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Abstract 

Adhesive In the field of fluid structure interactions fluid conveying pipe is a basic dynamical problem. In recent 

years considerable attention has been given to the lateral vibrations of pipes containing by a moving fluid. In this 

article, the vibration analysis of composite natural gas pipeline in the thermal and humidity environment is studied. 

The effect of the non-uniform magnetic field is investigated. The equation of motion is derived by applying the 

Hamilton's principle for the pipe with the effects of both linear and nonlinear stress temperature cases. The 

differential quadrature method (DQM) has been utilized in computing the results for the fluid conveying pipe. The 

Bees algorithm and Genetic algorithm NSGA II for multi-objective optimization of a pipe model are used. Sample 

results are presented for several cases with varying values of the system parameter. Results are demonstrated for the 

dependence of natural frequencies on the flow velocity as well as temperature change and humidity percent. The 

effect of temperature change on critical flow velocity which causes to occur buckling instability is investigated. It is 

summarized that the influence of temperature change on the instability of fluid conveying pipe is significant. 

Keywords: Composite pipes; Fluid-induced vibration; Thermal load; Humidity environment, Multi objective optimization, 

Magnetic field 
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1.   Introduction 

Since the problem of fluid conveying pipes is 

very important in industrial applications, the vibration 

and stability of fluid conveying pipes have been 

studied for a long time. Examples of such problems 

are flow-induced vibration of a pipeline supported 

above ground level, as well as conveying internal 

flow. Describing the vibration characteristics of the 

Trans-Arabian pipeline was first made by Ashley and 

Haviland, which is worth to mention in this area. 

Paidoussis et al. studied the linear and nonlinear 

dynamics of cantilevered cylindrical pipes with axial 

flow. They pointed out that the primary cause of loses 

of stability by divergence was the increase of flow 

velocity. Recently, the nonlinear dynamics of axially 

moving beams have attracted much attention [1].  

However, to the best of authors' knowledge, the 

literature dealing with the behavior of fluid-

conveying pipes under thermal loads is very limited. 

Therefore, studying the stability and dynamics of 

fluid-conveying pipes under thermal loads is felt 

necessary. Newly, the mechanical behavior of the 

mechanical structures, like the beam and plate, which 

are located in the magnetic field, was investigated by 

some of the researchers [2, 3]. To this end, some of 

the experimental studies were done on the nanobeam 

under an electro-magnetic field [4-8]. The effect of 

the longitudinal magnetic fields was considered in the 

wave propagation analysis of the nanobeam by Kiani 

[8]. In this paper, the nonlocal continuum theory was 

applied to obtain the governing equation to analyze 

the vibration of single layer graphene sheet. The 

effect of an in-plane magnetic field on the transverse 

vibration of a single-layer graphene sheet was 

considered by Murmu et al. [9]. In this paper, the 

nonlocal continuum theory was applied to obtain the 

governing equation to analyze the vibration of single 

layer graphene sheet. 

The aim of an optimization problem is to find a 

combination of independent parameters to minimize 

or maximize a single or several quantities subjected 

to some limitations. The quantity to be optimizes is 

referred to as objective function. If only one function 

has to be optimized, the problem is a single function 

optimization problem and if more functions than one 

are involved it is a multi-objective optimization 

problem. Since most engineering design problems 

require having multi objective functions to be 

optimized, there is an increasing interest in multi-

objective optimization algorithms. There are two 

approaches to dealing with multi-objective 

optimization problems. 

The first approach is to form a linear combination 

of objective functions with different weights and to 

solve the resulting function by a method which is 

applied to a single function optimization problem. 

The second approach –the genuine one- is to consider 

all the objective-functions simultaneously. There are 

two main drawbacks in combining all objective 

functions into one. One problem is that all the 

solutions may not be found and the second problem is 

that some of the weights assigned to objective 

functions may be inappropriate, thus some of the 

functions involved in the problem would lose their 

effect in the final result. In engineering design 

problems, it is of interest to find, not only a single 

optimal solution, but all the possible solutions in a 

multi-objective problem which are called a Pareto-

optimal set. None of the solutions in a Pareto-optimal 

solution set is better than the others, they are not 

comparable and each one is called a feasible solution. 

Different techniques to solve multi objective 

optimization problems are discussed in reference 

[10]. The authors have developed a new technique 

which is called Bees Algorithm [11] and they have 

applied it to constrained and unconstrained single 

objective problems. A modified version of Bees 

Algorithm has been created to identify as many non-

dominated solutions as possible. In most of 

engineering design problems constraints are very 

important, since they impose limitations on the search 

space that makes the search process troublesome and 

inefficient.  

