be considerably enhanced due to the presence of DVA. The quasi-analytical results show that the energy transferred from the flowing fluid to the pipe may be partially transferred to the additional mass. In most cases, thus, the critical flow velocity at which the pipe becomes unstable would become larger, meanwhile the flutter instability of the DVA is not easy to achieve. In such a fluid-structure interaction system, it is also found that flutter instability may first occur in the mode of the DVA. The effects of damping coefficient, weight, location and spring stiffness of the DVA on the critical flow velocities and nonlinear oscillations of the system have also been analyzed.

1. Introduction

Since the 1950s, the dynamics of pipes conveying fluid has become a hot topic in the research fields of fluid-structure interactions as well as dynamical systems. In an excellent review provided by Paidoussis and Li\cite{1}, it was shown that the pipe conveying fluid has become a model dynamical problem. Indeed, the system of fluid-conveying pipe has established itself as a generic paradigm of a kaleidoscope of interesting dynamical behavior\cite{1}. In 2008, Paidoussis\cite{2} further discussed the radiation of the experience gained in studying the problem of pipes conveying fluid into other areas of Applied Mechanics, particularly other problems in fluid-structure interactions. Interestingly, the dynamical system of pipes at microscale or nanoscale has also been analyzed by many researchers (see, e.g., \cite{3, 4}). Thus, the literature on this topic is very extensive and is still constantly expanding. The dynamical behaviors of pipes with supported ends, clamped-free ends or with unusual boundary conditions; articulated rigid pipes or continuously flexible pipes; pipes conveying incompressible or compressible fluid, with steady or unsteady flow velocity; linear, nonlinear and chaotic dynamics; these and many more have been the object of research in the past decades\cite{1}.

The question of the existence of buckling (divergence) instability of fluid-conveying pipes supported at both ends has been answered in several early papers \cite{5-7}, where the linear equations of motion were derived in different ways, and the correct conclusions regarding instability were obtained.

Unlike the supported pipes conveying fluid, which are conservative in the absence of dissipation, however, a cantilevered pipe conveying fluid is a nonconservative system, which, for sufficiently high flow velocity, would lose stability by flutter of the single-degree-of-freedom (SDOF) type\cite{8}. After the first study of Bourrières\cite{9} on the stability of cantilevered pipes conveying fluid, Benjamin\cite{10, 11} examined the dynamics of articulated cantilevers conveying fluid, but with a discussion of the continuous system. Paidoussis\cite{12} and Gregory & Paidoussis\cite{13, 14} extended Benjamin's work to the cases of continuously flexible pipes conveying fluid. They determined the conditions of instability via quasi-analytical and numerical solutions of the partial differential equation. These solutions were also compared with experimental results.

After Gregory & Paidoussis's work\cite{13, 14}, there have been a great number of studies of modified forms of the basic system of a cantilevered pipe conveying fluid. The fluid-conveying cantilevers were modified by adding different types of spring supports at various locations, by adding one or more additional masses at different locations, and so on. It was found that, under certain situations, these modifications could effectively change the dynamical behaviors of the cantilevered system.

The dynamical stability of cantilevered pipes with additional point masses have been studied by Hill & Swanson\cite{15}, Chen & Jendrzejczyk\cite{16}, Jendrzejczyk & Chen\cite{17}, Sugiyama et al.\cite{18}, Silva\cite{19}, Paidoussis et al.\cite{20-23} and several other researchers\cite{24-27}. Hill & Swanson\cite{15} found that, in most cases,

\[m + M \ddot{W} + 2MU \dot{W} \left(1 + W'' \right) + M' \left(1 + W'' \right) W'' \\
+ EI \left(W'''' + 4W'W'' + W''' \right) + \psi EI \dot{W}'''' + W'''' \\
- W'' + \int_{s}^{s} (m + M)(\dot{W}'' + W\ddot{W}''') ds \\
+ \int_{s}^{s} \left(2MUW\dot{W}'' + MU'W'' \right) ds \]

\[+ W\int_{s}^{s} (m + M)(\ddot{W}'' + W\ddot{W}'') ds \]

\[- \left(K (V - W) + C (V - W) \right) \delta (s - s_0) = 0 \]

where the overdot and prime denote the derivative with respect to \(t \) and \(s \), respectively; \(\psi \) is the Kelvin-Voigt damping coefficient of the pipe; \(M \) is the mass of the pipe; \(K \) is the stiffness of the spring, \(C \) is the damping coefficient of the damper, \(U \) is the steady flow velocity, \(m \) is the mass of the empty pipe per unit length; \(W_0 \) is the lateral deflection of the pipe at the location of the spring-mass attachment; \(K \) is the stiffness of the spring, \(C \) is the damping coefficient of the damper, \(V \) is the displacement of the additional mass; and \(\delta(s - s_0) \) is the Dirac delta function with \(s_0 \) denoting the location of DVA.

