A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

Document Type : Research Paper

Authors

1 School of Mechanical Engineering, College of Engineering University of Tehran, Tehran, Iran

2 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran

Abstract

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied to reduce the excessive diffusion of the method at the interface. In this work, preconditioning technique is used in a system of equations including viscous and capillary effects. Several one- and two-dimensional test cases are used to evaluate the performance and accuracy of this method. Numerical results demonstrate the efficiency of preconditioning in low Mach number flows. Comparisons between results of preconditioned and conventional system highlight the necessity of using preconditioning technique to reproduce main characteristics of low-speed flow regimes. Additionally, preconditioned systems transform to the conventional systems at high Mach number flows thus exhibiting the same level of accuracy as the standard flow solver. Therefore, the preconditioned compressible two-phase method can be used as an all-speed two-phase flow solver accounting for capillary and viscous stresses.

Keywords

Main Subjects

[1]           F. Salvador, J.-V. Romero, M.-D. Roselló, D. Jaramillo, Numerical simulation of primary atomization in diesel spray at low injection pressure, Journal of Computational and Applied Mathematics, 2015.
[2]           R. B. Medvitz, R. F. Kunz, D. A. Boger, J. W. Lindau, A. M. Yocum, L. L. Pauley, Performance analysis of cavitating flow in centrifugal pumps using multiphase CFD, Journal of Fluids Engineering, Vol. 124, No. 2, pp. 377-383, 2002.
[3]           R. Kolakaluri, S. Subramaniam, M. Panchagnula, Trends in multiphase modeling and simulation of sprays, International Journal of Spray and Combustion Dynamics, Vol. 6, No. 4, pp. 317-356, 2014.
[4]           A. Irannejad, F. Jaberi, Numerical study of high speed evaporating sprays, International Journal of Multiphase Flow, Vol. 70, pp. 58-76, 2015.
[5]           S. Subramaniam, Lagrangian–Eulerian methods for multiphase flows, Progress in Energy and Combustion Science, Vol. 39, No. 2, pp. 215-245, 2013.
[6]           R. O. Fox, Large-eddy-simulation tools for multiphase flows, Annual Review of Fluid Mechanics, Vol. 44, pp. 47-76, 2012.
[7]           R. Saurel, O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, Journal of Fluid Mechanics, Vol. 431, pp. 239-271, 2001.
[8]           S. O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of computational physics, Vol. 100, No. 1, pp. 25-37, 1992.
[9]           V. Coralic, T. Colonius, Finite-volume WENO scheme for viscous compressible multicomponent flows, Journal of computational physics, Vol. 274, pp. 95-121, 2014.
[10]         D. A. Drew, S. L. Passman, Theory of multicomponent fluids, volume 135 of Applied Mathematical Sciences, Springer-Verlag, New York, 1999.
[11]         D. A. Drew, Mathematical modeling of two-phase flow, DTIC Document,  pp. 1982.
[12]         M. Baer, J. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, International journal of multiphase flow, Vol. 12, No. 6, pp. 861-889, 1986.
[13]         R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, Journal of Computational Physics, Vol. 150, No. 2, pp. 425-467, 1999.
[14]         S. Kuila, T. R. Sekhar, D. Zeidan, A Robust and accurate Riemann solver for a compressible two-phase flow model, Applied Mathematics and Computation, Vol. 265, pp. 681-695, 2015.
[15]         C.-T. Ha, W.-G. Park, C.-M. Jung, Numerical simulations of compressible flows using multi-fluid models, International Journal of Multiphase Flow, Vol. 74, pp. 5-18, 2015.
[16]         A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, Vol. 202, No. 2, pp. 664-698, 2005.
[17]         G. Perigaud, R. Saurel, A compressible flow model with capillary effects, Journal of Computational Physics, Vol. 209, No. 1, pp. 139-178, 2005.
[18]         F. Xiao, S. Ii, C. Chen, Revisit to the THINC scheme: a simple algebraic VOF algorithm, Journal of Computational Physics, Vol. 230, No. 19, pp. 7086-7092, 2011.
[19]         K. So, X. Hu, N. Adams, Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, Journal of Computational Physics, Vol. 231, No. 11, pp. 4304-4323, 2012.
[20]         A. Tiwari, J. B. Freund, C. Pantano, A diffuse interface model with immiscibility preservation, Journal of computational physics, Vol. 252, pp. 290-309, 2013.
[21]         R. K. Shukla, C. Pantano, J. B. Freund, An interface capturing method for the simulation of multi-phase compressible flows, Journal of Computational Physics, Vol. 229, No. 19, pp. 7411-7439, 2010.
