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In the present work, the Rayleigh-Taylor instability of two rotating superposed 

magnetized fluids within the presence of a vertical or a horizontal magnetic flux has 

been investigated. The nonlinear theory is applied, by solving the equation of motion 

and uses the acceptable nonlinear boundary conditions. However, the nonlinear 

characteristic equation within the elevation parameter is obtained. This equation 

features a transcendental integro-Duffing kind. The homotopy perturbation technique 

has been applied by exploitation the parameter growth technique that results in 

constructing the nonlinear frequency. Stability conditions are derived from the 

frequency equation. It's illustrated that the rotation parameter plays a helpful 

result. It's shown that the stability behavior within the extremely uniform rotating 

fluids equivalents to the system while not rotation. A periodic solution for the 

elevation function has been performed. Numerical calculations area unit created for 

linear analysis furthermore the nonlinear scope. Moreover, the elevation function has 

been premeditated versus the time parameter. The strategy adopted here is vital and 

powerful for solving nonlinear generator systems with a really high nonlinearity 

arising in nonlinear science and engineering. 
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1. Introduction 

     The dynamics of wave motion of nice importance in 

physical investigations, as wave motion, constitutes one in 

each of the principal modes of transmission of energy. The 

energy received from the sun is transmitted by waves within 

the ether and therefore the energy of sound by airwaves. A 

wave suggests that the continual transference of a specific state 

or from one facet of a medium to a different. This will imply 

the transference of the medium itself from one space to a 

different however simply the propagation through it's of a 

specific kind, state or condition. The waves because of little 

oscillating motion that crop up at and close to the surface of a 

vast of a vast sheet of fluids are known as surface waves [1].   

   The properties of the linear stability for many 

flows are  mentioned  clearly  and  given  by  designer  [2]  and  

 

Chandrasekhar [3]. Bauer [4] has performed a close analysis of 

the natural frequencies of a rapidly rotating viscous 

and periodical fluid column in an exceeding type 

of geometries. El-Dib [5] investigated the instability of the 

flow ensuing from the oscillations of a rapidly periodic rotating 

cylindrical fluid column constant flow instability   downside 

beneath the result of the constant vertical magnetic field of 

force was mentioned by Moatimid and El-Dib [6]. Hatay et al 

[7] think about the stability with linear analysis for the 

compressible of viscous rotate Couette flow having high-speed 

in 3 dimensions of the disturbance. Sarma et al [8] examined 

the linear hydrodynamic stability of a thin-liquid layer flowing 

on the within wall of a vertical tube rotating regarding its 

axis within the flowing of a core-gas beneath the constraints 

that the density and viscosity ratios of gas to liquid square 
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measure little and also the relative the vertical element of the 

pressure within the gas is reminiscent of constant order as 

gravity. Mohamed et al [9] investigate the linear stability of a 

two rotating liquid jet beneath a periodic axial field of force. 

Leblanc and Cambon [10] investigated linear stability 

of an inviscid plane flows in an incompressible 

homogeneous rotating fluid. The vector of the 

angular rate z
e of the rotating frame is taken into 

account vertical to the plane of the fundamental system. El-Dib 

[11] investigated the instability of a rotate a fluid 

column beneath the influence of a periodic magnetic field. At 

Prandtl variety, the stability of flow in an exceedingly 

horizontal fluid layer subjected to uniformly rotation was 

investigated by Schwarz [12]. 

   The possibility of erratic stability of the interface 

between two fluids by suggests that of fluids by means of an 

external body field, apart from gravity, the encouragement 

from phenomena in stars and planetary interiors were a 

number of the needs for the extent of the RTI analysis to 

incorporate the result of rotation and magnetic flux. Coriolis 

and centrifugal forces are more common in these interiors and 

play a very important role in determining many phenomena 

including RTI. The result of rotation at associate in 

periodic angle with gravity was initially investigated by Hide 

[13], who the first one gave an exhaustive analysis for the 

rotation parallel to gravity. Bjerknes et al. [14] were thought-

about the primary to research the influence of vertical 

rotation in an exceedingly two-fluid layer system. Davalos-

Orozco and Aguilar-Rosas [15] studied the rotating for 

magnetic fluid in an exceedingly general rotation field. They 

found that, for sufficiently high values of the wavenumber, a 

bifurcation happens within the plane of the angle 

of most rates against the wavenumber for a vertical 

component of rotation component in magnitude with the 

tangential component. Davalos-Orozco[16] investigated the 

RTI of two 

stratified fluid below a horizontal rotation field yet because of 

the action of horizontal magnetic fields. Chakraborty and 

Chandra [17] studied the RTI of two uniform fluids separated 

by a layer of transition of finite thickness within which the 

density will increase exponentially within the vertical 

direction and therefore the full system rotates uniformly 

around a columnar. Chakraborty [18] studied a similar 

drawback subjected to a tangential magnetic flux. Davalos-

Orozco [19] investigated the RTI of two superposed fluid 

layer system below a general rotation field, the conditions that 

gravity was perpendicular to the two horizontal layers 

associate in the periodic rotation had a capricious angle 

with relation to the vertical. Two stratified plasmas of the 

RTI-type, consisting of interacting ions and a neutral, in an 

exceedingly tangential magnetic flux was investigated by 

Sharma and Chhajlani [20]. Hemamalini and Anjali Hindu 

deity [21] take into account the rotating RTI subject to a time-

dependent horizontal magnetic flux and relevant the solutions 

by exploitation the multiple scales methodology. 

