Free Vibration Analysis of BNNT with Different Cross-Sections via Nonlocal FEM

Document Type: Research Paper

Authors

1 Uludağ University, Civil Engineering Department, Bursa, TURKIYE

2 Akdeniz University, Civil Engineering Department, Antalya, TURKIYE

Abstract

In the present study, free vibration behaviors of of carbon nanotube (CNT) and boron nitride nanotube (BNNT) have been investigated via Eringen’s nonlocal continuum theory. Size effect has been considered via nonlocal continuum theory. Nanotubes have become popular in the world of science thanks to their characteristic properties. In this study, free vibrations of Boron Nitride Nanotube (BNNT) and Carbon Nanotube (CNT) are calculated using the Nonlocal Elasticity Theory. Frequency values are found via both analytical and finite element method (FEM). Galerkin weighted residual method is used to obtain the finite element equations. BNNT and CNT are modeled as Euler - Bernoulli Beam and solutions are gained by using four different cross-section geometries with three boundary conditions. Selected geometries are circle, rectangle, triangle, and square. Frequency values are given in tables and graphs. The effect of cross-section, boundary conditions and length scale parameter on frequencies has been investigated in detail for BNNT.

Keywords

Main Subjects


[1] R. P. Feynman, There’s plenty of room at the bottom, Engineering and Science, Vol. 23, No. 5, pp. 22–36, 1960.

[2] S. Gopalakrishnan, S. Narendar, 2013, Wave propagation in nanostructures: nonlocal continuum mechanics formulations, Springer International Publishing Switzerland.

[3] S. Iijima, Helical microtubules of graphitic carbon, Nature, Vol. 354, pp. 56-58, 1991.

[4] B. Akgöz, 2009, Karbon Nanotüplerin Kiriş Modeli ve Titreşim Hesabı, Akdeniz Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bitirme Çalışması, Antalya.

[5] A. Rubio, J. L. Corkill, M. L. Cohen, Theory of graphitic boron nitride nanotubes, Physical Review B, Vol. 49, No. 7, pp. 5081-5084, 1994.

[6] X. Blase, A. Rubio, S. G. Louie, M. L. Cohen, Stability and band gap constancy of boron nitride nanotubes, EPL (Europhysics Letters), Vol. 28, No. 5, pp. 335-340, 1994.

[7] N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Boron nitride nanotubes. Science, Vol. 269, pp. 966-967, 1995.

[8] M. Schulz, V. Shanov, Z. Yin, 2013, Nanotube Superfiber Materials: Changing Engineering Design2013; William Andrew.

[9] Ç. Işık, 2011, Nano ve Mikro Yapıların Yerel Olmayan Elastisite Teorisi İle Eğilme ve Titreşim Hesabı, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Antalya.

[10] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, Vol. 54, No. 9, pp. 4703-4710, 1983.

[11] J. N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science,Vol. 45, No. 2-8, pp. 288-307, 2007.

[12] S. Kong, S. Zhou, Z. Nie, K. Wang, The size-dependent natural frequency of Bernoulli–Euler micro-beams, International Journal of Engineering Science, Vol. 46, No. 5, pp. 427-437, 2008.

[13] Ö. Civalek, Ç. Demir, Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory, Applied Mathematical Modelling, Vol. 35, No. 5, pp. 2053-2067, 2011.

[14] M. A. Eltaher, A. E. Alshorbagy, F. F. Mahmoud, Vibration analysis of Euler–Bernoulli nanobeams by using finite element method, Applied Mathematical Modelling, Vol. 37, No. 7, pp. 4787-4797, 2013.

[15] I. A. Khan,  S. M. Hashemi, On Finite Element Vibration Analysis of Carbon Nanotubes, In Perusal of the Finite Element Method, InTech, pp. 69-88, 2016.

[16] Ç. Dinçkal, Free vibration analysis of carbon nanotubes by using finite element method, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Vol. 40, No. 1, pp. 43-55, 2016.

[17] A. Norouzzadeh, R. Ansari, Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity, Physica E: Low-dimensional Systems and Nanostructures, Vol. 88, pp. 194-200, 2017.

[18] Ç. Demir, Ö. Civalek, Nonlocal finite element formulation for vibration, International Journal of Engineering & Applied Sciences, Vol. 8, No. 2, pp. 109-117, 2016.

[19] J. N. Reddy, S. D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of Applied Physics, Vol. 103, No. 2, 023511, 2008.

[20] B. Akgöz, Ö. Civalek, Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory, Composite Structures, Vol. 98, pp.  314-322, 2013.

[21] C. M. Wang, Y. Y. Zhang, X. Q. He, Vibration of nonlocal Timoshenko beams, Nanotechnology, Vol. 18, No. 10, pp. 105401-105409, 2007.

