Power Series -Aftertreatment Technique for Nonlinear Cubic Duffing and Double-Well Duffing Oscillators

Document Type: Research Paper

Authors

Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria.

Abstract

Modeling of large amplitude of structures such as slender, flexible cantilever beam and fluid-structure resting on nonlinear elastic foundations or subjected to stretching effects often lead to strongly nonlinear models of Duffing equations which are not amendable to exact analytical methods. In this work, explicit analytical solutions to the large amplitude nonlinear oscillation systems of cubic Duffing and double-well Duffing oscillators are provided using power series-aftertreatment technique. The developed analytical solutions are valid for both small and large amplitudes of oscillation. The accuracy and explicitness of the analytical solutions are carried out to establish the validity of the method. Good agreements are established between the solution of the new method and established exact analytical solution. The developed analytical solutions in this work can serve as a starting point for a better understanding of the relationship between the physical quantities of the problems as it provides continuous physical insights into the problems than pure numerical or computation methods.

Keywords

Main Subjects


[1] J. H. He. Modified Lindstedt–Poincare methods for some strongly nonlinear oscillations. Part I: Expansion of a constant. Int. J. Non-Linear Mech. 37, 309–314 (2002)

[2] J. H. He. Modified Lindstedt–Poincare methods for some strongly nonlinear oscillations. Part III: Double series expansion. Int. J. Non-Linear Sci. Numer. Simul. 2, 317–320 (2001)

[3] S. Q. Wang, J. H. He, J Nonlinear oscillator with discontinuity by parameter-expansion method. Chaos Solitons Fractals 35, 688–691 (2008)

[4] J. H. He. Some asymptotic methods for strongly nonlinear equations. Int. J.Mod. Phys. B 20 (2006), 1141–1199.

[5] J. H. He, Some new approaches to Duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique. Commun. Non-Linear Sci. Numer. Simul. 4, 81–82 (1999)

[6] M.G. Sobamowo, Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin’s method of weighted residual. Applied Thermal Engineering 99 (2016) 1316–1330. 

[7] M. Rafei., D. D. Ganji, H. Daniali, H.  Pashaei. The variational iteration method for nonlinear oscillators with discontinuities. J. Sound Vib. 305, 614–620 (2007)

[8] V. Marinca, N. Herisanu.  A modified iteration perturbation method for some nonlinear oscillation problems. Acta Mech. 184, 231–242 (2006)

[9] S. S. Ganji, D. D. Ganji, H. Ganji, Babazadeh, Karimpour, S.: Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic-quintic duffing oscillators. Prog. Electromagn. Res. M 4, 23–32 (2008)

[10] S. B. Tiwari., B. N. Rao, N. S. Swamy, K. S. Sai, H. R. Nataraja. Analytical study on a Duffing harmonic oscillator. J. Sound Vib. 285, 1217–1222 (2005)

[11] R. E. Mickens. Periodic solutions of the relativistic harmonic oscillator. J. Sound Vib. 212, 905–908 (1998)

[12] Y. Z. Chen and X. Y.  Lin. A convenient technique for evaluating angular frequency in some nonlinear oscillations. J. Sound Vib. 305, 552–562 (2007)

[13] Ö. Civalek, Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ). Int. J. Struct. Eng. Mech. 25(2), 201–217 (2007)

[14] T. C. Fung.  Solving initial value problems by differential quadrature method. Part 1: First-order equations. Int. J. Numer. Methods Eng. 50, 1411–1427 (2001)

[15] R. E. Mickens.  Mathematical and numerical study of the Duffing-harmonic oscillator. Journal of Sound Vibration 244(3), 563–567 (2001)

[16] C. W. Lim and B. S. Wu.  A new analytical approach to the Duffing-harmonic oscillator. Phys. Lett. A 311(5), 365–377 (2003)

[17] H. Hu and Tang, J. H. Solution of a Duffing-harmonic oscillator by the method of harmonic balance. Journal of Sound Vibration 294(3), 637–639 (2006)

[18] C. W. Lim, B. S. Wu, and W. P. Sun. Higher accuracy analytical approximations to the Duffingharmonic oscillator. Journal of Sound Vibration 296(4), 1039–1045 (2006)

[19] H.  Hu. Solutions of the Duffing-harmonic oscillator by an iteration procedure. Journal of Sound Vibration 298(1), 446–452 (2006)

[20] S. J. Liao. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems,Ph. D. dissertation, Shanghai Jiao Tong University (1992)

[21] S. J. Liao and Y. A. Tan, Y. A general approach to obtain series solutions of nonlinear differential equations, Studies Appl. Math. 119(4), 297–354 (2007)

[22] S. J. Liao. An approximate solution technique not depending on small parameters: a special example. Int. J. Non-Linear Mech. 30(3), 371–380 (1995)

[23] J. K. Zhou: Differential Transformation and its Applications for Electrical Circuits. Huazhong University Press: Wuhan, China (1986)

[24] C. K. Chen and S.H. Ho. Application of Differential Transformation to Eigenvalue Problems. Journal of Applied Mathematics and Computation, 79 (1996), 173-188.

