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Abstract 

Modeling of large amplitude of structures such as slender, flexible cantilever beam and fluid-structure resting on nonlinear 

elastic foundations or subjected to stretching effects often lead to strongly nonlinear models of Duffing equations which 

are not amendable to exact analytical methods. In this work, explicit analytical solutions to the large amplitude nonlinear 

oscillation systems of cubic Duffing and double-well Duffing oscillators are provided using power series-aftertreatment 

technique. The developed analytical solutions are valid for both small and large amplitudes of oscillation. The accuracy 

and explicitness of the analytical solutions are carried out to establish the validity of the method. Good agreements are 

established between the solution of the new method and established exact analytical solution. The developed analytical 

solutions in this work can serve as a starting point for a better understanding of the relationship between the physical 

quantities of the problems as it provides continuous physical insights into the problems than pure numerical or 

computation methods.  
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1.    Introduction 

The dynamic analysis of large amplitude of structures has 

been an area of research interests over many decades. 

Modeling of structures such as slender, flexible cantilever 

beam carrying a lumped mass with rotary inertia at the 

intermediate point along its span effects often lead to 

strongly nonlinear models which are not amendable to 

exact analytical methods. This fact is also established in 

the development of governing equations of motion for 

fluid-structure interaction resting on nonlinear elastic 

foundations or subjected to stretching effects. Several 

attempts have been made to solve the nonlinear models or 

to develop exact analytical solution. In the cases where 

the exact analytical solutions are presented either in 

implicit or explicit form, it involves complex 

mathematical analysis with possession of high skills in 

mathematics. Also, such solutions do not provide general 

exact analytical solutions since they often come with 

conditional statements which make them limited in used. 

Application of analytical methods such as Exp-function 

method, He’s Exp-function method, improved F-

expansion method, Lindstedt-Poincare techniques, 

parameter-expansion method, quotient trigonometric 

function expansion method [1-5] to the nonlinear equation 

present analytical solutions either in implicit or explicit 

form which often involved complex mathematical 

analysis leading to analytic expression involving a large 

number terms. Furthermore, the methods are time-

consuming task accompanied with possessing high skills 

in mathematics. Also, they do not provide general 

analytical solutions since the solutions often come with 

conditional statements (i.e. except in limited 

circumstances where exact analytical solutions are 

possible) which make them limited in used as many of the 

conditions with the exact solutions do not meet up with 

the practical applications since they give approximated 

solutions that hardly provide an all-encompassing 

understanding of the nature of systems in response to 

parameters affecting nonlinearity. Also in practice, 

analytical solutions with a large number of terms and 

conditional statements for the solutions are not convenient 

for use by designers and engineers [6]. Consequently, 

recourse has always been made to numerical methods 

such as Runge-Kutta method’ finite difference method, 

finite element method etc. or approximate analytical 

methods such as Adomian decomposition method 

(ADM), differential transformation method (DTM), 

homotopy perturbation method (HPM), homotopy 

analysis method (HAM), variational iteration method 

(VIM) [7-43]. However, the determination of Adomian 

polynomials as carried out in ADM, the restrictions of 

HPM to weakly nonlinear problems, the lack of rigorous 

theories or proper guidance for choosing initial 

approximation, auxiliary linear operators, auxiliary 

functions, and auxiliary parameters in HAM, operational 

restrictions to small domains and the search for a 

particular value for the auxiliary parameter that will 

satisfy second the boundary condition which leads to 

additional computational cost in using DTM, the step-by-

step integrations and large expressions of terms in VIM 

limit the applications of the approximation methods. 

Additionally, most of the approximate methods give 

accurate predictions only when the nonlinearities are 

weak, they fail to predict accurately for strong nonlinear 

models. Also, the methods often involved complex 

mathematical analysis leading to an analytic expression 

involving a large number terms and when such methods 

as HPM, HAM, ADM and VIM are routinely 

implemented, they can sometimes lead to erroneous 

results [44]. Therefore, the classical way for finding 

analytical solutions is obviously still very important since 

they provide good insights into the significance of various 

system parameters affecting the phenomena. It is more 

convenient to use analytical expressions in engineering 

calculations than experimental or numerical studies. 

