[1] S. Ullrich, T. Kuhlen, Haptic palpation for medical simulation in virtual environments, Visualization and Computer Graphics, IEEE Transactions on, Vol. 18, No. 4, pp. 617-625, 2012.
[2] S. E. Waggoner, Cervical cancer, The Lancet, Vol. 361, No. 9376, pp. 2217-2225, 2003.
[3] J. Kim, B. Ahn, S. De, M. A. Srinivasan, An efficient soft tissue characterization algorithm from in vivo indentation experiments for medical simulation, The international journal of medical robotics and computer assisted surgery, Vol. 4, No. 3, pp. 277-285, 2008.
[4] P. Dario, M. Bergamasco, An advanced robot system for automated diagnostic tasks through palpation, Biomedical Engineering, IEEE Transactions on, Vol. 35, No. 2, pp. 118-126, 1988.
[5] A. Bicchi, G. Canepa, D. D. Rossi, P. Iacconi, E. P. Scillingo, A sensor-based minimally invasive surgery tool for detecting tissue elastic properties, in Proceeding of, IEEE, pp. 884-888.
[6] E. Scilingo, D. DeRossi, A. Bicchi, P. Iacconi, Haptic display for replication of rheological behavior of surgical tissues: modelling, control, and experiments, in Proceeding of.
[7] Z. Matin Ghahfarokhi, M. Salmani Tehrani, M. Moghimi Zand, M. Mahzoon, A Computational study on the effect of different design parameters on the accuracy of biopsy procedure, Journal of Computational Applied Mechanics, Vol. 46, No. 2, pp. 221-231, 2015.
[8] J. Yan, P. K. Scott, R. S. Fearing, Inclusion probing: signal detection and haptic playback of 2D FEM and experimental data, in Proceeding of, 14-19.
[9] V. Egorov, H. Van Raalte, A. P. Sarvazyan, Vaginal tactile imaging, Biomedical Engineering, IEEE Transactions on, Vol. 57, No. 7, pp. 1736-1744, 2010.
[10] F. J. Carter, T. G. Frank, P. J. Davies, D. McLean, A. Cuschieri, Measurements and modelling of the compliance of human and porcine organs, Medical Image Analysis, Vol. 5, No. 4, pp. 231-236, 2001.
[11] M. P. Ottensmeyer, Minimally invasive instrument for in vivo measurement of solid organ mechanical impedance, Thesis, Massachusetts Institute of Technology, 2001.
[12] M. P. Ottensmeyer, A. E. Kerdok, R. D. Howe, S. L. Dawson, The effects of testing environment on the viscoelastic properties of soft tissues, in: Medical Simulation, Eds., pp. 9-18: Springer, 2004.
[13] E. Samur, M. Sedef, C. Basdogan, L. Avtan, O. Duzgun, A robotic indenter for minimally invasive measurement and characterization of soft tissue response, Medical Image Analysis, Vol. 11, No. 4, pp. 361-373, 2007.
[14] H. Liu, D. P. Noonan, K. Althoefer, L. D. Seneviratne, Rolling mechanical imaging: a novel approach for soft tissue modelling and identification during minimally invasive surgery, in Proceeding of, IEEE, pp. 845-850.
[15] H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Seneviratne, K. Althoefer, Rolling mechanical imaging for tissue abnormality localization during minimally invasive surgery, Biomedical Engineering, IEEE Transactions on, Vol. 57, No. 2, pp. 404-414, 2010.
[16] K. Sangpradit, H. Liu, L. D. Seneviratne, K. Althoefer, Tissue identification using inverse finite element analysis of rolling indentation, in Proceeding of, IEEE, pp. 1250-1255.
[17] K. Sangpradit, H. Liu, P. Dasgupta, K. Althoefer, L. D. Seneviratne, Finite-element modeling of soft tissue rolling indentation, Biomedical Engineering, IEEE Transactions on, Vol. 58, No. 12, pp. 3319-3327, 2011.
[18] P.-L. Yen, D.-R. Chen, K.-T. Yeh, P.-Y. Chu, Lateral exploration strategy for differentiating the stiffness ratio of an inclusion in soft tissue, Medical engineering & physics, Vol. 30, No. 8, pp. 1013-1019, 2008.
[19] S. Chonan, Z. W. Jiang, M. Tanaka, T. Kato, M. Kamei, Y. Tanahashi, Development of a palpation sensor for detection of prostatic cancer and hypertrophy (optimum structural design of sensor), International Journal of Applied Electromagnetics and Mechanics, Vol. 9, No. 1, pp. 25-38, 1998.
