[1] F. Salvador, J.-V. Romero, M.-D. Roselló, D. Jaramillo, Numerical simulation of primary atomization in diesel spray at low injection pressure, Journal of Computational and Applied Mathematics, 2015.
[2] R. B. Medvitz, R. F. Kunz, D. A. Boger, J. W. Lindau, A. M. Yocum, L. L. Pauley, Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD, Journal of Fluids Engineering, Vol. 124, No. 2, pp. 377-383, 2002.
[3] R. Kolakaluri, S. Subramaniam, M. Panchagnula, Trends in multiphase modeling and simulation of sprays, International Journal of Spray and Combustion Dynamics, Vol. 6, No. 4, pp. 317-356, 2014.
[4] A. Irannejad, F. Jaberi, Numerical study of high speed evaporating sprays, International Journal of Multiphase Flow, Vol. 70, pp. 58-76, 2015.
[5] S. Subramaniam, Lagrangian–Eulerian methods for multiphase flows, Progress in Energy and Combustion Science, Vol. 39, No. 2, pp. 215-245, 2013.
[6] R. O. Fox, Large-eddy-simulation tools for multiphase flows, Annual Review of Fluid Mechanics, Vol. 44, pp. 47-76, 2012.
[7] R. Saurel, O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, Journal of Fluid Mechanics, Vol. 431, pp. 239-271, 2001.
[8] S. O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of computational physics, Vol. 100, No. 1, pp. 25-37, 1992.
[9] V. Coralic, T. Colonius, Finite-volume WENO scheme for viscous compressible multicomponent flows, Journal of computational physics, Vol. 274, pp. 95-121, 2014.
[10] D. A. Drew, S. L. Passman, Theory of multicomponent fluids, volume 135 of Applied Mathematical Sciences, Springer-Verlag, New York, 1999.
[11] D. A. Drew, Mathematical modeling of two-phase flow, DTIC Document, pp. 1982.
[12] M. Baer, J. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, International journal of multiphase flow, Vol. 12, No. 6, pp. 861-889, 1986.
[13] R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, Journal of Computational Physics, Vol. 150, No. 2, pp. 425-467, 1999.
[14] S. Kuila, T. R. Sekhar, D. Zeidan, A Robust and accurate Riemann solver for a compressible two-phase flow model, Applied Mathematics and Computation, Vol. 265, pp. 681-695, 2015.
[15] C.-T. Ha, W.-G. Park, C.-M. Jung, Numerical simulations of compressible flows using multi-fluid models, International Journal of Multiphase Flow, Vol. 74, pp. 5-18, 2015.
[16] A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, Vol. 202, No. 2, pp. 664-698, 2005.
[17] G. Perigaud, R. Saurel, A compressible flow model with capillary effects, Journal of Computational Physics, Vol. 209, No. 1, pp. 139-178, 2005.
[18] F. Xiao, S. Ii, C. Chen, Revisit to the THINC scheme: a simple algebraic VOF algorithm, Journal of Computational Physics, Vol. 230, No. 19, pp. 7086-7092, 2011.
[19] K. So, X. Hu, N. Adams, Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, Journal of Computational Physics, Vol. 231, No. 11, pp. 4304-4323, 2012.
[20] A. Tiwari, J. B. Freund, C. Pantano, A diffuse interface model with immiscibility preservation, Journal of computational physics, Vol. 252, pp. 290-309, 2013.
[21] R. K. Shukla, C. Pantano, J. B. Freund, An interface capturing method for the simulation of multi-phase compressible flows, Journal of Computational Physics, Vol. 229, No. 19, pp. 7411-7439, 2010.
[22] H. Luo, J. D. Baum, R. Lohner, Extension of Harten-Lax-van Leer Scheme for Flows at All Speeds, AIAA journal, Vol. 43, No. 6, pp. 1160-1166, 2005.
[23] Y. Rong, Y. Wei, A flux vector splitting scheme for low Mach number flows in preconditioning method, Applied Mathematics and Computation, Vol. 242, pp. 296-308, 2014.
[24] E. Turkel, Preconditioning techniques in computational fluid dynamics, Annual Review of Fluid Mechanics, Vol. 31, No. 1, pp. 385-416, 1999.