The governing equation of the DVA is given by

\[m \ddot{V} + K (V - W_0) + C (\dot{V} - \dot{W}_0) = 0 \]

in which \(m_1 \) is the mass of the attached rigid body.

Defining the following quantities

2. Governing equations

A schematic diagram of a cantilevered pipe conveying fluid with an additional DVA is shown in Fig. 1. The spring-mass attachment is devised at \(x = x_0 \leq L \), where \(L \) is the overall pipe length. It is assumed that the pipe is horizontal and the motions are in a horizontal plane.

![Fig. 1. Schematic of cantilever conveying fluid with an additional DVA](image)

The pipe’s lateral displacement is denoted by \(W(s,t) \) along the \(y \) axes, with \(s \) being the curvilinear coordinate along the length of the pipe and \(t \) being the time. Following the derivation of Semler[32] and Zhang et al.[33], by considering the effect of DVA[31], the equation of motion of the pipe takes the form

From the work mentioned in the foregoing, it is natural to ask the question whether the dynamical stability of a cantilever conveying fluid can be improved by adding an attachment consisting of both linear spring and mass in its construction. To the authors’ knowledge, the literature on this topic is limited.

In the current work, we focus our attention on the effect of a linear dynamic vibration absorber (DVA) on the dynamical stability of cantilevered pipes conveying fluid. It should be stressed that the NES proposed by Zhou et al.[31] consists of a nonlinear spring and a mass. In contrast, the additional attachment considered in this paper consists of a ‘linear’ spring and a mass. We will quasi-analytically investigate the effects on stability and post-instability responses of the location, damping coefficient, spring stiffness and mass ratio of the additional DVA. Some truly fascinating dynamical behaviors have been found in such a dynamical system, as will be shown below.
\[
\hat{\xi} = \frac{s}{L}, \quad w = \frac{W}{L}, \quad v = \frac{V}{L}, \quad \tau = \left(\frac{EI}{m + M}\right)^{\frac{1}{3}} \frac{t}{L}, \quad a = \left(\frac{M}{EI}\right)^{\frac{1}{3}} UL, \\
\beta = \frac{M}{M + m}, \quad \varphi = \left(\frac{EI}{m + M}\right)^{\frac{1}{3}} \frac{\psi}{L}, \quad \alpha = \frac{m}{(m + M)L}, \quad k = \frac{KL'}{EI}, \\
c = \frac{CL}{(m + M)EI}^{\frac{1}{3}}.
\]

Eqs. (1) and (2) may be written in the dimensionless form
\[
w''' + \varphi w'''' + \ddot{w} + 2u \sqrt{\beta} \hat{\omega} w' + \dot{w}^2 w' + N(w) \\
- \left(k (v - w_i) + c (\dot{v} - \dot{w}_i)\right) \delta (\xi - \xi_0) = 0
\]
in which the nonlinear term \(N(w) \) is given by
\[
N(w) = 2u \sqrt{\beta} \omega w' + \omega^2 \dot{w}^2 + \ddot{w}^2 + 3w \omega w''' + w''',
\]
and
\[
w''' \int_{\xi_0}^\xi \left[\dot{w}^2 - 2u \sqrt{\beta} \omega w' - \dot{w}^2 w''' + w'' w''' \right] d\xi \\
- w'' \int_{\xi_0}^\xi \left[\dot{w}^2 - 2u \sqrt{\beta} \omega w' - \dot{w}^2 w''' + w'' w''' \right] d\xi
\]
where the prime and overdot on each variable now denotes the derivative with respect to \(\xi \) and \(r \), respectively.