Indisputably, for a better understanding of the relationship 

between physical quantities/properties, analytical 

solutions are the obvious starting points [45]. It is 

convenient for parametric studies, accounting for the 

physics of the problem and appears more appealing than 

the numerical solutions. It appears more appealing than 

the numerical solution as it helps to reduce the 

computation costs, simulations and task in the analysis of 

real-life problems.  Therefore, an analytical solution is 

required for the problem. In this research, analytical 

solutions are provided to the nonlinear Duffing oscillators 

and double-well Duffing oscillators. Simplicity, 

flexibility in application, and avoidance of complicated 

numerical integration are some of the added advantages 

over the previous methods. It provides complementary 

advantages of higher accuracy, reduced computation cost, 

and task as compared to the other methods as found in 

literature.  The developed analytical solutions are 

compared with the numerical results and the results of 

approximate analytical solutions and good agreements 

reached. The analytical solutions can serve as a starting 

point for a better understanding of the relationship 

between the physical quantities of the problems as it 

provides continuous physical insights into the problem 

than pure numerical or computation methods.  Therefore, 

an exact analytical solution is required for the problem.  

Power series method as an approximate analytical method 

has been used over many decades for solving both linear 

and nonlinear differential equations as it appeared in 

many engineering and scientific research analysis. 

Unfortunately, in the case of oscillatory systems, the 

truncated series obtained by the method is periodic only 

in a very small region. This drawback is not only peculiar 

to the power series solution method, other approximate 

analytical methods such as HPM, HAM, ADM and VIM 

also have the same short-coming for oscillatory systems. 
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To overcome this difficulty in the approximate analytical 

solutions, an after-treatment technique (AT) has been 

used to obtain approximate periodic solutions in a wide 

range of solution. In modifying the Adomian 

decomposition method to provide periodic solutions in a 

large region, Venkatarangan and Rajakshmi [46] and Jiao 

et al. [47] developed AT techniques which are based on 

using Pade approximation method, Laplace transform and 

its inverse. Although, the AT techniques were found to be 

effective in many cases, it has some disadvantages, not 

only it required a huge amount of computational work to 

provide accurate approximations for the periodic 

solutions but also there is a difficulty of obtaining the 

inverse Laplace transform which greatly restricts the 

application area of their technique [48]. Consequently, 

Elhalim and Emad [48] developed a comparatively simple 

aftertreatment technique after applying differential 

transformation method to non-linear oscillatory systems. 

Although, the DTM has proven to be more effective than 

the other approximate analytical solutions as it does not 

require many computations as carried out in ADM, HAM, 

HPM, and VIM. However, the transformation of the 

nonlinear equations and the development of equivalent 

recurrence equations for the nonlinear equations using 

DTM proved somehow difficult in some nonlinear system 

such as in rational Duffing oscillator, irrational nonlinear 

Duffing oscillator, finite extensibility nonlinear oscillator. 

Therefore the quest for comparatively simple, flexible, 

generic and high accurate analytical solutions continues. 

In this work, power series solution method is used to 

develop an accurate analytical solution for the nonlinear 

cubic Duffing equation. Because of the limitation of the 

truncated series obtained by the method as it is periodic 

only in a very small region, the aftertreatment technique 

as developed by Elhalim and Emad [48] is applied. The 

approach used in this present work has to advantages over 

previously developed methods for the nonlinear problems 

as shown in literature. The accuracy and explicitness of 

the analytical solutions were carried out to establish the 

validity of the method. In conclusion, good agreements 

are established. The analytical solutions can serve as a 

starting point for a better understanding of the relationship 

between the physical quantities of the problems as it 

provides continuous physical insights into the problem 

than pure numerical or computation methods.  

 

 2.  Development of Analytical Solutions for the Cubic 

Duffing and double Cubic Duffing Equation 
 

Considered an undamped, unforced nonlinear cubic 

Duffing oscillator 
3( ) ( ) ( ) 0  u u u    

                                            
(1) 

While for the double-well Duffing equation, we have  
' 3( ) ( ) ( ) 0  u u u                                                 (2) 

where ' is a positive constant which may not be a small 

value. 