Nonlinear interfacial Rayleigh–Taylor instability of two-

layers flow with an ac electric field was analyzed by 

Moatimid and El-Bassiouny [22]. Anjalidevi and Hemamalini 

[23] considered the effect of parallel rotation and a 

standard flux. RTI in three dimensions was studied by Stone 

and Gardiner[24]. Yu and Livescu [25] mentioned RTI in an 

exceedingly cylindrical pure mathematics with compressible 

fluids. RTI in nonconductor fluids was examined by Joshi et 

al [26]. On the very long time simulation of the RTI was 

analyzed by Lee et al [27]. Wang et al [28] thought-about 

density gradient effects in nonlinear ablative RTI.Tao et al 

[29] analyzed the nonlinear RTI of rotating inviscid fluids 

with the axis of rotation traditional to the acceleration of the 

interface between two uniform inviscid fluids. Rayleigh-

Taylor stability boundary at solid-liquid interfaces 

was mentioned by Priz et al. [30]. 

   Murakami [31], El-Dib [32, 33], Hemamalini and 

Anjali Devi [21] investigate the interaction of finite amplitude 

waves by victimization the strategy of multiple scales they 

introducing the scales 

           
tT n

n  and 2,01;  nxX n
n  . 

They assume a small parameter ε expressing the steepness 

ratio of the wave. They didn’t get the formula of the 

approximate solution in terms of the amplitude wave. The 

goal of this work is to review the nonlinear stability of two 

superposed rotating magnetic fluids subjected to a vertical or 

a horizontal magnetic flux while not employing a small 

parameter.  

   A generalization of the nonlinear RTI under the result of 

rigid-body rotation and therefore the magnetic flux is that 

the goal of the study. The homotopy perturbation technique 

[34-37] is applied. This technique doesn't use the small 

parameter as mentioned before within the previous 

studies. The applying of the homotopy technique results 

in formulating the associate approximate periodical answer to 

the nonlinear generator with a very high nonlinearity, whereas 

the classical perturbation ways square measure invalid 

for determination  such high nonlinear oscillators. The 

technology of the parameter growth [38, 39] is utilized to get 

the associate approximate nonlinear frequency that permits 

explanation the stability criteria of the nonlinear downside 

adopted here. 
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   The analysis of linear theory as comes in Chandrasekhar’s 

book [3] depends on removing the nonlinear terms from the 

equation of motion further as from the boundary 

conditions then yielding a dispersion relation while not 

nonlinear terms. The thought of the frail nonlinear 

elaboration may be a very little departure from the linear 

viewpoint. At this stage, the nonlinear 

drawback can embrace the linear elaboration with 

some further terms that perform a correction for the 

most solution. The analysis of the nonlinear elaboration given 

here depends on dropping the nonlinear terms from the 

equation of motion and applying the acceptable boundary 

conditions while not neglecting the nonlinear terms. At this 

stage, the dispersion equation ought to be extended to 

incorporate nonlinear terms. This method ends up 

to extending the well-known Chandrasekhar dispersion 

relation [3] to gift nonlinear terms within the surface 

elevation. Then, the nonlinear dispersion 

equation springs, so it depends not solely on the national 

frequency and also for the wave number however on all the 

physical parameters of the matter. This conclusion of the 

nonlinear dispersion equation is incredibly sophisticated and 

contains high nonlinear terms within the elevation parameter 

with its derivatives. 

 

 

2. Formulation of the problem 
 

     For the base flow in the RTI problem, two incompressible, 

immiscible fluids having constant properties occupy the half-

spaces. The lighter fluid with density  1 and hydrostatic 

pressure -  
gz1 , occupies the upper half-space for ,0z

while the heavier fluid with density    12   and pressure -

 
,2 gz occupies the lower half-space for ,0z  where g is 

the gravitational acceleration acts in the negative z-direction. 

The interface between the fluids is assumed to be well defined 

and initially flat and has infinite extension having the 

horizontal surface in the x-y plane. It is acted upon by a 

vertical magnetic field  HH ,0,0  and uniform rotation with 

an angular velocity   ,0,0 and a gravitational field

 gg ,0,0 . 

     As the underlying condition of the framework, we expect 

that both liquid stages are immiscible and have a typical level 

interface at 0z .  The appropriation balance of the interface 

between both fluid stages has been built up. We are worried 

about the interfacial reaction of the two stages after an 

inconvenience for the balance setup. The surface diversion is 

communicated by [3] 

   tyxz ,,                                                                         (1) 

If the surface is determined as the locus of points satisfying 

the relation  

   , , , , , 0S x y z t z x y t                                            (2) 

Then the unit normal vector to the interface is given by                                      

   
1/ 2

2 21x y x yx y z

S
n e e e

S
   


      


                 (3) 

where 
xe , ye

 
and ze

 
are the unit vectors in the  

x-, y- and z- directions. 

    The elements of the issue are qualified by the synchronous 

arrangement of three field conditions: Maxwell's conditions, 

the condition of movement and the progression condition. In 

planning Maxwell's conditions for the issue, we guess that the 

magneto-semi static estimation is substantial for the issue [40, 

41]. 

    The topical in the attractive fluid is intrigued with marvels 

in which attractive vitality extraordinarily surpasses electric 

vitality stockpiling and where the engendering times of 

electromagnetic waves are finished in moderately brief 

occasions contrasted with those important to us. The fluids 

are subjected to vertical magnetic fields  1H and  2H acting 

in the negative z-direction. As needs are, Maxwell's 

conditions lessen to 

 
     ,0. 

jj H    and                                                       (4) 

 
 

,2,1;0  jH
j

                                                          (5) 

where  is the magnetic permeability for the fluid phase and 

the superscript j  refers to the fluid phase. The superscript (1) 

and (2) refer to the upper fluid and lower fluid respectively. In 

conformity with the legality of the quasi-static approximation, 

a potential function  tzyx ,,,  can be introduced such that 

 
      .,,, tzyxHH jjj

                                            (6) 

Clearly, the function  tzyx ,,,  satisfies Laplace’s equation                                                                 

     .0,,,2  tzyxj                                                            (7) 

    Smooth movement is chosen by an arrangement of 

nonlinear incomplete differential conditions communicating 

protection of mass, force, and vitality. We consider media that 

are at first uniform so movement is of homogenous fluids in a 

homogeneous medium. The key conditions overseeing the 

movement, for the main part of attractive liquid stages, 

written in the 
 
rotating casing of reference Weidman et. al. 