[25] E. Turkel, V. Vasta, R. Radespiel, Preconditioning Methods for Low-Speed Flows, DTIC Document, pp. 1996.
[26] S. LeMartelot, B. Nkonga, R. Saurel, Liquid and liquid–gas flows at all speeds, Journal of Computational Physics, Vol. 255, pp. 53-82, 2013.
[27] E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, Journal of computational physics, Vol. 72, No. 2, pp. 277-298, 1987.
[28] X.-s. Li, C.-w. Gu, Mechanism and Improvement of the Harten-Lax-van Leer Scheme for All-Speed Flows, arXiv preprint arXiv:1111.4885, 2011.
[29] A. Murrone, H. Guillard, Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model, Computers & Fluids, Vol. 37, No. 10, pp. 1209-1224, 2008.
[30] E. F. Toro, 2009, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer Science & Business Media,
[31] A. Harten, P. D. Lax, B. v. Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM review, Vol. 25, No. 1, pp. 35-61, 1983.
[32] K.-M. Shyue, F. Xiao, An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach, Journal of Computational Physics, Vol. 268, pp. 326-354, 2014.
[33] K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems, Journal of Computational Physics, Vol. 142, No. 1, pp. 208-242, 1998.
[34] F. Harlow, A. Amsden, Fluid dynamics: A LASL monograph(Mathematical solutions for problems in fluid dynamics), 1971.
[35] T. FlÅtten, A. Morin, S. T. Munkejord, On solutions to equilibrium problems for systems of stiffened gases, SIAM Journal on Applied Mathematics, Vol. 71, No. 1, pp. 41-67, 2011.
[36] B. van Leer, Towards the ultimate conservative difference scheme, Journal of Computational Physics, Vol. 135, No. 2, pp. 229-248, 1997.
[37] J. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling surface tension, Journal of computational physics, Vol. 100, No. 2, pp. 335-354, 1992.
[38] N. T. Nguyen, M. Dumbser, A path-conservative finite volume scheme for compressible multi-phase flows with surface tension, Applied Mathematics and Computation, Vol. 271, pp. 959-978, 2015.
[39] H. Terashima, G. Tryggvason, A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, Journal of Computational Physics, Vol. 228, No. 11, pp. 4012-4037, 2009.
[40] R. R. Nourgaliev, T.-N. Dinh, T. G. Theofanous, Adaptive characteristics-based matching for compressible multifluid dynamics, Journal of Computational Physics, Vol. 213, No. 2, pp. 500-529, 2006.
[41] N. Bourne, J. Field, Bubble collapse and the initiation of explosion, in Proceeding of, The Royal Society, pp. 423-435.
[42] S. Majidi, A. Afshari, A ghost fluid method for sharp interface simulations of compressible multiphase flows, Journal of Mechanical Science and Technology, Vol. 30, No. 4, pp. 1581-1593, 2016.
[43] K.-M. Shyue, A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions, Journal of Computational Physics, Vol. 215, No. 1, pp. 219-244, 2006.
[44] X. Hu, N. Adams, G. Iaccarino, On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow, Journal of Computational Physics, Vol. 228, No. 17, pp. 6572-6589, 2009.
[45] J. W. Grove, R. Menikoff, Anomalous reflection of a shock wave at a fluid interface, Journal of Fluid Mechanics, Vol. 219, pp. 313-336, 1990.
[46] D. E. Fyfe, E. S. Oran, M. Fritts, Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh, Journal of Computational Physics, Vol. 76, No. 2, pp. 349-384, 1988.
[47] J. Martin, W. Moyce, Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 244, No. 882, pp. 312-324, 1952.
[48] H. Guillard, C. Viozat, On the behaviour of upwind schemes in the low Mach number limit, Computers & fluids, Vol. 28, No. 1, pp. 63-86, 1999.
[49] S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, L. Tobiska, Quantitative benchmark computations of two‐dimensional bubble dynamics, International Journal for Numerical Methods in Fluids, Vol. 60, No. 11, pp. 1259-1288, 2009.
[50] R. Clift, J. R. Grace, M. E. Weber, 2005, Bubbles, drops, and particles, Courier Corporation,