[20] M. Tanaka, H. Nesori, Y. Tanahashi, Development of an active palpation sensor wearable on a finger for detecting prostate cancer and hypertrophy, Ann of NanoBME, Vol. 1, pp. 141-147, 2008.
[21] L. Han, A. Noble, M. Burcher, The elastic reconstruction of soft tissues, in Proceeding of, IEEE, pp. 1035-1038.
[22] J. Kim, M. A. Srinivasan, Characterization of viscoelastic soft tissue properties from in vivo animal experiments and inverse FE parameter estimation, in: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2005, Eds., pp. 599-606: Springer, 2005.
[23] I. Kato, K. Koganezawa, A. Takanishi, Automatic breast cancer palpation robot: WAPRO-4, Advanced Robotics, Vol. 3, No. 4, pp. 251-261, 1988.
[24] T. P. Prevost, A. Balakrishnan, S. Suresh, S. Socrate, Biomechanics of brain tissue, Acta biomaterialia, Vol. 7, No. 1, pp. 83-95, 2011.
[25] X. Wang, J. A. Schoen, M. E. Rentschler, A quantitative comparison of soft tissue compressive viscoelastic model accuracy, Journal of the mechanical behavior of biomedical materials, Vol. 20, pp. 126-136, 2013.
[26] M. Farshad, M. Barbezat, P. Flüeler, F. Schmidlin, P. Graber, P. Niederer, Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma, Journal of Biomechanics, Vol. 32, No. 4, pp. 417-425, 1999.
[27] P. J. Davies, F. J. Carter, D. G. Roxburgh, A. Cuschieri, Mathematical Modelling for Keyhole Surgery Simulations: Spleen Capsule as an Elastic Membrabe, Computational and Mathematical Methods in Medicine, Vol. 1, No. 4, pp. 247-262, 1999.
[28] H. Liu, D. P. Noonan, Y. H. Zweiri, K. Althoefer, L. D. Seneviratne, The development of nonlinear viscoelastic model for the application of soft tissue identification, in Proceeding of, IEEE, pp. 208-213.
[29] A. J. Madhani, Design of teleoperated surgical instruments for minimally invasive surgery, 1998.
[30] E. Karadogan, R. L. Williams, J. N. Howell, R. R. Conatser Jr, A stiffness discrimination experiment including analysis of palpation forces and velocities, Simulation in Healthcare, Vol. 5, No. 5, pp. 279-288, 2010.
[31] A. E. Kerdok, Characterizing the nonlinear mechanical response of liver to surgical manipulation, Thesis, Harvard University Cambridge, MA, 2006.
[32] R. Ghajar, M. Shokrieh, A. R. Shajari, Transient thermo-visco-elastic response of a functionally graded non-axisymmetric cylinder, Journal of Computational Applied Mechanics, Vol. 46, No. 2, pp. 191-204, 2015.
[33] M. Choulaie, A. Khademifar, Nonlinear Vibration and Stability Analysis of Beam on the Variable Viscoelastic Foundation, Journal of Computational Applied Mechanics, Vol. 48, No. 1, pp. 99-110, 2017.
[34] H. W. Haslach, Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue, Biomechanics and Modeling in Mechanobiology, Vol. 3, No. 3, pp. 172-189, 2005.
[35] H. F. Brinson, L. C. Brinson, Polymer engineering science and viscoelasticity, in: Eds., pp. 172, Berlin: Springer, 2008.
[36] M. Sedef, E. Samur, C. Basdogan, Real-time finite-element simulation of linear viscoelastic tissue behavior based on experimental data, IEEE Computer Graphics and Applications, Vol. 26, No. 6, 2006.
[37] E. Clayton, J. Garbow, P. Bayly, Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography, Physics in medicine and biology, Vol. 56, No. 8, pp. 2391, 2011.
[38] M. Caputo, J. M. Carcione, F. Cavallini, Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation, Ultrasound in medicine & biology, Vol. 37, No. 6, pp. 996-1004, 2011.
[39] T. Söderström, P. Stoica, 1988, System identification, Prentice-Hall, Inc.,
[40] J. Funk, G. Hall, J. Crandall, W. Pilkey, Linear and quasi-linear viscoelastic characterization of ankle ligaments, Journal of biomechanical engineering, Vol. 122, No. 1, pp. 15-22, 2000.
[41] A. Papoulis, S. U. Pillai, 2002, Probability, random variables, and stochastic processes, Tata McGraw-Hill Education,