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1. Introduction 

Equation of motion is the well-known governing equation of 

dynamic systems. Analytical solutions of this equation is limited 

to special problems with special conditions [1, 2], also Modal 

analysis and Frequency domain analysis suffer from severe 

limitations such as not having the ability of solving nonlinear 

problems due use of superposition. It is common to use a direct 

time integration method to solve the motion equation in a dynamic 

system. After almost five decades, time integration methods are 

still playing the main role in analysis of dynamic systems. In these 

methods within each time interval, a specific type of variation of 

the displacement, velocity, and acceleration are assumed. By 

increasing the order of variation of these quantities, since more 

terms are kept in the Taylor series expansion, higher accuracy 

could be achieved. Several numerical integration algorithms are 

available depending on the type of variation assumed for those 

quantities within each time interval. This procedure is a form of 

finite difference solution for differential equations. Nowadays 

there are a wide variety of methods with different performances 

and arrangements. These time marching methods have been 

categorized according to their formulations and behavior [3-5]. 

One categorization is related to the equilibrium point on the 

time step. Explicit methods use the differential equation at time 𝑡 
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to predict a solution at time tt  . For most real structures, a very 

small time step is required to obtain a stable solution using explicit 

methods. Of course recently unconditionally stable explicit 

methods have also been developed [6]. On the contrary to the 

explicit methods, implicit methods attempt to satisfy the 

differential equation at time tt  after the solution at time t is 

found [7-9]. There is also another class in this categorization called 

predictor-corrector which utilizes both formulations of explicit 

and implicit methods [5]. 

In another point of view, time integration methods are classified 

as conditionally and unconditionally stable. This characterization 

is performed by defining conditions in which the given method is 

stable. An integration algorithm is said to be stable if the numerical 

solution, under any initial conditions, does not grow without 

bound; and is said to be unconditionally stable if the convergence 

of the solution is independent of the size of the time step t . The 

Newmark's family of methods, depending on the assumed values 

of the constant parameters, stand in this category. In the Newmark 

integration method, the acceleration varies linearly or remains 

constant within two instances of time. Wilson- θ is another 

example of such methods. 

Another important factor in time integration algorithms is 

related to the previous steps’ information needed for current time 
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step to reach equilibrium. According to this feature, some of 

methods are single-step; that is, only the information obtained 

from last equilibrium point is needed for the solution of current 

time step and some are double-step. 

It is noteworthy that through all developed methods, only some 

of them have the reliability to find their way into a commercial 

computer program. Since the problems being solved by 

commercial programs are usually consisted of huge numbers of 

degrees of freedom, the solution process usually takes a long time. 

Thus, the methods need to be robust in solving different problems 

with different specifications especially nonlinear problems. For 

instance, the method proposed by Bathe and Baig [10], is now 

available in ADINA computer program. 

Multi-time stepping methods are the latest type of time 

integration methods. These methods attempt to march each time 

increment by multiple sub-steps. Usually for the first sub-step, it 

is common to apply a single-step method; so that the following 

sub-steps could be solved using methods which use the data 

obtained from multiple previous equation points [10-18]. Unlike 

the non-composite types of time marching algorithms, multi-time 

stepping methods are proven to be robustly stable even in highly 

nonlinear problems or in problems including ill conditioned 

matrices where even unconditionally stable methods such as 

Newmark's Trapezoidal rule sometimes lose their stability. This 

study proposes a new composite time integration method to 

increase the accuracy of responses and provide controllable 

numerical dissipation. The proposed method in this study uses two 

sub-steps in which the first sub-step is solved by Newmark method 

and a second order accurate double-step method, which is an 

extended version of Newmark's family of methods developed by 

Gholampour and Ghassemieh [19], is applied on the second sub-

step. 

2. The Proposed Method 

Consider the nonlinear equation of motion in a single degree of 

freedom system, which is written in the following form: 

tttttttt PfUUU  
tsKCM                                  (1) 

in which U is the displacement, U is the velocity, U is the 

acceleration, M is the mass matrix, C is the damping matrix, K is 

the tangent stiffness, P is the exciting force, s
f is the internal force, 

andΔt is the time step duration. Imagine the solution is known up 

to time t and the solution of time tt  is to be calculated. The 

time step is divided into two equal or unequal sub-steps; as 

presented in Fig. 1. According to this figure, the first sub-step is 

from t to tt  and the second sub-step is from tt  to tt 
. In this study, the time increment is divided equally ( 0.5 ). 