[25] Ü, Cansu, and O. Özkan, Differential Transform Solution of Some Linear Wave Equations with Mixed Nonlinear Boundary Conditions and its Blow up. Applied Mathematical Sciences Journal, 4(10) (2010), 467-475.

[26] M-J Jang, C-L Chen, Y-C Liy: On solving the initial-value problems using the differential transformation method. Appl. Math. Comput. 115 (2000): 145-160.

[27] M. K¨oksal, S. Herdem: Analysis of nonlinear circuits by using differential Taylor transform. Computers and Electrical Engineering. 28 (2002): 513-525.

[28] I.H.A-H Hassan: Different applications for the differential transformation in the differential equations. Appl. Math. Comput. 129(2002), 183-201.

[29] A.S.V. Ravi Kanth, K. Aruna: Solution of singular two-point boundary value problems using differential transformation method. Phys. Lett. A. 372 (2008), 4671-4673.

[30] F. Ayaz: Solutions of the system of differential equations by differential transform method. Appl. Math. Comput. 147: 547-567 (2004)

[31] S-H Chang, I-L Chang: A new algorithm for calculating one-dimensional differential transform of nonlinear functions. Appl. Math. Comput. 195 (2008), 799-808

[32] S. Momani, V.S. Ert¨urk: Solutions of non-linear oscillators by the modified differential transform method. Computers and Mathematics with Applications. 55(4) (2008), 833-842.

[33] S. Momani, S., 2004. Analytical approximate solutions of non-linear oscillators by the modified decomposition method. Int. J. Modern. Phys. C, 15(7): 967-979.

[34] M. El-Shahed: Application of differential transform method to non-linear oscillatory systems. Communic. Nonlin. Scien. Numer. Simul. 13 (2008), 1714-1720.

[35] S. K. Lai, C. W. Lim, B. S. Wu. Newton-harminic balancing approach for accurate solutions to nonlinear cubic-quintic Duffing oscillators. Applied Math. Modeling, vol. 33, pp. 852-866, 2009.

[36] M. Goodarzi, M. Mohammadi, M. Khooran,  F. Saadi Thermo-Mechanical Vibration Analysis of FG Circular and Annular Nanoplate Based on the Visco-Pasternak Foundation. Journal of Solid Mechanics Vol. 8, No. 4 (2016) pp. 788-805

[37] Mohammadi M., Farajpour A., Goodarzi M., Heydarshenas R., 2013,  Levy type solution for nonlocal thermo- mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics 5(2): 116-132. 

[38] Mohammadi M., Farajpour A., Goodarzi M., Dinari F., 2014,  Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures 11 (4): 659682.

[39] Duan W. H., Wang C. M., 2007, Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory, Nanotechnology 18: 385704.

[40] Mohammadi M., Moradi A., Ghayour M., Farajpour A., 2014, Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures 11(3): 437-458. 

[41] Asemi S.R., Farajpour A., Asemi H.R., Mohammadi M., 2014,  Influence of initial stress on the vibration of doublepiezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E 63: 169-179.

[42] Goodarzi M., Mohammadi M., Farajpour A., Khooran M., 2014, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation, Journal of Solid Mechanics 6: 98-121.

[43] Mohammadi M., Farajpour A., Goodarzi M., Mohammadi H., 2013, Temperature effect on vibration analysis of annular graphene sheet embedded on visco-Pasternak foundation, Journal of Solid Mechanics 5(3): 305-323.

[44] A. Fernandez. On some approximate methods for nonlinear models. Appl Math Comput., 2009; 215:168-74.

[45] P. Salehi, H. Yaghoobi, and M. Torabi. Application of the differential transformation method and variational iteration method to large deformation of cantilever beams under point load. Journal of Mechanical Science and Technology 26 (9) (2012) 2879-2887.

[46] S.N. Venkatarangan, K. Rajakshmi: A modification of Adomian’s solution for nonlinear oscillatory systems. Comput. Math. Appl. 29 (1995): 67-73.

[47] Y.C. Jiao, Y. Yamamoto, C. Dang, Y. Hao: An aftertreatment technique for improving the accuracy of Adomian’s decomposition method. Comput. Math. Appl. 43 (2002), 783-798.

[48] A. Elhalim and E. Emad. A new aftertratment technique for differential transformation method and its application to non-linear oscillatory system. Internation Journal of Non-linear Science, 8(4) (2009),  488-497.