[42] as 

      ,2.
2

2

1
z

egprVVV
t

V
 













          (8)     

                                                                                 

related to the continuity equation 
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,0. V                                                                                 (9) 

where p is the hydrodynamic pressure, 
 
is the fluid density 

and  wvuV ,,  represents the velocity of the fluid. The term 

 V2  in equation (8) represents the Coriolis acceleration 

and the term  2

2

1 r platforms for the centrifugal force 

where r the position vector of any point of the fluid is. The 

Coriolis term is usefully presented in the equation of motion 

in the rotating frame of reference when the angular velocity 

 is uniform. The total pressure is defined as 

 .2

2

122

2

1 Hrp                                                   (10) 

The pure equilibrium configuration gives, 

         ,,,, 0
22

2

1)(
0

jjjjj rgztzyx                     (11) 

where 
 j
0  is due to the integration. The balance of the 

normal stress tensor at the interface leads to 

            
        .211222

2
1

2211222

2
11

0

2

0

HH

r








                 (12)                   

2.1 Boundary Conditions 
 

    It is convenient to enclose that  tzyx ,,,
 

is a finite 

function presented due to the perturbed interface and far from 

the interface, its influence vanishes. Therefore both the partial 

derivative for  tzyx ,,,  with respect to yx, and z  must 

vanish as z . At the dividing surface, the following 

boundary conditions must be satisfied: 

(i) The continuity of the vertical component of the magnetic 

displacement at the surface of separation is  

       
         .,0.

2211   zHHn
               

              (13) 

 

    This leads to  
 

      

                 
         .,02211

22112211









zzz

yyyxxx

               (14)
 

(ii)  The continuity of the tangential component of the 

magnetic field is assumed at the interface z . Thus, 

           .,021  zHHn                                       (15) 
 

    It yields that 
 

      

                 
     .,0

21

212121









z
xx

yyzz
HH

xy
                      (16) 

(iii) At the dividing surface, the velocity field vu, and w are 

subject to the following boundary condition: 
                                  

        zvuw y
j

x
j

t
j , .                        (17) 

 
This equation comes across the assumed material 

character of the dividing surface. Far from the interface, 

the fluid velocity vanishes. Thus, 

     
   .0,,,  tyxV

j
                                                    (18) 

(iv) At the interface between fluids, the fluids and the 

magnetic stresses must be balanced. The components of 

these consist of the hydrodynamic pressure, surface 

tension effects and magnetic stresses. The magnetic 

stresses result from the magnetization forces [40] and 

[41]. Thus, the normal component of the stress tensor 

ij   is discontinuous at the interface by the surface 

tension, i.e. 

          
     ,,..

21
  znFFn T                                 (19) 

where F is the force vector acting on the interface, the 

surface tension coefficient is denoted by the parameter 

T and the tensor ij given by 

        ,2

2

1
ijjiijij HHH                                  (20) 

       where  is the total pressure. 

(v)  The boundary conditions performed here are prescribed at 

the interface  .,, tyxz   As the interface is disfigured, 

all variables are slightly perturbed from their equilibrium 

values. Because the interfacial displacement is small, then 

the boundary conditions on perturbation with interfacial 

variables need to be estimated at the equilibrium position 

rather than at the interface. Therefore, it is needful to 

accurate all the physical quantities involved in terms of the 

Maclaurin series about .0z  

 

3. Solutions of the equation of motion 
 
     In assessing them in the light of straight annoyance, the 

second request, and in addition the higher-order terms 

containing the rise parameter , is disregarded. For nonlinear 

extension, these terms of higher-requests of 
 

won't be 

dropped. To treat the issue under thought, three-dimensional 

limited unsettling influences are brought into the condition of 

movement and congruity condition and in addition limit 

conditions. As it is common in hydrodynamic stability 

examination [3], where all amounts have exponential 

intermittent spatial reliance and obscure time reliance. In the 
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conclusion of a check Fourier disintegration, we may expect 

that the mass arrangements are of the shape 

    ,,ˆ,,, iketzVtzyxV                                                        (21) 

    ,,ˆ,,,  iketztzyx                                                        (22) 

     .,ˆ,,,  iketztzyx                                                       (23) 

We suppose there is a uniform monochromatic wave train 

propagating along the interface such that 

    ,.,, ccettyx ik                                                        (24) 

where c.c. represents complex conjugate for preceding terms,  

the spatial variable  is defined as 

  ,;
1 22

yxyx kkkykxk
k

                                       (25) 

which is assumed to be real and positive. The amplitude  t

has the initial conditions   A0  and   00 t  , where A is 

a constant.  

Employing (21) and (22) into equations of motion (8) and (9) 

yields the following system: 

 
 

,
,ˆ4

1,ˆ
2

2

2

2 tz

tzw

Dk
tz

















 



                                      (26)  

 
 

  ,0,ˆ
,ˆ 2

2

2





tzwq

z

tzw
                                                    (27) 

where the integral operator q is given by 

t
D

D
kq


















 




;
4

1

1

2

2
22

                                             (28) 

The development of the administrator q
 

with the 

indispensable impact needs to accept that the angular velocity 

is little. In the event that the prerequisite is to grow q  as an 

arrangement in forces of the differential administrator
2D  , 

then it very well may be looked for in the shape as 

 .
4

1
2

2/1

2

2






















DkD
q                                                       (29) 

The above formal of the administrator q  needs the impact of 

the highly rotating fluids, with the end goal to extend it. 