In both cases, the initial conditions are  

(0) u A (0) 0u
                                                         

(3) 

Assume that the solution of Eq. (1) can be expressed by 

the following power series 

0

( )




 k

k

k

u t a t

                                                                

(4) 

Substituting the power series of Eq. (4) into Eq. (1), the 

coefficient ka  can be determined as  

0 a A 1 0a  2

2
2


 

A
a A 

3 0a  

 

 2 2

4 ( 3 )
24

   
 

A
a A A   

5 0a
                  

     (5) 

 

 2

2 2 4

6 24 27
720

 
    

A A
a A A

 
       

Substituting the power series of Eq. (5) into Eq. (4), we 

have 

     

 

2 2 2 2 2 4

2

2 2 4 6

( ) 3
2 24

24 27 ...
720

       
 


     

A A
u t A A t A A A t

A A
A A t

       

 
  

                                                                            

(6) 

While for the double-well Duffing Equation 

     

 

2 2 2 2 2 4

2

2 2 4 6

( ) 3
2 24

24 27 ...
720

       
 


     

A A
u t A A t A A A t

A A
A A t

       

 
  

                                                                            (7) 

 

The power series solution gives solution in the form of 

truncated series. This truncated series is periodic only in 

a very small region. In order to make the solution 

periodic over a large range, we applied Cosine-after 

treatment (CAT-technique). If the truncated series in Eq. 

(6) is expressed in even-power, only, of the independent 

variable t, i.e.  
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2

2 2 1

0

( ) 0,

0,1,..., 1,
2





  

  


N

k

N k k

k

t a t a

N
k where N is even                         

(8) 

The CAT- technique is based on the assumption that this 

truncated series can be expressed as another finite series 

in terms of the cosine-trigonometric functions with 

different amplitude and arguments 

 
1

( ) ,


  
N

N j j

j

t cos t where n is finite

            

(9) 

 

On expanding both sides of Eq. (9) as power series of t 

and equating the coefficient of like powers, we have  

 

 

 

 

0

0

2 2 2

4 4 2 2

2

6 6 2

2 4

;  ,

;  

;  ( 3 )

24
;  

27

...



  

    
 

 
    

 









n

jj

n

j jj

n

j jj

n

j jj

t a

t A A

t A A A

A
t A A

A



  

    

 
  



                                                                 

(10)           

For practical application, it is sufficient to express the 

truncated series ( )N t  in terms of two cosines with 

different amplitudes and arguments as 

 

 
2

6

1

( ) .


   j j

j

t cos t

                                    

(11) 

Therefore, we have  

1 2 0  a 
                                                          

(12a) 

 2 2 2

1 1 2 2    A A   
                                

(12b) 

 4 4 2 2

1 1 2 2 ( 3 )      
 

A A A     
          

(12c) 

 

6 6

1 1 2 2

2 2 2 424 27

   

    A A A A

 

                       
(12d) 

On solving the above Eq. (12a-12d), we have 

  

  

2 2 2

1
2 2

4 5 2 3 8 9

2 2 3 8 9

     
  

  
 

A A A
A

A A

     


   

   

                                           

(13a) 

 

  

  

2 2 2

2
2 2

4 5 2 3 8 9

2 2 3 8 9

     
   

  
 

A A A
A

A A

     


   

         

                                                        

(13b) 

 

  2 2 2

1 5 6 2 3 8 9      A A A       

(13c) 

 

  2 2 2

2 5 6 2 3 8 9      A A A       

(13d) 

Therefore, the approximated periodic solution for u(t) is 

given as 

 

   

   
   

   

   
   

2 2 2

2 2 2

2 2

2 2 2

2 2 2

2 2

4 5 2 3 8 9
5 6 2 3 8 9

2 2 3 8 9
( )

4 5 2 3 8 9
5 6 2 3 8 9

2 2 3 8 9

                     
  

        
        
    

  

A A A
cos A A A t

A A
u t A

A A A
cos A A A t

A A

     
     

   

     
     

   

      (14)

         

 

 

While for the double-well Duffing equation, we have 

the solution as  

   

   
   

   

   
   