[22] S. Thai, H. T. Thai, T. P. Vo, V. I. Patel, A simple shear deformation theory for nonlocal beams, Composite Structures, Vol. 183, pp. 262-270, 2018.

[23] Ç. Işık, 2018, Mikro ve Nano Ölçekli Mekanik Sistemlerin Modellenmesinde Yerel Olmayan Sonlu Eleman Formülasyonu, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı, Doktora Tezi, Antalya.

[24] M. H. Omurtag, 2010, Çubuk sonlu elemanlar, Birsen Yayınevi.

[25] K. Mercan, Ö. Civalek,  DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix, Composite Structures, Vol. 143, pp. 300-309, 2016.

[26] Ö. Civalek, Ç. Demir, Buckling and bending analyses of cantilever carbon nanotubes using the euler-bernoulli beam theory based on non-local continuum model, Asian Journal of Civil Engineering, Vol. 12, No  5, pp. 651-661, 2011.

[27] K. Mercan, Ö. Civalek,  Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ, Composites Part B, Vol. 114, pp. 34-45, 2017.

[28] H. M. Sedighi, A. Reza,  J. Zare, Dynamic analysis of preload nonlinearity in nonlinear beam vibration, Journal of Vibroengineering, Vol. 13, pp.778-787, 2011.

[29] B. Akgöz, Ö. Civalek, Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, Journal of Computational and Theoretical Nanoscience, Vol. 8, pp. 1821-1827, 2011.

[30] Ö. Civalek, 1998, Finite Element analysis of plates and shells. Elazığ: Fırat University, in Turkish.

[31] M. Hosseini, H. H. Gorgani, M. ShishesazA. Hadi,  Size-Dependent Stress Analysis of Single-Wall Carbon Nanotube Based on ‎Strain Gradient Theory, International Journal of Applied Mechanics, Vol. 09, p. ‎‎1750087, 2017.

‎[32] M. HosseiniM. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally ‎graded materials, International Journal of Engineering Science, Vol. 109, pp. 29-53, ‎‎2016.

‎[33] M. Shishesaz, A. Malekshahi, A. Hadi, M. Hosseini, A review of size-dependent elasticity for nanostructures, Journal of ‎Computational Applied Mechanics, Vol. 49, pp. 197-211, 2018.‎

‎[34] M. Shishesaz, M. Hosseini, K. N. TahanA. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on ‎the strain gradient theory, Acta Mechanica, Vol. 228, pp. 4141-4168, 2017. ‎

‎[35] A. Hadi, M. Z. Nejad, M. Hossein, Vibrations of three-dimensionally graded nanobeams, International Journal of ‎Engineering Science, Vol. 128, pp. 12-23, 2018. ‎

[36] M. M. Adeli, A. Hadi, M. Hosseini, H. H. Gorgani, Torsional vibration of nano-cone based on nonlocal strain gradient elasticity ‎theory, The European Physical Journal Plus, Vol. 132, pp. 393, 2017.‎

[37] A. Hadi, M. Z. Nejad, M. Hossein, A. Rastgoo, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying ‎properties based on consistent couple-stress theory, Steel and Composite ‎Structures, Vol. 26, No. 6, pp. 663-672, 2018.

[38] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016.

[39] A. Daneshmehr, A. Rajabpoor,  A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, Vol. 95, pp. 23-35, 2015.

[40] A. Zargaripoor, A. Daneshmehr, I. I. Hosseini, A. Rajabpoor, Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method, Journal of Computational Applied Mechanics, Vol. 49, No. 1, 2018.

[41] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016.

[42] M. Z. Nejad, A. Hadi, Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams. International Journal of Engineering Science, Vol. 106, pp. 1-9, 2016.

[43] M. Hosseini, H. H. Gorgani, M. Shishesaz, A. Hadi, Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory, International Journal of Applied Mechanics, Vol. 9, No. 06, p.1750087, 2017.

[44] M. Z. Nejad, A. Hadi, A. Farajpour, Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials, Structural Engineering and Mechanics, Vol. 63, No. 2, pp. 161-169, 2017.

[45] A. Hadi, M. Z. Nejad, M. Hosseini, Vibrations of three-dimensionally graded nanobeams, International Journal of Engineering Science, Vol. 128, pp. 12-23, 2018.

[46] M. R. Farajpour, A. R. Shahidi, A. Hadi, A. Farajpour, Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms, Mechanics of Advanced Materials and Structures, pp. 1-13, 2018.

[47] A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, Steel and Composite Structures, Vol. 26, No. 6, pp. 663-672, 2018.

[48] A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, Numerical modelling of a spheroid living cell membrane under hydrostatic pressure, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 8, pp. 083501, 2018.