3. Galerkin Method

The infinite-dimensional pipe model can be discretized by several effective methods, such as Galerkin approach[34-36] and differential quadrature method[37, 38]. In the following simulation, the partial differential equations are discretized by using a Galerkin approximation, with the the eigenfunctions of a plain cantilevered beam, \(\phi_i(\xi) \), as the base functions, with \(q_i(\tau) \) being the corresponding generalized coordinates; thus, the displacement of the pipe may be written as
\[
w(\xi, \tau) = \sum_{i=1}^{N} \phi_i(\xi) q_i(\tau)
\]
where \(N \) is the number of basis functions used in the discretization. Substituting expression (6) into Eqs. (3) and (5), multiplying by \(\phi_i(\xi) \) and integrating from 0 to 1, one obtains the following ordinary differential equations
\[
[M]q + [C]q + [K]q + [f_{\text{nonl}}] = \{0\}
\]
where the overdot now denotes the total derivative with respect to time \(\tau \). In Eqs. (7), \([M], [C], [K] \) and \([f_{\text{nonl}}] \) are the mass, damping and stiffness matrices for the linear parts and \(f_{\text{nonl}} \) is the nonlinear term associated with various nonlinearities of the pipe. In this study, a four-mode Galerkin approximation will be utilized (\(N=4 \)) since the stability of the pipe system is usually associated with the lowest several modes.

By neglecting the nonlinear terms in Eqs. (7), the eigenvalues of pipe system may be obtained by analyzing a generalized eigenvalue problem. According to the obtained eigenvalues in each mode, the stability of the fluid-conveying pipe with DVA can be determined. When the pipe system becomes unstable, the post-instability responses of the pipe can be predicted by numerically solving the nonlinear equations of (7) via a fourth-order Runge-Kutta iteration algorithm.

4. Results

In this section, the main aim of the calculations is to explore the effect of DVA on the dynamical stability and the nonlinear responses of the pipe system. For that purpose, the evolution of eigenvalues for the pipe and the attached mass with increasing flow velocity will be displayed first. Based on the analysis regarding instability, the nonlinear responses of the pipe and the mass will be then analyzed. Results will be presented for the cantilevered pipe and the mass with various system parameters, mainly in the form of Argand diagrams, bifurcation diagrams and phase portraits.

4.1. Model validation

To check the correctness of the quasi-analytical solutions, the case \(\varphi = 0.001 \) and \(\beta = 0.213 \) with no DVA is revisited first. The dynamical behaviors of this basic system with increasing dimensionless flow velocity, \(u \), are illustrated by the Argand diagram of Fig. 2. It is recalled that Re(\(\omega \)) is the dimensionless oscillation frequency, while Im(\(\omega \)) is related to the damping of the whole system. It is seen that the system is stable for small flow velocity since fluid flow induces damping in all modes of the system. For higher \(u \), Im(\(\omega \)) in the second mode of the system begins to decrease and eventually evolves to negative values; thus, flutter instability would occur at \(u_c \approx 5.8 \). It can be seen that the results shown in Fig. 2 are almost the same as those obtained by Gregory & Paidoussis[13] and Paidoussis & Issid[39], thus indicating that the quasi-analytical solutions in this work are correct.

4.2. Effect of dynamic vibration absorber on the critical flow velocity

In this subsection, the critical flow velocity of the pipe with different parameters of DVA will be analyzed in some detail. Figs. 3-8 show the critical flow velocities of the system with varied physical and geometrical parameters of the DVA for \(\varphi = 0.001 \), \(\alpha = 0.1 \), \(\beta = 0.213 \).
The dimensionless critical flow velocities \(u_c \) of the system as a function of dimensionless stiffness and damping of DVA are plotted in Fig. 3, where the red region is obviously observed in the ranges of 10< \(k \) <20 and 0.4 < \(\xi_b \) <0.6. That is to say, in these ranges of \(k \) and \(\xi_b \), the dimensionless critical flow velocity of the system becomes higher and its peak value can be achieved. Figs. 3(a)-(c) correspond to three different dimensionless damping coefficients: \(\xi_c =0.1, 0.3 \) and 0.5, respectively. It is observed that, with the increment of mass ratio \(\alpha \), the stiffness of DVA needs to be increased to achieve higher critical flow velocity. Therefore, in order to obtain higher critical flow velocity, the damping of DVA, the stiffness and the mass ratio of DVA need to be increased to achieve higher critical flow velocity.

The dimensionless critical flow velocities of the system as a function of damping ratio \(\alpha \) are shown in Fig. 4, for a given value of DVA location. In Fig. 5, a feature is found: with the increment of damping of DVA, the stiffness and the mass ratio of DVA needs to be increased to achieve higher critical flow velocity.