[22]         H. Luo, J. D. Baum, R. Lohner, Extension of Harten-Lax-van Leer Scheme for Flows at All Speeds, AIAA journal, Vol. 43, No. 6, pp. 1160-1166, 2005.
[23]         Y. Rong, Y. Wei, A flux vector splitting scheme for low Mach number flows in preconditioning method, Applied Mathematics and Computation, Vol. 242, pp. 296-308, 2014.
[24]         E. Turkel, Preconditioning techniques in computational fluid dynamics, Annual Review of Fluid Mechanics, Vol. 31, No. 1, pp. 385-416, 1999.
[25]         E. Turkel, V. Vasta, R. Radespiel, Preconditioning Methods for Low-Speed Flows, DTIC Document,  pp. 1996.
[26]         S. LeMartelot, B. Nkonga, R. Saurel, Liquid and liquid–gas flows at all speeds, Journal of Computational Physics, Vol. 255, pp. 53-82, 2013.
[27]         E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, Journal of computational physics, Vol. 72, No. 2, pp. 277-298, 1987.
[28]         X.-s. Li, C.-w. Gu, Mechanism and Improvement of the Harten-Lax-van Leer Scheme for All-Speed Flows, arXiv preprint arXiv:1111.4885, 2011.
[29]         A. Murrone, H. Guillard, Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model, Computers & Fluids, Vol. 37, No. 10, pp. 1209-1224, 2008.
[30]         E. F. Toro, 2009, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer Science & Business Media,
[31]         A. Harten, P. D. Lax, B. v. Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM review, Vol. 25, No. 1, pp. 35-61, 1983.
[32]         K.-M. Shyue, F. Xiao, An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach, Journal of Computational Physics, Vol. 268, pp. 326-354, 2014.
[33]         K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems, Journal of Computational Physics, Vol. 142, No. 1, pp. 208-242, 1998.
[34]         F. Harlow, A. Amsden, Fluid dynamics: A LASL monograph(Mathematical solutions for problems in fluid dynamics), 1971.
[35]         T. FlÅtten, A. Morin, S. T. Munkejord, On solutions to equilibrium problems for systems of stiffened gases, SIAM Journal on Applied Mathematics, Vol. 71, No. 1, pp. 41-67, 2011.
[36]         B. van Leer, Towards the ultimate conservative difference scheme, Journal of Computational Physics, Vol. 135, No. 2, pp. 229-248, 1997.
[37]         J. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling surface tension, Journal of computational physics, Vol. 100, No. 2, pp. 335-354, 1992.
[38]         N. T. Nguyen, M. Dumbser, A path-conservative finite volume scheme for compressible multi-phase flows with surface tension, Applied Mathematics and Computation, Vol. 271, pp. 959-978, 2015.
[39]         H. Terashima, G. Tryggvason, A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, Journal of Computational Physics, Vol. 228, No. 11, pp. 4012-4037, 2009.
[40]         R. R. Nourgaliev, T.-N. Dinh, T. G. Theofanous, Adaptive characteristics-based matching for compressible multifluid dynamics, Journal of Computational Physics, Vol. 213, No. 2, pp. 500-529, 2006.
[41]         N. Bourne, J. Field, Bubble collapse and the initiation of explosion, in Proceeding of, The Royal Society, pp. 423-435.
[42]         S. Majidi, A. Afshari, A ghost fluid method for sharp interface simulations of compressible multiphase flows, Journal of Mechanical Science and Technology, Vol. 30, No. 4, pp. 1581-1593, 2016.
[43]         K.-M. Shyue, A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions, Journal of Computational Physics, Vol. 215, No. 1, pp. 219-244, 2006.
[44]         X. Hu, N. Adams, G. Iaccarino, On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow, Journal of Computational Physics, Vol. 228, No. 17, pp. 6572-6589, 2009.
[45]         J. W. Grove, R. Menikoff, Anomalous reflection of a shock wave at a fluid interface, Journal of Fluid Mechanics, Vol. 219, pp. 313-336, 1990.
[46]         D. E. Fyfe, E. S. Oran, M. Fritts, Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh, Journal of Computational Physics, Vol. 76, No. 2, pp. 349-384, 1988.
[47]         J. Martin, W. Moyce, Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 244, No. 882, pp. 312-324, 1952.
[48]         H. Guillard, C. Viozat, On the behaviour of upwind schemes in the low Mach number limit, Computers & fluids, Vol. 28, No. 1, pp. 63-86, 1999.
[49]         S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, L. Tobiska, Quantitative benchmark computations of two‐dimensional bubble dynamics, International Journal for Numerical Methods in Fluids, Vol. 60, No. 11, pp. 1259-1288, 2009.
[50]         R. Clift, J. R. Grace, M. E. Weber, 2005, Bubbles, drops, and particles, Courier Corporation,
Volume 50, Issue 1
June 2019
Pages 41-53
  • Receive Date: 15 March 2018
  • Revise Date: 16 August 2018
  • Accept Date: 22 August 2018