[1] A. S. Ramsey, W. H. Besant, 1954, A Treatise on Hydromechanics: Hydrodynamics, G. Bell,
[2] CC Lin:" The Theory of Hydrodynamic Stability", Cambridge University Press, 1955, 155 頁, 15× 23cm, 22s 6d, Vol. 11, No. 5, pp. 217, 1956.
[3] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability Oxford University Press Oxford Google Scholar, 1961.
[4] H. F. Bauer, Coupled oscillations of a solidly rotating liquid bridge, Acta Astronautica, Vol. 9, No. 9, pp. 547-563, 1982.
[5] Y. O. El-Dib, Capillary instability of an oscillating liquid column subjected to a periodic rigid-body rotation, Fluid dynamics research, Vol. 18, No. 1, pp. 17, 1996.
[6] G. M. Moatimid, Y. O. El-Dib, Effects of an unsteady rotation on the electrohydrodynamic stability of a cylindrical interface, International journal of engineering science, Vol. 32, No. 7, pp. 1183-1193, 1994.
[7] F. F. Hatay, S. Biringen, G. Erlebacher, W. Zorumski, Stability of high‐speed compressible rotating Couette flow, Physics of Fluids A: Fluid Dynamics, Vol. 5, No. 2, pp. 393-404, 1993.
[8] G. Sarma, P. C. Lu, S. Ostrach, Film Stability in a Vertical Rotating Tube with a Core‐Gas Flow, The Physics of Fluids, Vol. 14, No. 11, pp. 2265-2277, 1971.
[9] A. E.-M. A. Mohammed, A. G. El-Sakka, G. M. Sultan, Electrohydrodynamic stability of m= 0 mode of a rotating jet under a periodic field, Physica Scripta, Vol. 31, No. 3, pp. 193, 1985.
[10] S. Leblanc, C. Cambon, Effects of the Coriolis force on the stability of Stuart vortices, Journal of Fluid Mechanics, Vol. 356, pp. 353-379, 1998.
[11] Y. O. El-Dib, The stability of a rigidly rotating magnetic fluid column effect of a periodic azimuthal magnetic field, Journal of Physics A: Mathematical and General, Vol. 30, No. 10, pp. 3585, 1997.
[12] K. Schwarz, Effect of rotation on the stability of advective flow in a horizontal fluid layer at a small Prandtl number, Fluid Dynamics, Vol. 40, No. 2, pp. 193-201, 2005.
[13] R. HIDE, THE CHARACTER OF THE EQUILIBRIUM OF A HEAVY, VISCOUS, INCOMPRESSIBLE, ROTATING FLUID OF VARIABLE DENSITY: II. TWO SPECIAL CASES, The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 9, No. 1, pp. 35-50, 1956.
[14] L. Debnath, Exact solutions of the unsteady hydrodynamic and hydromagnetic boundary layer equations in a rotating fluid system, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 55, No. 7‐8, pp. 431-438, 1975.
[15] L. Dávalos‐Orozco, J. Aguilar‐Rosas, Rayleigh–Taylor instability of a continuously stratified fluid under a general rotation field, Physics of Fluids A: Fluid Dynamics, Vol. 1, No. 7, pp. 1192-1199, 1989.
[16] L. Dávalos-Orozco, Rayleigh-Taylor instability of two superposed fluids under imposed horizontal and parallel rotation and magnetic fields, Fluid dynamics research, Vol. 12, No. 5, pp. 243, 1993.
[17] B. Chakraborty, J. Chandra, Rayleigh–Taylor instability in the presence of rotation, The Physics of Fluids, Vol. 19, No. 12, pp. 1851-1852, 1976.
[18] B. Chakraborty, Hydromagnetic Rayleigh–Taylor instability of a rotating stratified fluid, The Physics of Fluids, Vol. 25, No. 5, pp. 743-747, 1982.
[19] L. Davalos-Orozco, Rayleigh-Taylor stability of a two-fluid system under a general rotation field, Dynamics of atmospheres and oceans, Vol. 23, No. 1-4, pp. 247-255, 1996.
[20] P. Sharma, R. Chhajlani, Effect of finite Larmor radius on the Rayleigh-Taylor instability of two component magnetized rotating plasma, Zeitschrift für Naturforschung A, Vol. 53, No. 12, pp. 937-944, 1998.
[21] P. Hemamalini, S. A. Devi, Rayleigh-Taylor Instability of a Two-fluid Layer Subjected to Rotation and a Periodic Tangential Magnetic Field, FDMP: Fluid Dynamics & Materials Processing, Vol. 10, No. 4, pp. 491-501, 2014.