Figs. 6(a)-(c) plot the results of critical flow velocities for a given damping coefficient and three different values of DVA location. It is found that, when the attached location of DVA is closer to the free end, the stiffness of DVA needs to be decreased in order to obtain higher critical flow velocity.

Figs. 7(a)-(c) show the critical flow velocities of the system for a given DVA location and three different values of mass ratio. It is observed that, with the increment of mass ratio \(\alpha \), the stiffness and damping coefficient need to be increased to obtain higher critical flow velocity. Among the three cases shown in Fig. 7, the maximum critical flow velocity appears at \(\alpha =0.1 \).

In Fig. 8, the dimensionless critical flow velocities as a function of dimensionless stiffness and damping coefficient of DVA for \(\alpha =0.1 \) and three values of \(\xi_b \) are shown. Once again, it is seen that when the location of the DVA is close to the midpoint of the pipe, the stability of the pipe can be better enhanced by using the DVA.
To explore the basic stability mechanism of the pipe in the presence of DVA, some typical results of Argand diagrams for the dynamical system are further constructed. The Argand diagrams of a cantilevered pipe conveying fluid in the presence of DVA for several different values of k and a set of other system parameters $(\varphi=0.001, \alpha=0.1, \beta=0.213$ and $\zeta_b=0.5)$ are plotted in Figs. 9 and 10. In these figures, the evolution of the lowest four non-dimensional eigen-frequencies of the pipe, and the evolution of the non-dimensional eigen-frequencies of the DVA mass are shown.

The Argand diagram for $k=14$ is shown in Fig. 9. It is immediately seen that the flutter instability of the pipe occurs at about $u_c=6.9$ in the second mode. For u ranges from 0 to 10, all values of $\text{Im}(\omega)$ of the DVA are above the zero axis, indicating that instability of the DVA is impossible in this case. Thus, the critical flow velocity of the pipe attached with DVA is equal to 6.9, which is much higher than the critical value of the same pipe but without DVA. Fig. 10 shows the Argand diagram for $k=18$. It can be seen that the evolution of the lowest five non-dimensional eigen-frequencies of the system shown in Fig. 10 is fairly similar as that of Fig. 9. The flutter instability of the system occurs at about $u_c=7.2$. The Argand diagram for $k=19$ is shown in Fig. 11. In this case, interestingly, with the increment of u, the values of $\text{Im}(\omega)$ of the DVA convert from positive to negative, and immediately convert to positive again. That is to say, the DVA would lose stability at the critical flow velocity of $u=6.6$ while the flutter instability of the pipe occurs at $u=7.3$. In such case, therefore, the critical flow velocity of the system would be $u_c=6.6$. Fig. 12 shows the Argand diagram of the cantilevered pipe conveying fluid with DVA for $k=42$. It is found that the DVA loses stability at $u_c=5.9$ and the pipe lose stability at about $u=8.2$.

The Argand diagram for $k=43$ is shown in Fig. 13 and the critical flow velocity for flutter instability is almost the same as that shown in Fig. 12. However, the eigenvalue locus for DVA and the second-mode eigenvalue locus for the pipe can be extremely close. The Argand diagram for $k=44$ is shown in Fig. 14. Compared with the evolution of non-dimensional eigen-frequencies of the system plotted in Fig. 12 or 13, the eigenvalue locus for DVA and the second-mode eigenvalue locus for the pipe is interchanged when the flow velocity becomes high. The results shown in Fig. 14 indicate that the DVA loses stability at $u_c=5.9$ and the pipe lose stability at $u=8.2$. When the stiffness of the DVA is further increased to $k=55$, the critical flow velocity of the system shown in Fig. 15 is found to be $u_c=5.9$. In that case, the DVA will keep stability because all values of $\text{Im}(\omega)$ of the DVA are positive. Indeed, when the dimensionless stiffness of the DVA is further increased but below 60, the critical flow velocity of the system does not change ($u_c=5.9$), as can be seen from the results shown in Fig. 16 for $k=60$.

Fig. 8. Dimensionless critical flow velocities u_c of the system as a function of dimensionless stiffness and damping of DVA for $\varphi=0.001$, $\alpha=0.1$, $\beta=0.213$: (a) $\zeta_b=0.25$, (b) $\zeta_b=0.5$ and (c) $\zeta_b=0.75$.