The interest of the present study is the vibration 

analysis of fluid-conveying pipes under thermal loads 

in the different boundary conditions. Also, the effect 

of the humidity changes on the vibration frequencies 

and critical velocity is investigated. Furthermore, in 

this work, the Bees algorithm [11, 12] and Genetic 

algorithm NSGA II are applied to optimize the multi-

objective fitness functions of a pipe model. The 

conflicting objective functions which are weight (W) 

and natural frequency (ω) have been considered for 

minimization and maximization. The pipe length (L), 

outer diameter (Dout), inner diameter (Din), fluid 

velocity (u) are design parameters applied in the 

optimization of vibration. In this work, the equation 

of motion is derived by the Hamilton’s principle in 

which the thermal effect and humidity effect is 

considered. The thermal loads with both linear and 

non-linear thermo-elastic relations are developed. 

Two objective functions are used in this paper: the 

first objective function concerned to minimize the 

entire weight of pipe, and second objective function 

concern to maximize natural frequency. This study 

would be helpful to design the transmission fluid 

pipelines especially natural gas and oil pipelines.  
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2.   Mathematical Modeling 

2.1.   The principle of Hamilton  

The derivation is initiated by considering a 

representative element (Pf), with the length of dx, as 

shown in Fig. 1.The fluid moves along the y-axis (see 

Fig. 1 for the coordinate system) with velocity of V =
∂y

∂t
+ Ug  

∂y

∂x
 inside the pipe, and the pipe itself moves 

in the direction y with velocity 
∂y

∂t
 . The kinetic energy 

of the system is 

 

 

where the densities of the natural gas are namely 

ρg , ρp, pipe's material, respectively; Ag =
π Din

2

4
 and                        

I = ∑ π ρ(k) (rk+1
2 − rk

2)N
k=1  are the cross-section 

areas of gas and pipe mass per unit length, 

respectively; Din and Dout are the inside and outside 

diameters of the pipe respectively (see Fig. 1); Ug is 

the velocity of the moving gas (in the x-direction). 

The work done by the pre-tension (T) and the 

distributed forces (q), can be written as 

δW1 = ∫ T 
∂2y

∂x2
δy dx 

L

0

+∫ q δy dx 
L

0

 
(2) 

where the pre-tensioning force in the pipe is T and the 

work done by the gas through shear friction and 

pressure can be written as 

δW2 = ∫ 2 ρg AgUg
2 f 

L

Dg
 
∂2y

∂x2
δy dx 

L

0

+∫ P(1
L

0

− 2ϑδ)Ag δy
∂2y

∂x2
δy dx     (3) 

 

Where P is the gas pressure. The internal 

pressurization makes an additional tensile force 

which is equal to −2ϑPAg for a thin pipe if the 

downstream end is not free to flow axially, or even 

not completely free, where t is the Poisson's ratio of 

the pipe. Thus, the equivalent pressure can be 

expressed in a general formula form as P(1 −
2ϑδ)Ag, in which δ = 0 indicates that there is no 

constraint to the axial flow of at the downstream end, 

otherwise δ = 1. 

 

Figure 1: A fluid-conveying pipe with pinned ends at sub-

sea and the coordinate system [13]. 

In Eq. (3) f is the Fenning friction factor, which can 

be approximated by 

1

√f
= −4 log(

k
Dg

3.7065
+
1.2613

Re √f 
) ,

Re =
ρgDg Ug

μ
       

(4) 

where Re is the Reynolds number, μ is the gas 

viscosity, k is the absolute pipe roughness and Dg is 

the internal diameter of the pipe. The strain energy of 

the dx segment of the pipe can be represented by 

∏=
1

2
∫ ( ℵ (

∂2y

∂x2
)

2

+ N(
∂y

∂x
)
2

)dx
L

0

+ ∫
A

2Ek
(Ek  

∂ϑ

∂x

L

0

− γ (∆T))

2

dx ,        ℵ

=∑Ek (rk+1
4 − rk

4)

N

k=1

 
(5) 

Where v is the longitudinal displacements, and 

γ (∆T)is the stress–temperature coefficient, which is 

a function of ∆T. The N is divided to two parts Nth 

and NH that these terms are caused by the 

temperature change and the moisture change, 

T =
1

2
 (∫ (∬ ρg (

∂y

∂t
+ Ug  

∂y

∂x
)
2

 dAg dx
Ag

)
L

0

+∫ I (
∂y

∂t
)2 dx )

L

0

 

(1) 
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respectively. These terms are obtained as following 

form 

Nth(x) = −∫ φ(∆T)dA
A

,               NH(x)

= −∑
π

4
Ek βk (rk+1

2

− rk
2)∆H 

 (6) 

In this study, the linear and nonlinear elastic stress 

temperature coefficients are considered. The linear 

stress temperature is defined as [14] 