 

 

As for the first sub-step, which is to be solved by Newmark 

method, the following equations are used: 
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in which  and  are the constants of Newmark family of 

methods in which the choice of 4/1 and 2/1 leads to the 

Trapezoidal rule. Substituting Eqs. (2) and (3) into the equation of 

motion, the incremental equation is obtained; as follows: 

1t5.0t1 RU  eK                                           (4) 

in which: 

 
K

CM
K 







t

2

t

4
21






e                                           (5) 

 

C

M




































































 

tt

ttt5.0t1

Ut
2

1
1

2
U1

U1
2

1
U

t

2
PR













tsf

                   (6) 

tt5.0tt5.0t UUU                                             (7) 

It is notable that in nonlinear problems the incremental 

equation, presented in Eq. (4), can be solved using any equilibrium 

path tracing algorithm such as Newton-Raphson method. 

The second sub-step is solved using a double-step time 

integration method with a quadratic variation of acceleration over 

time step [19]. The following equations are related to the second 

sub-step: 
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Substituting Eqs. (8) and (9) into the equation of motion, the 

incremental equation is obtained; as follows: 

2tt2 RU  eK                                                 (10) 

in which: 
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It must be noted that  and are the constant parameters of the 

quadratic acceleration method designed to make it available for the 

Fig. 1. Sub-steps in a time increment 
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operator to induce numerical damping into the analysis; and for 

unconditional stability these constants are found; as follows: 

3/1    &    6/12/                                       (14) 

It is also notable that the choice of 3/1 and 6/1 produces 

zero numerical damping in this method. As formulated, the 

constant parameters of both methods, being Newmark method and 

quadratic acceleration method, are kept into account in the 

proposed method; so that the method could provide reasonable 

amount of numerical damping while keeping its stability. 

3. Numerical Properties 

Numerical approaches in solving differential equations have 

specific properties due accepting a reasonable amount of error in 

each time increment. There are several ways to assess the 

numerical properties of a time integration. The proposed method 

in this study is assessed with some of these processes. 

3.1. Stability 

Stability assessment of a time marching method is carried out 

considering the equation of motion for a single degree of freedom 

with arbitrary initial conditions. Thus, free vibration is considered 

at time step tt  and the amplification matrix   is calculated. 

The method is stable if the spectral radius, being maximum 

eigenvalue of the amplification matrix in modulus, is less than unit 

[5, 6, 11]. Eq. (15) shows the well-known recursive matrix form 

of the Newmark method in a free vibration problem, as follows: 
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The constants of the amplification matrix are: 
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Then according to the second sub-step the following 

amplification matrix is obtained: 
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and the constants of the matrix is obtained, as follows: 
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in which: 
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In the above equations,  represents the damping ratio, and
n


is the natural frequency of system. Finally, extending the 

amplification matrix for the multi-time stepping method is 

obtained; as follows: 
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                                           (21) 

The critical state in the analysis of stability occurs when the 

value of the damping ratio is zero. Fig. 2 demonstrates the spectral 

radius as a function of t/T for different choices of constant 

parameters. Please be noticed that for the sake of having clear 

figures in this study, the proposed method is referred to as P in all 

figures. 

According to Fig. 2, unconditional stability is obtained with the 

same constant parameters of the quadratic acceleration method, 

mentioned in Eq. (14), provided that the Trapezoidal rule is 

applied on the first sub-step. Also, another choice of constant 

parameters chosen for the proposed method being ( 10/3 ;

20/11 ) and ( 4.0 ; 2/  ) offers the method 

unconditional stability. It is interesting that with the choice of (
25.0 ; 49.0 ) the spectral radius equals to 1. 
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3.2. Precision 

The decision as to which time-marching scheme should be used 

in analysis strongly depends on the cost of the solution, which in 

turn is determined by the number of time steps required in the 

integration. When an unconditional stable method is employed, the 

size of time step has to be chosen to yield an accurate and effective 

solution. The precision of a direct time integration method is 

studied using Eq. (22) instead of Eq. (1). This way, the variables 

considered in the stability and accuracy analyses are onlyΔt , , 

and  [5], as displayed in the following equation: 

rUU2U 2                                                                   (22) 

As a matter of fact, the obtained solutions to the Eq. (22) using 

various methods usually suffer from some distortions related to the 

magnitude of computed amplitudes and phase shifts called 

amplitude decay (AD), and period elongation (PE), respectively. 