Fig. 9. Argand diagram for a cantilevered pipe conveying fluid with DVA for $k=14$, $\varphi=0.001$, $\alpha=0.1$, $\beta=0.213$, $\zeta_b=0.5$. It is seen that the critical flow velocity for the whole system is $u_c=6.9$.

Fig. 10. Argand diagram for a cantilevered pipe conveying fluid with DVA for $k=18$, $\varphi=0.001$, $\alpha=0.1$, $\beta=0.213$, $\zeta_b=0.5$. It is seen that the critical flow velocity for the whole system is $u_c=7.2$.

Fig. 11. Argand diagram for a cantilevered pipe conveying fluid with DVA for $k=19$, $\varphi=0.001$, $\alpha=0.1$, $\beta=0.213$, $\zeta_b=0.5$. It is seen that the critical flow velocity for the whole system is $u_c=6.6$.

Fig. 12. Argand diagram for a cantilevered pipe conveying fluid with DVA for $k=42$, $\varphi=0.001$, $\alpha=0.1$, $\beta=0.213$, $\zeta_b=0.5$. It is seen that the critical flow velocity for the whole system is $u_c=5.9$.

Fig. 13. Argand diagram for a cantilevered pipe conveying fluid with DVA for $k=43$, $\varphi=0.001$, $\alpha=0.1$, $\beta=0.213$, $\zeta_b=0.5$. It is seen that the critical flow velocity for the whole system is $u_c=5.9$.

Fig. 14. Argand diagram for a cantilevered pipe conveying fluid with DVA for $k=44$, $\varphi=0.001$, $\alpha=0.1$, $\beta=0.213$, $\zeta_b=0.5$. It is seen that the critical flow velocity for the whole system is $u_c=5.9$.

Fig. 15. Argand diagram for a cantilevered pipe conveying fluid with DVA for $k=55$, $\varphi=0.001$, $\alpha=0.1$, $\beta=0.213$, $\zeta_b=0.5$. It is seen that the critical flow velocity for the whole system is $u_c=5.9$.

Fig. 16. Argand diagram for a cantilevered pipe conveying fluid with DVA for $k=60$, $\varphi=0.001$, $\alpha=0.1$, $\beta=0.213$, $\zeta_b=0.5$. It is seen that the critical flow velocity for the whole system is $u_c=5.9$.

Journal of Computational Applied Mechanics, Vol. 50, No. 1, June 2019

186
The oscillation amplitudes of the pipe with DVA are generally smaller than that of the pipe without DVA. When the flow velocity becomes high (e.g., u_{cr} 10), the oscillation amplitudes of the pipe with and without DVA has no obvious difference.

From the results for $k=19$ shown in Fig. 11, it is noted that the critical flow velocity for the whole system is $u_{cr}=5.9$. It is seen that the critical flow velocity for the whole system is $u_{cr}=5.9$. It is seen that the critical flow velocity for the whole system is $u_{cr}=5.9$. It is seen that the critical flow velocity for the whole system is $u_{cr}=5.9$.

4.3. Effect of DVA on nonlinear oscillations of the pipe

In this subsection, our attention will be focused on the nonlinear oscillations of the cantilevered pipe conveying fluid with DVA when the flow velocity is successively increased. It will be shown that this modified system could display some fascinating dynamical behaviors. The numerical results are presented in the form of phase portraits and bifurcation diagrams.

As discussed in the foregoing (see Fig. 3), when the system parameters are set as $\phi=0.001$, $\beta=0.001$, $\alpha=0.1$, $c=0.5$, $\beta=0.213$, $\zeta=0.5$. It is seen that the critical flow velocity for the whole system is $u_{cr}=5.9$. It is seen that the critical flow velocity for the whole system is $u_{cr}=5.9$.
This is true, as shown in Fig. 18, where the system loses stability at \(u_{c} = 6.6 \), then regains stability at about \(u=7 \), and finally become unstable with further increasing flow velocity. As shown in Fig. 18(a), the oscillation amplitudes of the pipe change from zero to nonzero at about \(u=7.3 \). The same phenomenon can be observed in Fig. 18(b) for the dynamic response of the DVA.