Condition (27) is a direct halfway differential condition where 

its correct arrangement is performed through the kinematic 

limit condition (17), the conveyance of the vertical speed 

segment gives 

       

       
.0;1,,,

,0;1,,,

2

1

122

111









ze
dt

d
qtzyxw

ze
dt

d
qtzyxw

zqik

zqik











   

                (30) 

Employing the distribution of (30) into (25) yields the 

pressure distribution in the two fluids in the form 

  
 

 
    

  
 

 
    

.0;1,,,

,0;1,,,

2

1

12

2

2
2

11

1

1
1









ze
dt

d
q

dt

d

q
tzyx

ze
dt

d
q

dt

d

q
tzyx

zqik

zqik

















        (31)                                                                           

To derive the solution for the magnetic function  tzyx ,,, , 

we insert (23) into the Laplace equation (7), for using both 

conditions (14) and (16), the resulting solution is 

    
   

     

    
   

     
.0;

1
,,,

,0;
1

,,,

21

21
22

21

21
11















































ze
k

Htzyx

ze
k

Htzyx

kzik

kzik























        (32) 

    As the nonlinear terms are disregarded, the linear profile 

emerges and it is identical to those acquired already by El-Dib 

[43] for interface supporting free electric surface streams and 

by Chandrasekhar [3] for unadulterated fluids. 

 

4.  Transcendental nonlinear characteristic equation  
 
    At the limit between the fluids, the fluid and the magnetic 

stresses must be adjusted. The segments of these burdens rely 

upon hydrodynamic weight, surface pressure stresses, and 

attractive anxieties. In what pursues, we will determine the 

nonlinear condition overseeing the interfacial relocation. 

Utilizing the vertical part of the speed circulation (30), the 

weight dissemination (31), and the attractive potential 

dispersion (32) to the typical pressure tensor (19), the 

subsequent is the accompanying nonlinear trademark 

condition as far as the displacement  t : 
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where the notion H is referred to the performance of the 

normal magnetic field which  given by 

 

    
   21

221
)2()1(









 HHH .                                          (34) 

On the other hand, if the system is stressed by a tangential 

magnetic field such that z
eHH 0 then the same 

characteristic equation will be obtained except that the term 

H should be replaced by 
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    
    ,

21

221
2
0









 H

H
                                            (35) 

where the notion H denotes the horizontal magnetic term. 

The parameter 1J  in the stage of the vertical field, while 

1J  refers to the application of a horizontal magnetic 

field. 

     Condition (33) is a cubic supernatural integro-Duffing 

condition which administers the wave engendering along the 

interface between two rotating liquids. This alters the 

trademark condition that got in the linear discussion given by 

Chandrasekhar [3] for rotating fluids. It speaks to an 

augmentation of the scattering connection for Chakraborty 

and Chandra [17] and Davalos-Orozco [16, 19] by including 

some higher-arrange terms of the height parameter .
 
In the 

non- rotated fluids, it diminishes for magnetic fluids in 

permeable media by El-Dib and Ghaly [44]. 

      Due to the very complicated of equation (33), a 

simplification of equal rotation can be considered such that 

the angular velocities    
 21 , which leads to

   
qqq  21 , finial, the wavy surface of the two rotating 

fluids with the same angular velocity is described by 
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5. The case of finite rotating fluids and the implication of 

the homotopy perturbation method 

    In this section, we deal with the examination of the 

influence of finite angular velocity on the stability behavior. 

In this case, the formal of the operator q is as defined by (28). 

Keeping with the integral form for the operator q , and 

operating on both sides by
1q , then equation (36) transforms 

to 
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        (37) 

    To solve the above nonlinear system (37), we may use the 

expansion procedure obtained formally by the homotopy 

perturbation [34-39]. By introducing the homotopy parameter

 1,0 , the homotopy equation corresponding to equation 

(37) can be constructed in the form 
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     (38)                                                                       

Clearly as 1  the initial equation (37) is obtained, whereas

0  the linear part of the equation (38) arises. 

 

5.1 The estimation of the linear influence 

      In this subsection, the linear form of the equation (38) will 

be discussed. The linearity of the equation (38) can be 

obtained as ,0 and )(t becomes )(0 t which is given by 
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k      (39)                                                                       

This is the second-harmonic equation its solution, satisfying 

the initial conditions, has the form 

  ,cos)( 00 tAt  
                                           

                  (40) 

where the argument 0 is given by 
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(41) 

 
In the above equation, 0  appears as a square term only, 

while the right-hand side is real. Thus, the values of 0  are 

either real or imaginary. When 0  is imaginary, an instability 

is expressed through the dependence of 2
0  on the 

wavenumber k. However, stability occurs when the angular 

velocity satisfies the following relation: 
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221
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
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              (42)   

In the absence of rotation i.e. in the limiting case as ,0

the stability occurs when the magnetic field satisfies the 

following relation:  

 
     .1 212 gk

k
TH                                            (43) 

It is useful to investigate the numerical assess for linear 

stability of the wave propagating on the interface. In order to 

present this examination, numerical calculations for stability 

condition (42) are made for both vertical and tangential 

magnetic fields influence. The results for the calculations are 

displayed in Figures. 1 to 4.  
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To depict the stability picture it is useful to present the 

transition curve of inequality (42) in the non- dimensional 

form as defined by 

 The characteristic length  
,)/( 2/12 gL T  

    The characteristic time 2/1)/( gLt 
      

and 

    Other dimensionless quantities are given by    

         2,/,/,/  LgttLkk HH
 

    

     and      21 /  . 

Note that the superposed asterisk refers to the dimensionless 

quantity, which will be omitted later for simplicity. 