The following sub-sections represent the AD and PE amount 

produced by the proposed method. 

Amplitude decay, also called numerical damping, can hardly be 

considered as error. Scientists try to control it in a time marching 

algorithm in order to induce it in problems which demand 

numerical damping to yield better responses or even stable 

solutions like in some nonlinear problems. Fig. 3 shows the 

percentage numerical damping as a function of Δt/T. In order to 

reach a conclusion on the choices of constant parameters in the 

proposed method, the results of the proposed method with various 

choices of parameters are shown in this figure. 

Fig. 3 reveals a huge advantage of the proposed method having 

the ability to induce any reasonable amount of numerical damping 

into the analysis in case needed; this is while other methods, like 

Bathe method, have an uncontrolled amount of numerical 

damping. Another fact in Fig. 3 about the proposed method, is that 

in order to induce a considerable amount of numerical damping 

into the analysis, the choice of ( 10/3 ; 20/13 ) needs to 

be adopted for the constant parameters of the Newmark method 

used in the first sub-step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to distortion in computed amplitudes, the complex 

exponentials in time-marching schemes introduce a systematic 

phase shift in each time step, which is known as the period 

elongation. This error is generally reported as the percentage 

difference between the true period and the period of computed 

solution of undamped free vibration of SDOF systems [5, 20]. Fig. 

4 presents the computed percentage period elongation (PPE) for 

various methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As illustrated in Fig. 4, the proposed method has the lowest 

period elongation error. Please be noticed that for the sake of 
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Fig. 2. Spectral Radius as a function of t/T  
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Fig. 4. Percentage period elongation as a function of t/T  
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having a clear figure, other choices of constant parameters for the 

proposed method, which have very similar period elongation to the 

ones shown in Fig. 4, have been removed. An interesting point 

about Fig. 4 is that the proposed method even with the choice of (

10/3 ; 20/13 ), which induces considerable amount of 

numerical damping to the analysis, produces less period 

elongation than other methods. 

As a conclusion to the precision section and as a help of 

choosing between various constant parameters, it is suggested to 

consider 3 conditions; 1) if no numerical damping is needed in the 

problem, the choice of ( 4/1 ; 2/1 ) and ( 3/1 ; 6/1
) be utilized, 2) if a medium level of numerical damping is needed, 

the choice of ( 10/3 ; 20/11 ) and ( 5.0 ; 3.0 ) be 

utilized, and 3) in case more numerical damping is required, (

10/3 ; 20/13 ) and ( 5.0 ; 3.0 ) be used in order to 

yield the best responses. 

So as to see the differences between these three choices, 

consider the equation of motion with the following initial 

conditions: 

0UU 2  ; 0.1U0  ; 0.0U0 
 ;

2
0U  ; 

 2 rad/sec.                                                                         (23) 

The exact solution of the above equation for given initial 

conditions is  t.cosU  . Error! Reference source not found. 

shows the responses obtained by different choices of constant 

parameters using 0.2t  sec. 

As illustrated in Fig. 5, the results of four different choices of 

constant parameters in the proposed method with four different 

numerical damping are demonstrated in which all produced less 

period elongation error than Bathe method. Another interesting 

fact about Fig. 5 is that Bathe method has only one constant level 

of numerical damping which in this example resulted in digression 

from the reference solution; this is while the proposed method with 

( 4/1 ; 2/1 ) and ( 3/1 ; 6/1 ) has desirable 

responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is also notable that, although not illustrated in Fig. 5, through 

various examples, it is found that with the choice of ( 19.0 ;
55.0 ) and ( 68.0 ; 43.0 ), the proposed method 

resulted in responses very similar to (or even sometimes better 

than) Bathe method with less period elongation and equal 

numerical damping, which can be increased by increasing the 

value of  until 78.0 . This issue has been investigated 

practically in examples' section. 

4. Flowchart of the proposed method 

Computational steps of the proposed algorithm for the linear 

structural dynamic problems are presented in Fig. 6 in the form of 

flowchart. 

Normally in nonlinear cases, in order to minimize the residual 

force vector, numerous iterations are applied on the incremental 

equation; depending on the equilibrium path tracing algorithm, the 

stiffness matrix can be updated in any of the presented stages. 

