[1] A. Aziz, S. E. Huq, Perturbation solution for convecting fin with variable thermal conductivity, Journal of Heat transfer, Vol. 97, No. 2, pp. 300-301, 1975.
[2] A. Aziz, Perturbation solution for convective fin with internal heat generation and temperature dependent thermal conductivity, International Journal of Heat and Mass Transfer, Vol. 20, No. 11, pp. 1253-1255, 1977.
[3] S. Mosayebidorcheh, D. Ganji, M. Farzinpoor, Approximate solution of the nonlinear heat transfer equation of a fin with the power-law temperature-dependent thermal conductivity and heat transfer coefficient, Propulsion and Power Research, Vol. 3, No. 1, pp. 41-47, 2014.
[4] D. Ganji, A. Dogonchi, Analytical investigation of convective heat transfer of a longitudinal fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation, International Journal of Physical Sciences, Vol. 9, No. 21, pp. 466-474, 2014.
[5] A. Aziz, M. Bouaziz, A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy conversion and Management, Vol. 52, No. 8-9, pp. 2876-2882, 2011.
[6] K. Hosseini, B. Daneshian, N. Amanifard, R. Ansari, Homotopy analysis method for a fin with temperature dependent internal heat generation and thermal conductivity, International Journal of Nonlinear Science, Vol. 14, No. 2, pp. 201-210, 2012.
[7] S. E. Ghasemi, M. Hatami, D. Ganji, Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation, Case Studies in Thermal Engineering, Vol. 4, pp. 1-8, 2014.
[8] M. Hatami, G. R. M. Ahangar, D. Ganji, K. Boubaker, Refrigeration efficiency analysis for fully wet semi-spherical porous fins, Energy conversion and management, Vol. 84, pp. 533-540, 2014.
[9] M. Hatami, D. Ganji, M. Gorji-Bandpy, Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery, Case Studies in Thermal Engineering, Vol. 4, pp. 53-64, 2014.
[10] M. Hatami, D. Ganji, M. Gorji-Bandpy, Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition, Applied Thermal Engineering, Vol. 75, pp. 580-591, 2015.
[11] M. Hatami, D. Ganji, Thermal behavior of longitudinal convective–radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4), Ceramics International, Vol. 40, No. 5, pp. 6765-6775, 2014.
[12] M. Hatami, M. Jafaryar, D. Ganji, M. Gorji-Bandpy, Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques, International Communications in Heat and Mass Transfer, Vol. 57, pp. 254-263, 2014.
[13] M. T. Atay, S. B. Coşkun, Comparative analysis of power-law fin-type problems using variational iteration method and finite element method, Mathematical Problems in Engineering, Vol. 2008, 2008.
[14] M. Chowdhury, I. Hashim, O. Abdulaziz, Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems, Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, pp. 371-378, 2009.
[15] R. Moitsheki, T. Hayat, M. Malik, Some exact solutions of the fin problem with a power law temperature-dependent thermal conductivity, Nonlinear Analysis: Real World Applications, Vol. 11, No. 5, pp. 3287-3294, 2010.
[16] F. Khani, M. A. Raji, H. H. Nejad, Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 8, pp. 3327-3338, 2009.
[17] G. Domairry, M. Fazeli, Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, pp. 489-499, 2009.
[18] S. B. Coşkun, M. T. Atay, Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method, Applied Thermal Engineering, Vol. 28, No. 17-18, pp. 2345-2352, 2008.
[19] E. M. Languri, D. Ganji, N. Jamshidi, Variational Iteration and Homotopy perturbation methods for fin efficiency of convective straight fins with temperature dependent thermal conductivity. 5th WSEAS Int, in Proceeding of, 25-27.
[20] G. O. andGbeminiyi Sobamowo, Galerkin’s Method of Weighted Residual for a Convective Straight Fin with Temperature-dependent Conductivity and Internal Heat Generation, International Journal of Engineering and Technology, Vol. 6, No. 12, 2016.
[21] U. Filobello-Niño, H. Vazquez-Leal, K. Boubaker, Y. Khan, A. Perez-Sesma, A. Sarmiento-Reyes, V. Jimenez-Fernandez, A. Diaz-Sanchez, A. Herrera-May, J. Sanchez-Orea, Perturbation method as a powerful tool to solve highly nonlinear problems: the case of Gelfand's equation, Asian Journal of Mathematics & Statistics, Vol. 6, No. 2, pp. 76, 2013.
[22] C. Lim, B. Wu, Modified Mickens procedure for certain non-linear oscillators, Academic Press, 2002.
[23] Y. Cheung, S. Chen, S. Lau, A modified Lindstedt-Poincaré method for certain strongly non-linear oscillators, International Journal of Non-Linear Mechanics, Vol. 26, No. 3-4, pp. 367-378, 1991.
[24] R. W. Lewis, P. Nithiarasu, K. N. Seetharamu, 2004, Fundamentals of the finite element method for heat and fluid flow, John Wiley & Sons,
[25] M. Sobamowo, L. Jayesimi, M. Waheed, Magnetohydrodynamic squeezing flow analysis of nanofluid under the effect of slip boundary conditions using variation of parameter method, Karbala International Journal of Modern Science, 2018.
[26] G. Oguntala, R. A. Abd-Alhameed, Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method, 2018.
[27] M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics Vol, Vol. 8, No. 4, pp. 788-805, 2016.
[28] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, Vol. 509, pp. 100-114, 2017.
[29] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, Journal of Solid Mechanics, Vol. 7, No. 3, pp. 299-311, 2015.
[30] M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version of differential quadrature method, 2011.
[31] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature effect on vibration analysis of annular graphene sheet embedded on visco-Pasternak foundation, 2013.
[32] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco-Pasternak foundation, 2014.
[33] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[34] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates, Composite Structures, Vol. 140, pp. 323-336, 2016.
[35] M. Mohammadi, A. Farajpour, A. Moradi, M. Ghayour, Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment, Composites Part B: Engineering, Vol. 56, pp. 629-637, 2014.
[36] A. Farajpour, M. Danesh, M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 719-727, 2011.
[37] A. Farajpour, M. Mohammadi, A. Shahidi, M. Mahzoon, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 10, pp. 1820-1825, 2011.
[38] M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mechanics Research Communications, Vol. 39, No. 1, pp. 23-27, 2012.
[39] A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, Vol. 94, No. 5, pp. 1605-1615, 2012.
[40] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.