 

 

 

Figure 1: The graph is constructed for 
H versus the 

wavenumber k of condition (42). Influence of 

  the angular velocity on  the linear  stability 

  criteria for variation  of . The system has 

.5.0  

 

 
Figure 2: The graph is constructed for the same system. 

  as in Figure 1 except that the system has .5.1  

  The system has .5.0       

     In Figure 1, the stability image has been displayed within 

the plane  kH   
for variation within 

the angular rate 5.0,4.0,3.0,0 and 6.0 . 

The black curve indicates the transition curve for un-rotated 

fluids that separates the stable region from the unstable 

region. The image S refers to the stable region and also 

the image U indicate the unstable region. The 

stability behavior for variation of the angular rate has been 

illustrated during this figure for the case that refers to the 

stable system and within the presence of a vertical magnetic 

field of force. The graph shows that within the non-rotate 

system the plane has divided into stable region lies beneath 

the transition curve and unstable region settled on the 

opposite facet of the curve. This instability is because of the 

appliance of the vertical field of force to the statically stable 

system. The implication for the rotation of the system has 

been indicated by the colors curves. 

 

 
Figure 3: Influence of the variation of the vertical magnetic  

field on the stability diagram for the system of Fig   (2). The 

graph is constructed for 2 Versus .k  

 

 
Figure 4:  As in Fig (3), except that the variation of the 

vertical  magnetic  field is replaced by the variation of  the 

tangential field 

  

    It seems that the rise within the angular speed will 

increase the stable region and also the unstable region 

decreases in size as k will increase. However, this shows the 

helpful influence of angular speed, particularly at little 

wavenumber values. Similar conclusions are discovered, for 

the influence of the rotating fluids even within the statically 

unstable system, as shown in Figure 2. The influence of each 

vertical and tangential magnetic field has been displayed in 

Figures 3 and 4, wherever the calculations for transition 

curves 2  are performed as a function of the magnetic field. 

In these graphs, the black curve refers to un-magnetic fluids. 

The plane )( 2 k showing in Figure 3 refers to the vertical 

field of force whereas the graph in Figure 4 refers to the 
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horizontal field of force. The plane )( 2 k  is split by the 

transition curves into two regions. The higher one is that the 

stable region and labeled by the letter. The lower one is that 

the unstable region and labeled by the letter. The introduction 

of the vertical field plays a destabilizing role whereas the 

tangential field plays a helpful role that is associate degree 

earlier vital development, studied by Melcher [41] associate 

degreed by different many researchers for an inviscid flow 

through the linear stability theory. Melcher [41] demonstrated 

that in the linear stability theory, the tangential field has a 

stabilizing effect as it increases the surface tension effect, 

while the vertical field has a destabilizing influence as it 

decreases the surface tension effect. Even if the fluids have a 

viscosity, the vertical field still plays a destabilizing role, as 

demonstrated by El-Dib [44]. He studied the surface wave 

propagation in the interface between two magnetic fluids in 

porous media. 

5.2 The examination of the nonlinear influence on the rotating 

system 
 
      To develop the nonlinear effects for the amplitude 

modulation for the progressive waves, we'd like to 

travel to the total nonlinear equation (38) with 0  and 

considering the subsequent homotopy expansion: 

 ...)()()()( 2
2

10  tttt                                       (44)   

where )(0 t is as given by (40) and therefore the 

unknowns )(tn  are determined in turns. To analyze the 

stability behavior, through a nonlinear approach, we are going 

to proceed with the nonlinear frequency analysis [38, 39]. 

Therefore, a nonlinear frequency 
2  is also prompt within 

the following form: 

   ...2
2

1
2
0

2                                                  (45)   

where ,...2,1, nn are arbitrary parameters to be determined 

and 2
0 as outlined  in (41). 

Employing the two expansions (44) and (45) into the 

homotopy equation (38) and equating like powers of  on 

each side yields the zero and the first orders as 

,0: 0
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0
0                                                                  (46) 
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The solution of equation (46) is as given by (40) except that 

the frequency 0 has been replaced by  . Inserting this 

solution into equation (47) and removing the secular terms 

gives 
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Taking into account, the condition (48), the exact solution of 

equation (47) is arranged in the form 

    
    

 
 

 

    
  

    
   

     .cos22cos3
6

3coscos
32

2coscos
23

21

21

212

23

2
3

212

34

22

22

21

212

1

tt
AkJ

ttk
Ak

tt
kA

H

TH
































































      

(49)

  

                                                                                                                                                

 

In the light of one iteration approaches, the final approximate 

solution of equation (37) can be performed by employing the 

uniform solutions of equations (46) and (47) into the 

expansion (45) and setting 1 . The result is 
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This is the solution for the amplitude of the progressive 

wave of the surface between the rotating fluids. To complete 

this solution, it has to construct the formula for the frequency

 .To construct the approximate nonlinear frequency with one 

iteration technique, we tend to use (48) into (45), using (41) 

and holding ,1  yields 
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This is the characteristic equation within the quadratic type in 

2  and having two roots 2
1 and 2

2 . The stability of this 

technique needed some conditions on these roots. These 

conditions are the two roots 2
1 an 2

2  should be real and 
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positive. These constraints may be obtained from 

elementary algebra within the type 
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   (53)                                                                       

and        .0212   gkk HT                              (54) 

Satisfying the above conditions will ensure that the solution 

(50) is periodic. 

 

 
Figure 5: The nonlinear estimation for the same system as  

given in Fig (3). 

 

 
Figure 6: The nonlinear estimation for the same system as  

given in Fig (4). 
 