φ(∆T) =∑Ek αk ∆T

N

k=1

,                 Nth

=∑
π

4
 Ek αk

N

k=1

(rk+1
2

− rk
2)∆T   (7) 

The nonlinear elastic stress temperature coefficient is 

defined as [14] 

φ(∆T)

=∑Ek αk ∆T

N

k=1

− h∗ (α(k))
2
 ∆T2,         Nth

=∑(
Ek αk ∆T

−h∗ (α(k))2 ∆T2
)

N

k=1

(rk+1
2 − rk

2)    

h∗ =∑{
h1(1 − 2ϑ

k) − 2h2((ϑ
k)
2
− 1)

+h3((ϑ
k)
2 }

N

k=1

 
(8) 

In the above equation, the terms h1, h2 and h3 are 

Murghana's constants [14]. The Hamilton’s principle 

statement in the absence of dissipative forces can be 

formulated for supported fluid-conveying pipes as 

follows 

δL = δ∫ (T +W− Π)dt
t2

t1

 
(9) 

Substituting the expressions (1)–(3) into the above 

equation, the equations of motion is 

ℵ 
∂4y

∂x4
+ (

P(1 − 2νδ)Ag − T

−2Igf Ug
2  
L
Dg
+ Nth + Nh

)
∂2y

∂x2

+ 2IgUg
2  
∂2y

∂x ∂t 
+ q

+ (Ig + I)
∂2y

∂t2
= 0,    Ig

= ρgAg (10) 

For the pipe, the boundary conditions of SS, CS, and 

CC are given, respectively, by 

y(0) =
∂2y

∂x2
(0) = 0;  y(l) =

∂2y

∂x2
(l) = 0 

y(0) =
∂y

∂x
(0) = 0;  y(l) =

∂y

∂x
(l) = 0 

y(0) =
∂y

∂x
(0) = 0;  y(l) =

∂2y

∂x2
(l) = 0 (11) 

 

2.2.   Maxwell’s relations  

In this part, we intend to calculate the effect of 

magnetic field on the dynamic behavior of fluid 

conveyed pipe. To this end, we express the 

characteristic electro-dynamic Maxwell equations for 

a completely conducting elastic body as follows form 

[2, 8] 

∇ × e = −η 
∂h

∂t
 ;    ∇. h = 0;   e

= −η (
∂U

∂t
× H) ; h

= ∇ × (U × H) J = ∇ × h  (12) 

In the above equations, the components U, η and J are 

introduced as the vector of displacement, magnetic 

field permeability and the current density, 

respectively. Moreover, e is a strength vector of 

electric field and h is a disturbing magnetic field 

vector [2, 8]. In this study, we assume that the Nano 

beam is located in one direction non-uniform 

magnetic field. Also, the displacement vector is stated 

as U=(u,v,w), then 

h = ∇ × (U × H) = −Hx  (
∂v

∂y
+
∂w

∂z
) î

+ (Hx  
∂v

∂x
+
∂Hx
∂x

v) ĵ

+ (Hx  
∂w

∂x
+
∂Hx
∂x

w) k̂ 

J = ∇ × h

= (
Hx (−

∂2v
∂x ∂z

+
∂2w
∂x ∂y

) +
∂Hx
∂x

 (
∂w
∂y

−
∂v
∂z
) 

+
∂Hx
∂y

 
∂w
∂x

−
∂Hx
∂z

 
∂v
∂x
+
∂2Hx
∂x ∂y

 w −
∂2Hx
∂x ∂z

 v
) î 

  − (Hx (
∂2v

∂y ∂z
+
∂2w

∂x2 
+
∂2w

∂z2 
) + 2

∂Hx
∂x

 
∂w

∂x

+
∂Hx
∂z

 
∂v

∂y
+
∂Hx
∂z

 
∂w

∂z

+
∂2Hx
∂x2

 w ) j ̂
(13) 
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+(Hx (
∂2v

∂x2 
+
∂2v

∂y2 
+
∂2w

∂y ∂z
) + 2

∂Hx
∂x

 
∂v

∂x

+
∂Hx
∂y

 
∂v

∂y
+
∂Hx
∂y

 
∂w

∂z

+
∂2Hx
∂x2

 v)k̂    

Due to the magnetic field, an exerted body force is 

applied on the pipe. This force is named the Lorentz 

force; also, this force is shown by the notation f. The 

Lorentz force is calculated as follows form 

f = fxî + fyĵ + fzk̂ = η(J × H) (14) 

In this study, we consider that the pipe is located in 

the longitudinal varying magnetic field; thus, in the 

above equation, we insert Hx = H0 sin (πx/l)that it 

shows the magnetic field varies as sinusoidal respect 

to the x direction. As mentioned, the magnetic field 

causes to produce the Lorentz force. Consequently, 

the Lorentz force is caused to act the transverse load 

on the pipe. This force is obtained by using the Eq. 