Please note that if any change occurs in the stiffness matrix, the 

calculated matrix 1
K


and vector R


for each sub-step must be 

updated as well. It is also worthy of paying attention that in 

nonlinear cases the internal force vector is found using (in each 

sub-step): 

tttΔtt
UFF 

 Kss                                                             (24) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Numerical Properties 

A few examples are presented below in order to have a practical 

assessment of the method. Note that in all figures of this section, 

Newmark’s average acceleration method (AA) is referred to as 

Newmark with ( 4/1 ; 2/1 ), Newmark’s linear 

acceleration method is referred to as Newmark with ( 6/1 ;

2/1 ),the method proposed by Bathe and Baig [10] is referred 
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Fig. 5. A simple problem 0.2t  sec. 

Fig. 6. Flowchart of the proposed method 
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to as Bathe method, and the method proposed by Shojaee et al [21] 

is referred to as MQB-Spline. 

5.1. Example 1 

This example demonstrates the robustness of the multi-time 

stepping methods and is chosen from [11].  As illustrated in Fig. 7 

a simple three degree-of-freedom spring system is considered. Eq. 

(25) shows the governing equations of this problem: 
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in which with 7
1 10k , 12 k , 01 m , 12 m , 13 m and the 

prescribed displacement at node 1 is  t2.1sin1 u . Use of dynamic 

condensation in this problem leads to the following equations: 
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After solution of Eq. (26) is performed, the reaction force can 

be obtained using the following equation: 

2111111R ukukum                                             (27) 

In this example the mode superposition solution is referred to 

as reference solution. In order to comply with the reference paper 

[11], a time step size of 0.2618 sec. has been adopted. Fig. 8 shows 

the displacement responses of node 3 obtained by various methods 

over 10 sec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is perceptible from Fig. 8 that the responses are very close to 

each other. It is also notable that in this example, for the sake of 

having reasonable responses, it is required to have numerical 

damping; so the choice of ( 10/3 ; 20/11 ) and ( 5.0 ;

3.0 ) is adopted for the proposed method. Additionally, as 

mentioned, the choice of ( 19.0 ; 55.0 ) and ( 68.0 ;

43.0 ) yields similar (sometimes better) responses to the Bathe 

method; which is more clear in the following figures. 

Figs. 9 and 10 illustrate the velocity responses of nodes 2 and 

3 respectively. It can be seen from the Fig. 9 that the proposed 

method with ( 10/3 ; 20/11 ) and ( 5.0 ; 3.0 ) takes 

about two steps to find the reference solution but for the Bathe 

method and the proposed method with ( 19.0 ; 55.0 ) and (
68.0 ; 43.0 ) it takes only one step to find the reference 

solution. Additionally, the large amount of error in MQB-Spline 

method’s response cannot be disregarded. This is while the 

velocity responses of node 3, illustrated in Fig. 10, show no 

tangible differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs. 11 and 12 present the acceleration and reaction force 

response at nodes 2 and 1 respectively. According to these figures, 

although for the proposed method with ( 10/3 ; 20/11 ) 

Fig. 7. A three degree-of-freedom spring system [11] 
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Fig. 8. Displacement of node 3 for various methods 
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Fig. 9. The Velocity response of Node 2 
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Fig. 10. The Velocity response of Node 3 
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and ( 5.0 ; 3.0 ) it takes a couple of steps to reach an 

agreement with reference solution, it produces less error than 

Bathe and MQB-Spline methods on the first step. Interestingly, 

this error is almost zero for the proposed method with ( 19.0 ;
55.0 ) and ( 68.0 ; 43.0 ) which is in complete 

agreement with the reference solution from the first step. It is also 

worthy of paying attention that the amount of error in acceleration 

response of node 2 obtained by MQB-Spline method is 

considerably large. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to have a quantitative assessment of the obtained 

results, Tables 1 and 2 present the results in last 3 seconds of 

analysis for velocity and acceleration of node 2, respectively. 

It is notable that proposed (1) and (2) in Tables 1 and 2 

represent the proposed method with ( 19.0 ; 55.0 ); (

68.0 ; 43.0 ) and ( 10/3 ; 20/11 ); ( 5.0 ;

3.0 ), respectively. According to these tables, MQB-Spline and 

Newmark method produce very high amount of errors; and it is 

notable that these errors are even greater in initial time steps while 

the produced errors by proposed method and Bathe method are in 

a reasonable range. 