    Numerical calculations showed that condition (52) has 

been satisfied automatically. In alternative aspect condition 

(54) is that the same condition (43) for the non-rotating 

case within the linear stability. The important condition for 

the stability theory within the nonlinear estimation is that 

the condition (53). This condition premeditated for a 

similar system as given in Figure 3 and picked up with this 

graph as displayed in Figure 5. It's shown that the term H

continues to be taking part in a similar role within 

the stability image. A similar conclusion 

is discovered once the vertical magnetic term has been 

replaced by the tangential magnetic term 
H

 as shown in 

Figure 6. The main observation in Figures 5 and 6 is that 

the rotation parameter is helpful within the 

nonlinear estimation than the influence within the linear 

examination. The amplitude  t , as given in (50), is 

illustrated diagrammatically.  Many numerical 

calculations square measure bestowed, for the variation of the 

rotation parameter  , the vertical and tangential magnetic 

field, together with Figures. 7 to 9. In these figures the 

function  t is premeditated versus the variation of the 

variable quantity t. The vertical axis represents the 

distribution of the function  t  , and therefore the horizontal 

axis refers to the variations of the time t. In these figures, 

four totally different values of a particular parameter square 

measure thought of, whereas the other parameters are 

considered, while the other parameters are kept fixed.  

 
Figure 7:  The distribution for the amplitude curve  , 

              as a function in the rotation parameter   

              versus t.    

    
Figure 8: The distribution for the amplitude curve  ,  

           as a function in the vertical magnetic term  

         H versus t. 

     
 

Figure 9: The distribution for the amplitude curve  , as a  

function  in the tangential magnetic term 
H


 
versus t.                                            
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     The  t -curve, as shown in Figure 7, is premeditated for 

a system having the fixed parameter ,1H 6.0k and

5.1 . These four cases square measure started from the 

identical purpose on the vertical coordinate. Moreover, it’s 

determined that the curves have a periodic behavior of the 

identical amplitude. Finally, the four curves square measure 

comparable to the particulars 8.0,7.0,6.0,5.0 . It’s 

determined that, because the rotation parameter   is 
enlarged, the  t -curve has shifted within the direction of 

decreasing the parameter t. This mechanism shows that the 

rise within the rotation parameter  plays a helpful role.                                

    As may be seen, Figure 8 illustrates the influence of the 

variations within the term of the vertical magnetic field 

15,10,5,0H  on the amplitude-curve. Related 

to the mounted of the rotation parameter 5.0 , the 

wavenumber 6.0k and also the density quantitative relation     

.5.1
 

In these calculations, all the four curves area 

unit started at the purpose (0, 1) and flinched the first-period 

case at the purpose (9,1) 

within the plane ( t ). It had been seen there are 

three intervals for the amplitude-curve within 

the one amount wave. Within the first open interval of 

 3,0t   because the vertical magnetic term H

is multiplied, the magnitude of the amplitude of the wave-

curve is shriveled that conform to the stabilizing mechanism. 

Within the middle open interval of  .6,3t
 
It’s discovered 

that because the vertical magnetic term H  is multiplied, the 

magnitude of the amplitude of the wave-curve is multiplied 

creating a destabilizing impact. Within the third interval of

 9,6t , once more the amplitude of the wave 

has shriveled in its magnitude as H is multiplied. The 

twin role within the stability of behavior 

is discovered. Once the vertical magnetic term is replaced by 

the tangential magnetic term ,
H

 the 

alternative mechanisms is seen within the three intervals for 

the first-period case as shown in Figure (9). 

 

 

 

6. The Allowance for highly rotating fluids 

      In return back to the initial scheme of equation (36) and 

reformulated it within the light of the alternative choice style 

of the operator q as given by (29), within its growth are the 

differential kind rather than the integral kind. However, after 

we operative on each side of the equation (36) by the 

choice style of q yields 
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d
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     (55)                                                                         

This is the first-order nonlinear equation within the 

transcendental type. This equation controls the wave 

propagation on the interface between two extremely rotating 

fluids. The homotopy equation will be created   by 

introducing the parameter  1,0  so once 1  the initial 

eq. (55) is found. As 0  in it, the linear type arises. 

However, the homotopy equation will be in-built the shape 
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     (56)                                                                                                                                                                                                                                       

The two first terms in using the binomial expansion can be 

rearranged equation (56) in the form  
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                  (57)                                                                          

where 0 is defined here as     

 

                             

    
     .

2

212

210 gkk
k

HT 


 


 
       (58) 

Clearly, the solution of the linearized style of equation 

(57) characterized by an exponential in the time and having a 

negative rate 0 . Thus, the wave propagation on the 

interface contains a damping nature wherefrom the worth of 

the right-hand facet of (58) is positive else the 

infinite solution arises. This stability condition 

needs that,    

  

    g
k

k TH
211

                                          (59)  

At this stage, one can say that the linear stability condition in 

un-rotating fluids is equivalent to the corresponding condition 

in highly rotating fluids. 

    To study the problem within the nonlinear scope, one may 

apply the technology, of the parameter expansion [38] as 

   ...2
2

10                                                   (60) 
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Employing the expansion (60), using the homotopy expansion 

(44) and equating the identical powers of  on both sides of 

equation (59) yields 

  .0
tAe                                                                          (61) 

In view of (61), the first-order problem in  becomes 
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Eliminating the source that producing secular terms from (62) 

requires that 
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At this end, the exact solution of equation (62) has the form 
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The one iteration technology leads to the following 

approximate solution: 
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Clearly, the above solution has a damping in time within the 

parameter  has positive values. Employing (63) into (60) 

and letting 1 , we obtain                                                                  

.01616 0
333                                                   (66) 

From elementary pure mathematics, it is easy; to point 

out that the on top of frequency equation reads the 

identical condition for stability as found within the linear 

analysis, that is 

  
.00                                                                                (67) 

This means that the stability behavior within the nonlinear 

scope is adored the stability behavior within the linear scope. 

 

7. Conclusions 

    The investigation for a surface wave propagating on the 

free surface between of two superposed ferrofluids subjected 

to uniform rotation within the presence of the vertical or the 

tangential flux is taken into account. It's thought-about that 

the system is subjected to uniform rotating the frame 

references around the vertical axis. Equations of motion are 

solved victimization the conventional mods, during which the 

time-dependence leaves unknown. The appropriate nonlinear 

boundary conditions are applied that results in a derived 

nonlinear transcendental integro-differential equation within 

the elevation parameter. The special case of equal the angular 

speed of the two fluids is taken into account for simplicity. 