' 2 ' 2 ' 2

' 2 ' 2 ' 2

' 2 ' 2

' 2 ' 2 ' 2

' 2 ' 2 ' 2

' 2 ' 2

5 4 3 2 9 8
6 5 3 2 9 8

2 2 3 8 9
( )

5 4 3 2 9 8
6 5 3 2 9 8

2 2 3 8 9

                     
  

        
        
    

  

A A A
cos A A A t

A A
u t A

A A A
cos A A A t

A A

     
     

   

     
     

   

   (15)

       

 

 

For the validation of the developed solution, the exact 

solution to the nonlinear problem was also developed 

using Jacobi elliptic functions. The exact solution is 

given as 
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 2
( )

,
exact

A
u t

cn t k
                                               

(16) 

where  2,cn t k  is the cn  Jacobian elliptic function 

that has a period in t  equal to  24K k , and  24K k  

is the complete elliptic integral of the first kind for the 

modulus k and  . And 

2 i A  
2

2

2 2

2

2( )






A
k

A

 

 
                 (17) 

Alternatively, we have  

 2( ) ,exactu t Acn t k
                                               

(18) 

where 2  A  
2

2

22( )




A
k

A



 
 

 

For the double-well Duffing equation, the exact 

analytical solutions are given as 

 2
( )

,
exact

A
u t

cn t k
                                               

(19)

                                                                                                            

 

and  

' 2 i A  
' 2

2

'2 2

2

2( )






A
k

A

 

 
                (20) 

Alternatively, we have  

 

 2( ) ,exactu t Acn t k
                                               

(21) 

where ' 2 A  
' 2

2

'2 22( )




A
k

A



 
 

 

3. Development of exact analytical solutions for the 

natural frequencies of the structures 
 

The natural frequency analysis is the sine qua non for the 

analysis of stability, it must therefore be carried out in 

the dynamic response of the structures. 

 
3( ) ( ) ( ) 0  u u u                                          (22) 

Integrating Eq. (22) with respect to τ, we have 

2 2 41
( ) ( ) ( )

2 2 4
  u u u c
 

                               (23) 

where c is a constant. On imposing the initial condition, 

we have 

2 4

2 4
 c A A
 

                                                    

(24) 

Substituting Eq. (24) into Eq. (23), we have  

2 2 4 2 41
( ) ( ) ( )

2 2 4 2 4
   u u u A A
   

  

  

 

(25) 

which gives 

2 2 4 4( ) ( )
2



  

du
dt

A u A u




             

(26)

                                                                                     

 

Integrating Eq. (26) 

 

4

0 0
2 2 4 4( )

( ) ( )
2




  
 

pT
A du

dt
K C V

A u A u
M M

                                                                          

(27) 

Then, we  have 

0
2 2 4 4

( ) 4

( ) ( )
2



  


A

p

du
T A

A u A u




 (28)                                                                                      

 

On substituting, u Asint ,we have 

2

0
2 2 4 4

cos
4

(1 ) (1 )
2



  
p

A tdt
T

A sin t A sin t






          

(29)

 

                                                                           

  

which gives 

2

0 2 2
2

4

2 2


 

  
 

p

dt
T

A A
sin t



 


                       (30) 

and  

2

0
2

2
2

2

4

21
2

2


 
 

   
    

        

p

dt
T

A
A

sin t
A











 

(31) 

 

Which can be written as  

2

2 20
1 2

4

1



p

dt
T

sin t



 
                                         

(32) 

 

where 
2

1
2

 
  

 

A
 

2

2 2

2

2


 

 
 

A

A








 

The above Eq. (32) is called the complete elliptic integral 

of first kind 

2

2 20
1 2

4

1



p

dt
T

sin t



 
 

2

2 1

                             

(33) 

In order to evaluate the integral, we expand the integral 

in the form 
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2 2 6 8
2 4 6 82 2 2 2

2 2

2

3 5 351
1 ...

2 8 16 1281
     


sin t sin t sin t sin t

sin t

   


                                                                                   

(34) 

 

The above series is uniformly convergent for all
2 , 

and may, therefore, be integrated term by term. Then, 

we have 

 
2 4 6 8

2 4 6 82 2 2 22

0
1

3 5 354
1 ...

