[1] M. H. Ghayesh, M. Amabili, Post-buckling bifurcations and stability of high-speed axially moving beams, International Journal of Mechanical Sciences, Vol. 68, pp. 76-91, 2013.
[2] A. Arani, M. Maboudi, A. G. Arani, S. Amir, 2D-magnetic field and biaxiall in-plane pre-load effects on the vibration of double bonded orthotropic graphene sheets, J Solid Mech, Vol. 5, No. 2, pp. 193-205, 2013.
[3] S. Narendar, S. Gupta, S. Gopalakrishnan, Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory, Applied Mathematical Modelling, Vol. 36, No. 9, pp. 4529-4538, 2012.
[4] K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer, M. L. Green, Optical anisotropy of dispersed carbon nanotubes induced by an electric field, Applied physics letters, Vol. 71, No. 14, pp. 1906-1908, 1997.
[5] X. Liu, J. L. Spencer, A. B. Kaiser, W. M. Arnold, Electric-field oriented carbon nanotubes in different dielectric solvents, Current Applied Physics, Vol. 4, No. 2, pp. 125-128, 2004.
[6] E. Camponeschi, R. Vance, M. Al-Haik, H. Garmestani, R. Tannenbaum, Properties of carbon nanotube–polymer composites aligned in a magnetic field, Carbon, Vol. 45, No. 10, pp. 2037-2046, 2007.
[7] P. Lu, L. He, H. Lee, C. Lu, Thin plate theory including surface effects, International Journal of Solids and Structures, Vol. 43, No. 16, pp. 4631-4647, 2006.
[8] K. Kiani, Transverse wave propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models, Physica E: Low-dimensional Systems and Nanostructures, Vol. 45, pp. 86-96, 2012.
[9] T. Murmu, M. McCarthy, S. Adhikari, In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach, Composite Structures, Vol. 96, pp. 57-63, 2013.
[10] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in Proceeding of, Springer, pp. 849-858.
[11] D. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, M. Zaidi, The bees algorithm-A novel tool for complex optimisation, in Proceeding of, sn, pp.
[12] D. Pham, A. Ghanbarzadeh, Multi-objective optimisation using the bees algorithm, in Proceeding of.
[13] G. Zou, N. Cheraghi, F. Taheri, Fluid-induced vibration of composite natural gas pipelines, International journal of solids and structures, Vol. 42, No. 3, pp. 1253-1268, 2005.
[14] T. Je¸ kot, Nonlinear problems of thermal postbuckling of a beam, Journal of Thermal Stresses, Vol. 19, No. 4, pp. 359-367, 1996.
[15] M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, Vol. 45, No. 1, pp. 32-42, 2013.
[16] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, 2012.
[17] M. Mohammadi, A. Farajpour, M. Goodarzi, Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium, Computational Materials Science, Vol. 82, pp. 510-520, 2014.
[18] H. Asemi, S. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads, Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, pp. 112-122, 2015.
[19] S. Asemi, A. Farajpour, H. Asemi, M. Mohammadi, Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM, Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 169-179, 2014.
[20] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 4, pp. 659-682, 2014.
[21] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[22] M. Mohammadi, M. Ghayour, A. Farajpour, Analysis of free vibration sector plate based on elastic medium by using new version differential quadrature method, Journal of solid mechanics in engineering, Vol. 3, No. 2, pp. 47-56, 2011.
[23] M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of surface energy on the vibration analysis of rotating nanobeam, Journal of Solid Mechanics, Vol. 7, No. 3, pp. 299-311, 2015.
[24] A. Farajpour, M. H. Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, Vol. 227, No. 7, pp. 1849-1867, 2016.
[25] M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment, Acta Mechanica, Vol. 227, No. 8, pp. 2207-2232, 2016.
[26] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation, Journal of Solid Mechanics, Vol. 6, pp. 98-121, 2014.
[27] S. R. Asemi, M. Mohammadi, A. Farajpour, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures, Vol. 11, No. 9, pp. 1515-1540, 2014.
[28] M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature effect on vibration analysis of annular graphene sheet embedded on visco-pasternak foundation, J. Solid Mech, Vol. 5, pp. 305-323, 2013.
[29] M. Goodarzi, M. Mohammadi, M. Khooran, F. Saadi, Thermo-Mechanical Vibration Analysis of FG Circular and Annular Nanoplate Based on the Visco-Pasternak Foundation, Journal of Solid Mechanics Vol, Vol. 8, No. 4, pp. 788-805, 2016.
[30] M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory, Micro & Nano Letters, Vol. 11, No. 6, pp. 302-307, 2016.
[31] A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment, Physica B: Condensed Matter, 2017.
[32] J. D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, in Proceeding of, LawrenceErlbaumAssociates, Inc., Publishers, pp.
[33] C. M. Fonseca, P. J. Fleming, Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization, in Proceeding of, Citeseer, pp. 416-423.
[34] J. Horn, N. Nafpliotis, D. E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization, in Proceeding of, Ieee, pp. 82-87.
[35] J. Knowles, D. Corne, The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation, in Proceeding of, IEEE, pp. 98-105.
[36] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE transactions on Evolutionary Computation, Vol. 3, No. 4, pp. 257-271, 1999.
[37] K. Deb, J. Sundar, Reference point based multi-objective optimization using evolutionary algorithms, in Proceeding of, ACM, pp. 635-642.
[38] Moradi A, Shirazi KH, Keshavarz M, Falehi AD, Moradi M. Smart piezoelectric patch in non-linear beam: design, vibration control and optimal location. Transactions of the Institute of Measurement and Control. 2014 Feb;36(1):131-44.