    Due to the very complicated problem, a perturbation 

technique is pressing to use so as to get the associate 

approximate solution. The employment of the homotopy 

perturbation technique may be a powerful [34-39]. The 

homotopy parameter has been introduced and also 

the homotopy transcendental equation created. The homotopy 

perturbation with the technology of the parameter growth has 

been applied within the conferred study. This technique ends 

up in a deriving the nonlinear frequency. The configuration of 

the nonlinear stability derived from the frequency equation 

for the first-time. A periodic solution for the amplitude  t
 

performs of the elevation surface was 

obtained victimization one iteration method. The numerical 

illustration showed that  

• The uniform rotation of the system wills suppers the 

destabilizing influence of the vertical field for statically 

stable system or the statically unstable one. This 

mechanism is determined within the linear  stability 

likewise 

as within the nonlinear stability. 

   • The uniform rotation of the system supports    

the helpful role within the application of the tangential 

magnetic field.  

• The rotating system behaves because of the  

 un-rotating system within the case of terribly 

 high rotation 

• The increase in rotation parameter decreases the cyclist of 

the wave answer. 

• The increase in the vertical magnetic term  will increase 

the amplitude of the wave solution, whereas  the tangential 

magnetic term plays the other role. 

 

References 

[1] A. S. Ramsey, W. H. Besant, 1954, A Treatise on 

Hydromechanics: Hydrodynamics, G. Bell,  



Journal of Computational Applied Mechanics, Vol. 49,No. 2, December 2018 

 

272 

 

[2]           CC Lin:" The Theory of Hydrodynamic Stability", 

Cambridge University Press, 1955, 155 頁, 15× 23cm, 22s 6d, Vol. 

11, No. 5, pp. 217, 1956.  

[3] S. Chandrasekhar, Hydrodynamic and Hydromagnetic 

Stability Oxford University Press Oxford Google Scholar, 1961.  

[4] H. F. Bauer, Coupled oscillations of a solidly rotating 

liquid bridge, Acta Astronautica, Vol. 9, No. 9, pp. 547-563, 1982.  

[5] Y. O. El-Dib, Capillary instability of an oscillating liquid 

column subjected to a periodic rigid-body rotation, Fluid dynamics 

research, Vol. 18, No. 1, pp. 17, 1996.  

[6] G. M. Moatimid, Y. O. El-Dib, Effects of an unsteady 

rotation on the electrohydrodynamic stability of a cylindrical 

interface, International journal of engineering science, Vol. 32, No. 

7, pp. 1183-1193, 1994.  

[7] F. F. Hatay, S. Biringen, G. Erlebacher, W. Zorumski, 

Stability of high‐speed compressible rotating Couette flow, Physics 

of Fluids A: Fluid Dynamics, Vol. 5, No. 2, pp. 393-404, 1993.  

[8] G. Sarma, P. C. Lu, S. Ostrach, Film Stability in a Vertical 

Rotating Tube with a Core‐Gas Flow, The Physics of Fluids, Vol. 

14, No. 11, pp. 2265-2277, 1971.  

[9] A. E.-M. A. Mohammed, A. G. El-Sakka, G. M. Sultan, 

Electrohydrodynamic stability of m= 0 mode of a rotating jet under a 

periodic field, Physica Scripta, Vol. 31, No. 3, pp. 193, 1985.  

[10] S. Leblanc, C. Cambon, Effects of the Coriolis force on the 

stability of Stuart vortices, Journal of Fluid Mechanics, Vol. 356, pp. 

353-379, 1998.  

[11] Y. O. El-Dib, The stability of a rigidly rotating magnetic 

fluid column effect of a periodic azimuthal magnetic field, Journal of 

Physics A: Mathematical and General, Vol. 30, No. 10, pp. 3585, 

1997.  

[12] K. Schwarz, Effect of rotation on the stability of advective 

flow in a horizontal fluid layer at a small Prandtl number, Fluid 

Dynamics, Vol. 40, No. 2, pp. 193-201, 2005.  

[13] R. HIDE, THE CHARACTER OF THE EQUILIBRIUM 

OF A HEAVY, VISCOUS, INCOMPRESSIBLE, ROTATING 

FLUID OF VARIABLE DENSITY: II. TWO SPECIAL CASES, 

The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 

9, No. 1, pp. 35-50, 1956.  

[14] L. Debnath, Exact solutions of the unsteady hydrodynamic 

and hydromagnetic boundary layer equations in a rotating fluid 

system, ZAMM‐Journal of Applied Mathematics and 

Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 

Vol. 55, No. 7‐8, pp. 431-438, 1975.  

[15] L. Dávalos‐Orozco, J. Aguilar‐Rosas, Rayleigh–Taylor 

instability of a continuously stratified fluid under a general rotation 

field, Physics of Fluids A: Fluid Dynamics, Vol. 1, No. 7, pp. 1192-

1199, 1989.  

[16] L. Dávalos-Orozco, Rayleigh-Taylor instability of two 

superposed fluids under imposed horizontal and parallel rotation and 

magnetic fields, Fluid dynamics research, Vol. 12, No. 5, pp. 243, 

1993.  

[17] B. Chakraborty, J. Chandra, Rayleigh–Taylor instability in 

the presence of rotation, The Physics of Fluids, Vol. 19, No. 12, pp. 

1851-1852, 1976.  

[18] B. Chakraborty, Hydromagnetic Rayleigh–Taylor 

instability of a rotating stratified fluid, The Physics of Fluids, Vol. 

25, No. 5, pp. 743-747, 1982.  