2 8 16 128

 
      

 
pT sin t sin t sin t sin t dt


   


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which can be expressed as 
22 2 2 2

2 4 6 8 2

2 2 2 2 2
11 1

2 2 1 1 3 1 3 5 1 3 5 7 2 1
...

2 2 4 2 4 6 2 4 6 8 2

         
                                 


N

N

p
n

n
T

n

 
    

 
                          (36) 

But    
2

( ) pT A




2

( )
 

pT A


  

1

22 2 2 2

2 4 6 8 2

2 2 2 2 2
1

1 1 3 1 3 5 1 3 5 7 2 1
1 ...

2 2 4 2 4 6 2 4 6 8 2


         

                                


N
N

n

n

n




    

                                    

(37) 

 

 

It can easily be seen that as the nonlinear term tends to 

zero, the frequency ratio of the nonlinear frequency to 

the linear frequency, 
b




tends to 1. 
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Where b   

For very large values of the amplitude A, we have 
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Alternatively, we can have 
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Using term-by-term series integration method, we also 

developed an approximation analytical solution for the 

nonlinear natural frequency as 
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Also, as the amplitude A tends to zero, the frequency 

ratio of the nonlinear frequency to the linear frequency, 

b




tends to 1. 
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


                                                                  (45) 

 

Also, it should be pointed out that when the nonlinear 

term, β is set to zero, we recovered the linear natural 

frequency 
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(46) 

 

4. Results and Discussion 

Fig. 1 shows the comparison of the linear vibration with 

nonlinear oscillation. It could be seen in the figure that 

the discrepancy between the linear and nonlinear 

amplitudes increases with time.  

 

 

 
Fig. 1 Comparison of displacement time history for the 

linear and nonlinear oscillation 

 

 
Fig. 2 Comparison between the obtained results and the 

exact solution for the linear vibration 

 

Fig. 2 presents the comparison of exact solution and the 

Power series –Aftertreatment techniques (PSATT) 

solution results for the nonlinear models. The results 

show that good agreements are established reached and 

good agreements are established reached. 

Fig. 3 shows a phase-space/plane curve of ut versus u 

which shows the behaviour of the oscillator. The phase 

plots show the behaviour of the oscillator when the 

amplitude is varied. It is periodic with center (0, 0) where 

stability conditions can be observed. This situation is 

common in unforced, undamped cubic Duffing 

oscillators. 

Fig. 4 shows the effect of amplitude on the frequency 

ratio. It can be seen from the figure, in contrast to linear 

systems, the nonlinear frequency is a function of 

amplitude so that the larger the amplitude, the more 

pronounced the discrepancy between the linear and the 

nonlinear frequencies becomes.  

 

 
Fig. 3Phase-space curve of ut versus u 

 

 
Fig. 4nonlinear amplitude-frequency response curve 

 

 

0 2 4 6 8 10 12 14 16 18 20
-8

-6

-4

-2

0

2

4

6

8

Time, t

D
is

p
la

c
e
m

e
n
t,

 u
(t

)

Linear oscillation

Non-linear oscillation

0 2 4 6 8 10 12 14 16 18 20
-8

-6

-4

-2

0

2

4

6

8

Time, t

D
is

p
la

c
e
m

e
n
t,

 u
(t

)

Exact solution

PSATT solution

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u 

u
t 

0 0.5 1 1.5 2 2.5 3
1

1.05

1.1

1.15

Dimensionless maximum amplitude 

F
re

q
u
e
n
c
y
 r

a
ti
o
 

A = 0.5 - 0.9 



Sobamowo and Yinusa 

304 

5. Conclusion 

In this work, analytical solutions to large amplitude 

nonlinear oscillation systems have been provided using 

power series-aftertreatment technique. The developed 

analytical solutions are shown to be valid for both small 

and large amplitudes of oscillation. The accuracy and 

explicitness of the analytical solutions were carried out 

to establish the validity of the method. Good agreements 

are established between the method and the exact 

solution. The analytical solutions can serve as a starting 

point for a better understanding of the relationship 

between the physical quantities of the problems as it 

provides continuous physical insights into the problems 

than pure numerical or computation methods. 
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