5.2. Example 2 

This example assesses the proposed method in a nonlinear 

SDOF problem where damping is present. The SDOF system is 

shown in Fig. 13 and the force-displacement behavior of this 

system is shown in Fig. 14 in which it is presented that the problem 

has elastic-perfect plastic behavior [22] (units are consistent). 
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Fig. 11. The acceleration response of node 2 
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Fig. 12. The reaction force response at node 1 

Fig. 13. A SDOF system with nonlinear behavior 

Fig. 14. The elastic-perfect plastic behavior [22] 

Fig. 15. The harmonic load acting on the system [22] 
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it  Ref. 

Newmark Bathe MQB-Spline Proposed (1) Proposed (2) 

Value 
Error

% 
Value 

Error

% 
Value 

Error

% 
Value 

Error

% 
Value 

Error

% 

7.0686 -0.7067 -0.804 13.7 -0.71 0.45 -1.048 48.34 -0.705 0.166 -0.705 0.28 

7.3304 -0.9705 -0.939 3.18 -0.98 0.78 -0.699 27.95 -0.971 0.097 -0.970 0.02 

7.5922 -1.1403 -1.140 0.01 -1.15 0.87 -0.073 93.58 -1.141 0.123 -1.140 0.03 

7.854 -1.1999 -1.268 5.67 -1.209 0.82 -1.910 59.22 -1.200 0.039 -1.199 0.06 

8.1158 -1.1438 -1.082 5.37 -1.150 0.62 -1.780 55.66 -1.141 0.206 -1.140 0.28 

8.3776 -0.9772 -1.042 6.67 -0.979 0.23 -1.186 21.47 -0.970 0.639 -0.970 0.71 

8.6394 -0.7046 -0.680 3.37 -0.712 1.05 0.504 171.5 -0.705 0.081 -0.705 0.03 

8.9012 -0.3724 -0.372 0.04 -0.375 0.67 -0.536 44.07 -0.370 0.490 -0.371 0.51 

9.163 -0.0043 -0.030 617. -0.001 73.7 -0.585 1.E+4 0.001 110.5 0.000 1.E+2 

9.4248 0.36426 0.418 14.9 0.372 2.34 -0.325 189.2 0.371 1.924 0.3706 1.76 

9.6866 0.70931 0.672 5.16 0.710 0.12 1.813 155.6 0.705 0.476 0.7050 0.61 

9.9484 0.97218 1.005 3.39 0.978 0.61 1.333 37.14 0.971 0.088 0.9703 0.19 

Average Error - 56.5 - 6.85 - 1204. - 9.57 - 8.85 

 
 

it  Ref. 

Newmark Bathe MQB-Spline Proposed (1) Proposed (2) 

Value 
Error

% 
Value 

Error

% 
Value 

Error

% 
Value 

Error

% 
Value 

Error

% 

7.0686 -1.1417 -2.776 143. -1.238 8.46 4.981 536.3 -1.179 3.262 -1.150 0.77 

7.3304 -0.8167 1.332 263. -0.980 20.0 5.453 767.6 -0.862 5.510 -0.817 0.04 

7.5922 -0.4130 -2.482 501. -0.626 51.6 -4.859 1076. -0.454 9.889 -0.403 2.25 

7.854 0.03063 1.142 3627 -0.211 788. -7.622 24980 -0.008 124.7 0.0492 60.6 

8.1158 0.47132 0.355 24.6 0.225 52.3 2.622 456.4 0.445 5.545 0.4973 5.51 

8.3776 0.86650 -0.013 101. 0.639 26.3 9.160 957.1 0.849 2.029 0.8967 3.49 

8.6394 1.18788 2.522 112. 0.990 16.6 1.274 7.292 1.175 1.107 1.2084 1.73 

8.9012 1.38081 0.079 94.2 1.245 9.86 -6.746 588.5 1.381 0.012 1.4017 1.52 

9.163 1.44042 2.306 60.2 1.377 4.38 -0.949 1.6E2 1.456 1.085 1.4579 1.21 

9.4248 1.36094 1.234 9.31 1.375 1.04 8.958 558.2 1.384 1.733 1.3713 0.76 

9.6866 1.13955 0.754 33.9 1.238 8.66 5.857 414.0 1.182 3.695 1.1505 0.96 

9.9484 0.81391 1.692 107. 0.980 20.4 -5.263 746.6 0.859 5.558 0.8171 0.39 

Average Error - 423. - 84.1 - 2604. - 6.611 - 13.69 

 

The dynamic load acting on the structure is a half-harmonic 

force; as presented in Fig. 15. The problem is solved using 

Trapezoidal rule with 0.1t  sec. and the proposed method with

0.2t  sec. (the values of t5.0  are recorded as well) Please be 

noticed that in order to have a reference solution for the methods 

to be compared with, Trapezoidal rule with 0.01t  sec., which 

is a considerably short time step, is referred to as reference 

solution. Fig. 16 presents the displacement responses obtained by 

the mentioned methods. 