In the case of \(k=30 \), the bifurcation diagrams for the system with internal flow velocity as the variable parameter are plotted in Fig. 19. In this case, the suppression of oscillation amplitudes of the pipe with DVA can only be realized in a certain range of flow velocity: \(7.6 < u < 10 \). The bifurcation diagrams for another larger stiffness value of \(k=42 \) are shown in Fig. 20. In the range of \(6.5 < u < 8.2 \) approximately, the oscillation amplitudes of the pipe with DVA are slightly larger than that of the pipe without DVA, indicating that the DVA may have a negative effect on the pipe’s responses. In the range of \(8.2 < u < 10.5 \) approximately, the oscillation amplitudes of the pipe with DVA are slightly smaller than that of the pipe without DVA. That is to say, for \(\varphi = 0.001, \zeta_b =0.5, c=0.5, \alpha = 0.1 \) and \(\beta=0.213 \), the most effective influence of DVA on the oscillation responses of the cantilevered pipe conveying fluid would occur at \(k=18 \), as can be observed in Figs. 17-20.

In order to further understand the dynamic responses of the cantilevered pipe with and without DVA, some phase portraits for several typical flow velocities are plotted in Figs. 21-23, for \(k=19 \). The phase portraits shown in Fig. 21 are for \(u=6.2 \). It is noted that the pipe without DVA undergoes a symmetric limit cycle (Fig. 21(a)) while the motion of the pipe with DVA is toward to a fixed point (Fig. 21(b)). In the case of \(u=6.6 \), it is clearly seen from Fig. 22 that the pipe undergoes a limit cycle motion, either without or with the DVA. Moreover, the displacement and velocity amplitudes of the pipe without DVA are much larger than the counterpart of the same pipe with DVA. Fig. 23 shows the phase portraits of the pipe without and with DVA for \(u=7.1 \). It is obvious that the pipe without DVA undergoes a limit cycle motion while the trajectory of the pipe with DVA is towards to a fixed point.

Fig. 19. Bifurcation diagram of the pipe system displacements with internal flow velocity \(u \) being the variable parameter for: \(\varphi = 0.001, \zeta_b =0.5, c=0.5, k=30, \alpha = 0.1, \beta=0.213 \): (a) tip-end displacements of the pipe and (b) displacements of the dynamic vibration absorber.

Fig. 20. Bifurcation diagram of the pipe system displacements with internal flow velocity \(u \) being the variable parameter for: \(\varphi = 0.001, \zeta_b =0.5, c=0.5, k=42, \alpha = 0.1, \beta=0.213 \): (a) tip-end displacements of the pipe and (b) displacements of the dynamic vibration absorber.

Fig. 21. Phase portraits for the tip-end response of the cantilevered pipe for: \(\varphi = 0.001, \zeta_b =0.5, c=0.5, k=19, \alpha = 0.1, \beta=0.213 \) and \(u=6.2 \): (a) without DVA and (b) with DVA.

Fig. 22. Phase portraits for the tip-end response of the cantilevered pipe for: \(\varphi = 0.001, \zeta_b =0.5, c=0.5, k=19, \alpha = 0.1, \beta=0.213 \) and \(u=7.1 \): (a) without DVA and (b) with DVA.
4.4. Discussion

With regard to the foregoing analysis, one important point should be stressed. We have found that the presence of DVA has a significant effect on the dynamical stability of the pipe. The critical flow velocity of the pipe may become higher, which implies that the stability of the pipe can be enhanced by using the DVA. More interestingly, in some cases, the critical flow velocity of the DVA is much lower than that of the pipe. This means that even if the pipe is stable with no oscillations, the DVA may become unstable and oscillation is possible. In such a case, the energy gained from the fluid flow could be further transferred from the pipe to the DVA, causing the DVA to oscillate. In summary, the DVA devised in the work has the ability to absorb energy from the pipe and hence can enhance the stability of the pipe conveying fluid.

5. Conclusions

The present study is concerned with the dynamical stability and nonlinear responses of a cantilevered pipe conveying fluid with a DVA added somewhere along the pipe length. We found that the pipe loses stability by flutter when the flow velocity exceeds a certain critical value. The damping coefficient, stiffness, location, and weight of the additional DVA do influence this instability. Under certain conditions, the critical flow velocity of the pipe can be remarkably increased by having a DVA, thus enhancing the stability of the pipe system.

Since the mass would gain energy from the pipe, in many cases, the critical flow velocity of the pipe with DVA is higher than that of the pipe without DVA. Therefore, the results obtained in this paper provide a possible way to design energy absorbers (or energy transfer devices) for fluid-conveying pipes by adding DVAs somewhere along the pipe length.

Acknowledgments

The authors gratefully acknowledge the support provided by the National Natural Science Foundation of China (No. 11622216).

References