[19] L. Davalos-Orozco, Rayleigh-Taylor stability of a two-

fluid system under a general rotation field, Dynamics of atmospheres 

and oceans, Vol. 23, No. 1-4, pp. 247-255, 1996.  

[20] P. Sharma, R. Chhajlani, Effect of finite Larmor radius on 

the Rayleigh-Taylor instability of two component magnetized 

rotating plasma, Zeitschrift für Naturforschung A, Vol. 53, No. 12, 

pp. 937-944, 1998.  

[21] P. Hemamalini, S. A. Devi, Rayleigh-Taylor Instability of 

a Two-fluid Layer Subjected to Rotation and a Periodic Tangential 

Magnetic Field, FDMP: Fluid Dynamics & Materials Processing, 

Vol. 10, No. 4, pp. 491-501, 2014.  

[22] G. M. Moatimid, A. F. El-Bassiouny, Nonlinear interfacial 

Rayleigh–Taylor instability of two-layers flow with an ac electric 

field, Physica Scripta, Vol. 76, No. 2, pp. 105, 2007.  

[23] S. A. Devi, P. Hemamalini, Nonlinear Rayleigh–Taylor 

instability of two superposed magnetic fluids under parallel rotation 

and a normal magnetic field, Journal of magnetism and magnetic 

materials, Vol. 314, No. 2, pp. 135-139, 2007.  

[24] J. M. Stone, T. Gardiner, The magnetic Rayleigh-Taylor 

instability in three dimensions, The Astrophysical Journal, Vol. 671, 

No. 2, pp. 1726, 2007.  

[25] H. Yu, D. Livescu, Rayleigh–Taylor instability in 

cylindrical geometry with compressible fluids, Physics of Fluids, 

Vol. 20, No. 10, pp. 104103, 2008.  

[26] A. Joshi, M. C. Radhakrishna, N. Rudraiah, Rayleigh–

Taylor instability in dielectric fluids, Physics of Fluids, Vol. 22, No. 

6, pp. 064102, 2010.  

[27] H. G. Lee, K. Kim, J. Kim, On the long time simulation of 

the Rayleigh–Taylor instability, International Journal for Numerical 

Methods in Engineering, Vol. 85, No. 13, pp. 1633-1647, 2011.  

[28] L. Wang, W. Ye, X. He, Density gradient effects in weakly 

nonlinear ablative Rayleigh-Taylor instability, Physics of Plasmas, 

Vol. 19, No. 1, pp. 012706, 2012.  

[29] J. Tao, X. He, W. Ye, F. Busse, Nonlinear Rayleigh-Taylor 

instability of rotating inviscid fluids, Physical Review E, Vol. 87, 

No. 1, pp. 013001, 2013.  

[30] A. Piriz, Y. Sun, N. Tahir, Rayleigh-Taylor stability 

boundary at solid-liquid interfaces, Physical Review E, Vol. 88, No. 

2, pp. 023026, 2013.  



Y. O. El-Dib and A. A. Mady 

 

273 

 

[31] Y. Murakami, Second harmonic resonance on the 

marginally neutral curve in the Kelvin-Helmholtz flow, Physics 

Letters A, Vol. 131, No. 6, pp. 368-372, 1988.  

[32] Y. O. El-Dib, Nonlinear stability of surface waves in 

magnetic fluids: effect of a periodic tangential magnetic field, 

Journal of plasma physics, Vol. 49, No. 2, pp. 317-330, 1993.  

[33] Y. O. El-Dib, Nonlinear hydromagnetic Rayleigh–Taylor 

instability for strong viscous fluids in porous media, Journal of 

magnetism and magnetic materials, Vol. 260, No. 1-2, pp. 1-18, 

2003.  

[34] J.-H. He, Homotopy perturbation technique, Computer 

methods in applied mechanics and engineering, Vol. 178, No. 3-4, 

pp. 257-262, 1999.  

[35] J.-H. He, Application of homotopy perturbation method to 

nonlinear wave equations, Chaos, Solitons & Fractals, Vol. 26, No. 

3, pp. 695-700, 2005.  

[36] J.-H. He, Homotopy perturbation method with two 

expanding parameters, Indian journal of Physics, Vol. 88, No. 2, pp. 

193-196, 2014.  

[37] Y. O. El-Dib, Multiple scales homotopy perturbation 

method for nonlinear oscillators, Nonlinear Sci. Lett. A, Vol. 8, No. 

4, pp. 352-364, 2017.  

[38] J.-H. He, Homotopy perturbation method with an auxiliary 

term, in Proceeding of, Hindawi, pp.  

[39] Y. El-Dib, Stability Analysis of a Strongly Displacement 

Time-Delayed Duffing Oscillator Using Multiple Scales Homotopy 

Perturbation Method, Journal of Applied and Computational 

Mechanics, Vol. 4, No. 4, pp. 260-274, 2018.  

[40] R. Rosensweig, Ferrohydrodynamics Cambridge 

University Press Cambridge, New York, Melbourne, 1985.  

[41] J. R. Melcher, 1963, Field-coupled surface waves, MIT,  

[42] P. Weidman, M. Goto, A. Fridberg, On the instability of 

inviscid, rigidly rotating immiscible fluids in zero gravity, Zeitschrift 

für angewandte Mathematik und Physik ZAMP, Vol. 48, No. 6, pp. 

921-950, 1997.  

[43] Y. O. El-Dib, Viscous interface instability supporting free-

surface currents in a hydromagnetic rotating fluid column, Journal of 

plasma physics, Vol. 65, No. 1, pp. 1-28, 2001.  

[44] Y. O. El-Dib, A. Y. Ghaly, Nonlinear interfacial stability 

for magnetic fluids in porous media, Chaos, Solitons & Fractals, 

Vol. 18, No. 1, pp. 55-68, 2003. 

 