[22] G. M. Moatimid, A. F. El-Bassiouny, Nonlinear interfacial Rayleigh–Taylor instability of two-layers flow with an ac electric field, Physica Scripta, Vol. 76, No. 2, pp. 105, 2007.
[23] S. A. Devi, P. Hemamalini, Nonlinear Rayleigh–Taylor instability of two superposed magnetic fluids under parallel rotation and a normal magnetic field, Journal of magnetism and magnetic materials, Vol. 314, No. 2, pp. 135-139, 2007.
[24] J. M. Stone, T. Gardiner, The magnetic Rayleigh-Taylor instability in three dimensions, The Astrophysical Journal, Vol. 671, No. 2, pp. 1726, 2007.
[25] H. Yu, D. Livescu, Rayleigh–Taylor instability in cylindrical geometry with compressible fluids, Physics of Fluids, Vol. 20, No. 10, pp. 104103, 2008.
[26] A. Joshi, M. C. Radhakrishna, N. Rudraiah, Rayleigh–Taylor instability in dielectric fluids, Physics of Fluids, Vol. 22, No. 6, pp. 064102, 2010.
[27] H. G. Lee, K. Kim, J. Kim, On the long time simulation of the Rayleigh–Taylor instability, International Journal for Numerical Methods in Engineering, Vol. 85, No. 13, pp. 1633-1647, 2011.
[28] L. Wang, W. Ye, X. He, Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability, Physics of Plasmas, Vol. 19, No. 1, pp. 012706, 2012.
[29] J. Tao, X. He, W. Ye, F. Busse, Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids, Physical Review E, Vol. 87, No. 1, pp. 013001, 2013.
[30] A. Piriz, Y. Sun, N. Tahir, Rayleigh-Taylor stability boundary at solid-liquid interfaces, Physical Review E, Vol. 88, No. 2, pp. 023026, 2013.
[31] Y. Murakami, Second harmonic resonance on the marginally neutral curve in the Kelvin-Helmholtz flow, Physics Letters A, Vol. 131, No. 6, pp. 368-372, 1988.
[32] Y. O. El-Dib, Nonlinear stability of surface waves in magnetic fluids: effect of a periodic tangential magnetic field, Journal of plasma physics, Vol. 49, No. 2, pp. 317-330, 1993.
[33] Y. O. El-Dib, Nonlinear hydromagnetic Rayleigh–Taylor instability for strong viscous fluids in porous media, Journal of magnetism and magnetic materials, Vol. 260, No. 1-2, pp. 1-18, 2003.
[34] J.-H. He, Homotopy perturbation technique, Computer methods in applied mechanics and engineering, Vol. 178, No. 3-4, pp. 257-262, 1999.
[35] J.-H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solitons & Fractals, Vol. 26, No. 3, pp. 695-700, 2005.
[36] J.-H. He, Homotopy perturbation method with two expanding parameters, Indian journal of Physics, Vol. 88, No. 2, pp. 193-196, 2014.
[37] Y. O. El-Dib, Multiple scales homotopy perturbation method for nonlinear oscillators, Nonlinear Sci. Lett. A, Vol. 8, No. 4, pp. 352-364, 2017.
[38] J.-H. He, Homotopy perturbation method with an auxiliary term, in Proceeding of, Hindawi, pp.
[39] Y. El-Dib, Stability Analysis of a Strongly Displacement Time-Delayed Duffing Oscillator Using Multiple Scales Homotopy Perturbation Method, Journal of Applied and Computational Mechanics, Vol. 4, No. 4, pp. 260-274, 2018.
[40] R. Rosensweig, Ferrohydrodynamics Cambridge University Press Cambridge, New York, Melbourne, 1985.
[41] J. R. Melcher, 1963, Field-coupled surface waves, MIT,
[42] P. Weidman, M. Goto, A. Fridberg, On the instability of inviscid, rigidly rotating immiscible fluids in zero gravity, Zeitschrift für angewandte Mathematik und Physik ZAMP, Vol. 48, No. 6, pp. 921-950, 1997.
[43] Y. O. El-Dib, Viscous interface instability supporting free-surface currents in a hydromagnetic rotating fluid column, Journal of plasma physics, Vol. 65, No. 1, pp. 1-28, 2001.
[44] Y. O. El-Dib, A. Y. Ghaly, Nonlinear interfacial stability for magnetic fluids in porous media, Chaos, Solitons & Fractals, Vol. 18, No. 1, pp. 55-68, 2003.