It is perceptible from Fig. 16 that proposed method with the 

same solution effort with Trapezoidal rule, that is the adoption of 

2 times longer time step, has yielded more accurate responses and 

is in closest agreement with the reference solution. 

Fig. 17 presents the velocity responses of the SDOF system in 

time interval between 0.2 to 0.6 sec.. Again as this figure presents, 

the proposed method, though with a marginal difference, has 

yielded responses with higher accuracy. 

 

Table 1. Quantitative results of Velocity in Node 2 

 

Table 2. Quantitative results of Acceleration in Node 2 
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5.3. Example 3 

In this example, the behavior of the proposed method is 

investigated by an n-degree-of-freedom Mass-Spring system, 

which is shown in Fig. 18. This example challenges the methods 

with their amount of numerical damping; where even an 

unconditionally stable method like Trapezoidal rule grows without 

bound. This system can also be representative of shear systems in 

modelling buildings. 

 

 

 

 

 

The system is considered to have nonlinear behavior with 

instantaneous softening stiffness. The following equation presents 

the nonlinear behavior of the system in mathematical terms: 

  2
i

0 U1K  ii K                            (28) 

in which iU denotes drift of each d.o.f., 0
iK is the initial 

stiffness, and is the coefficient which determines the intensity of 

softening or hardening of stiffness. It is obvious that the system 

becomes linear if 0 is adopted. Please be noticed that the 

friction between system and ground is assumed to be zero. The 

properties of the problem are shown in Table 3 and Fig. 19 shows 

the displacement response for 20th d.o.f.. 
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Here, Newmark’s average acceleration method with 0.01t 
sec. is regarded as reference solution. For other non-composite 

methods, including Newmark’s-AA, the 0.1t  sec is adopted; 

and for the composite methods 0.2t  sec. has been utilized to 

solve the problem.  As mentioned, this problem demands great 

numerical damping and that is why the Newmark method with (

10/3 ; 20/11 ), has yielded better responses than other 

Newmark family members (as shown in Fig. 19). Regarding the 

proposed method, as described in precision section, the choice of 

( 10/3 ; 20/13 ) and ( 5.0 ; 3.0 ) provides the 

method with enough numerical damping to yield highly accurate 

responses. Finally, the choice of ( 19.0 ; 55.0 ) and (

78.0 ; 43.0 ) for the proposed method, as mentioned, is 
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Fig. 18. n degree-of-freedom system 

Table 3. Properties of the problem studied in Example 4 (units are 

consistent) 
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Fig. 19. Displacement response of 20th d.o.f in Example 3 
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expected to yield similar responses to the Bathe method, has 

shown superiority in this example as well; the reason is that 

68.0  has induced a numerical damping greater than Bathe 

method's. In addition, the responses obtained by MQB-Spline 

method show remarkably large digression from the reference 

solution. 

6. Conclusion 

A novel multi-time stepping method is proposed. The method 

utilizes the Newmark method in the first sub-step and applies a 

quadratic acceleration method on the second sub-step. The 

stability analysis of the proposed method proved the unconditional 

stability region, which is the same region determined for the 

constant parameters in quadratic acceleration method, provided 

that the Trapezoidal rule is adopted for the first sub-step. The 

precision analysis proved that less period elongation is produced 

with the proposed method in comparison with other methods. 

As a conclusion to the proposed method, one definite advantage 

of this method is its control of numerical dissipation which is rare 

among multi-time stepping methods. The proposed method also 

showed minor period elongation than existing ones. Presence of 

four constant parameters in the proposed method can be seen as 

disadvantage at the first sight; but in order for the operator not to 

be confused with so much options of constant parameters, three 

distinct options with three levels of numerical damping, being 

zero, medium, and high, was suggested. The responses of proposed 

method obtained from solving high flexible and nonlinear 

problems, both being benchmark examples, proven the superiority 

of the proposed method in practice. Finally, through a nonlinear 

problem, where high amount of numerical damping was 

demanded, the numerical dissipation control in the proposed 

method tested and verified. 
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