[1] M. Choulaie, A. Khademifar, Nonlinear Vibration and Stability Analysis of Beam on the Variable Viscoelastic Foundation, Journal of Computational Applied Mechanics, Vol. 48, No. 1, pp. 99-110, 2017.
[2] R. Attarnejad, A. M. Ershadbakhsh, Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution, Journal of Computational Applied Mechanics, Vol. 47, No. 2, pp. 159-180, 2016.
[3] M. Zakeri, R. Attarnejad, Numerical free vibration analysis of higher-order shear deformable beams resting on two-parameter elastic foundation, Journal of Computational Applied Mechanics, Vol. 46, No. 2, pp. 117-131, 2015.
[4] R. Fallahzadeh, M. Shariyat, Dynamic responses of poroelastic beams with attached mass-spring systems and time-dependent, non-ideal supports subjected to moving loads: An analytical approach, Journal of Computational Applied Mechanics, Vol. 46, No. 2, pp. 133-151, 2015.
[5] K. J. Bathe, 2014, Finite element procedures, Prentice-Hall, NJ.
[6] M. Rezaiee-Pajand, M. Hashemian, Time integration method based on discrete transfer function, International Journal of Structural Stability and Dynamics, Vol. 16, No. 05, pp. 1550009, 2016.
[7] F. Tornabene, R. Dimitri, E. Viola, TRANSIENT DYNAMIC RESPONSE OF GENERALLY-SHAPED ARCHES BASED ON A GDQ-TIME-STEPPING METHOD, International Journal of Mechanical Sciences, 2016.
[8] D. Soares, An implicit family of time marching procedures with adaptive dissipation control, Applied Mathematical Modelling, Vol. 40, No. 4, pp. 3325-3341, 2016.
[9] S. Mohammadzadeh, M. Ghassemieh, Y. Park, Structure-dependent Improved Wilson-θ Method with Higher Order of Accuracy and Controllable Amplitude Decay, Applied Mathematical Modelling, 2017.
[10] K.-J. Bathe, M. M. I. Baig, On a composite implicit time integration procedure for nonlinear dynamics, Computers & Structures, Vol. 83, No. 31, pp. 2513-2524, 2005.
[11] K.-J. Bathe, G. Noh, Insight into an implicit time integration scheme for structural dynamics, Computers & Structures, Vol. 98, pp. 1-6, 2012.
[12] S. S. Gautam, R. A. Sauer, A composite time integration scheme for dynamic adhesion and its application to gecko spatula peeling, International Journal of Computational Methods, Vol. 11, No. 05, pp. 1350104, 2014.
[13] L. Zhang, T. Liu, Q. Li, A robust and efficient composite time integration algorithm for nonlinear structural dynamic analysis, Mathematical Problems in Engineering, Vol. 2015, 2015.
[14] S. Kumar, S. S. Gautam, Analysis of A Composite Time Integration Scheme, 2015.
[15] Y. Chandra, Y. Zhou, I. Stanciulescu, T. Eason, S. Spottswood, A robust composite time integration scheme for snap-through problems, Computational Mechanics, Vol. 55, No. 5, pp. 1041-1056, 2015.
[16] J. Zhang, Y. Liu, D. Liu, Accuracy of a composite implicit time integration scheme for structural dynamics, International Journal for Numerical Methods in Engineering, Vol. 109, No. 3, pp. 368-406, 2017.
[17] W. Wen, Y. Tao, S. Duan, J. Yan, K. Wei, D. Fang, A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis, Computers & Structures, Vol. 190, pp. 126-149, 2017.
[18] W. Wen, K. Wei, H. Lei, S. Duan, D. Fang, A novel sub-step composite implicit time integration scheme for structural dynamics, Computers & Structures, Vol. 182, pp. 176-186, 2017.
[19] A. A. Gholampour, M. Ghassemieh, New implicit method for analysis of problems in nonlinear structural dynamics, Applied and Computational Mechanics, Vol. 5, No. 1, pp. 15-20, 2011.
[20] M. Shrikhande, 2014, Finite element method and computational structural dynamics, PHI Learning Pvt. Ltd.,