(14), therefore the transverse force can be represented 

as [2, 8] 

qmagnetic = ∫ fz dA
A

 

= η A H0
2 sin2 (

πx

l
)
∂2w

∂x2

+ 2ηA 
π

l
 H0

2 sin2 (
πx

l
) cos (

πx

l
)

− η A H0
2  (
π

l
)
2

sin2 (
πx

l
)w                       (15)  

In this work, it is assumed that the pipe is located in a 

longitudinal magnetic field. Therefore, in the Eq. (10) 

the transverse load q(x, t) is induced by the magnetic 

field and is statedq(x, t) = qmagnetic.  So by 

substituting the Eq. (15) into the Eq. (10) the motion 

differential equation is obtained for transverse 

displacement (w=y) as follows form; 

 

ℵ 
∂4y

∂x4
+ (

P(1 − 2νδ)Ag − T

−2Igf Ug
2  
L
Dg
+ Nth + Nh

)
∂2y

∂x2

+ 2IgUg
2  
∂2y

∂x ∂t 
+ η A H0

2 sin2 (
πx

l
)
∂2y

∂x2

+ 2ηA 
π

l
 H0

2 sin2 (
πx

l
) cos (

πx

l
)
∂y

∂x

− η A H0
2  (
π

l
)
2

sin2 (
πx

l
) y + (Ig + I)

∂2y

∂t2

= 0 

Ig = ρgAg (16) 

3.   Solution by differential quadrature method  

To solve the Eq. (10), if it is not impossible to solve 

the governing equation as the exact form, it is very 

difficult to find a solution as exact form. To this end, 

we search to find a numerical solution to solve the 

Eq. (10). For this purpose, the differential quadrature 

method (DQM) is selected and there are two 

important reasons for choice this method. The first, 

the DQM is a powerful numerical technique to solve 

the governing equation of the mechanical structures 

[15-17]. This method has low computational cost in 

comparison with the other numerical method such as 

the finite element method, the finite difference 

method and etc. The second, the DQM obtain results 

with high accuracy in comparison with other 

numerical technique [15]. The readers can find the 

other advantages of the DQM in the Refs [15, 18-20]. 

Therefore, in this paper, the DQM is applied to 

discrete the Eq. (10) and boundary conditions in the 

Eq. (11). The fundamental idea of differential 

quadrature method is that the derivative of a function 

with regards to a space variable at a given sampling 

point is approximated as a weighted linear sum of the 

sampling points in the domain of that variable. There 

are described how to use DQM to solve motion 

partial differential equations and are explained in 

detail how to apply boundary conditions in the Ref 

[19, 21]; so, we refer the readers to see the details to 

the Refs [16, 19, 21-31]. In this approach, at a given 

grid point x, the derivatives of a function can be 

approximated as  

 

∂mW

∂ξm
|
x=xi

=∑Cik
(m)

Nx

k=1

 W(ξk, t)

=∑Cik
(m)

Nx

k=1

 Wkj(t)    
(17) 

Where the nmber of grid points along the ξ-direction 

is Nx. The notation is introduced as the m-th order 

weight coefficients. uTo determine the r-th order 

weight coefficients, one must obtain the first order 

weight coefficients. These coefficients are determined 

by the Lagrange interpolated polynomial as the 

following form [17] 

Cij
(1) =

{
 
 

 
 

M(ξi)

(ξi − ξj)M(ξj)
       for   i ≠ j

− ∑ Cij
(1)

Nξ

j=1,i≠j  

         for   i = j

               

(18) 
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In the equation (18), Cij
(1)

 and M(ξ) are the Lagrange 

polynomial and the first order weight coefficient, 

respectively. The M(ξi) is obtained by the Lagrange 

polynomial as the following form  

M(ξi) = ∏ (ξi − ξj)

Nξ

j=1,i≠j

   
(19) 

As mentioned, in the DQM, the higher order weight 

coefficients are used to approximate higher order 

derivatives of the function and the higher order 

coefficients are calculated by the first order weight 

coefficients as the following form 

Cij
(r) = r [Cij

(r−1) Cij
(1) −

Cij
(r−1)

(ξi − ξj)
]      For i, j

= 1,2, … , Nξ ,

i ≠ j   and      2 ≤ r
≤ Nξ − 1 

Cij
(r) = ∑ Cij

(r)

Nξ

j=1,i≠j  

     for   i

= 1,2, … , Nξ   and    1 ≤ r

≤ Nξ − 1   (20) 

Here, the notationCij
(r)

) is the r-th order weight 

coefficients. The DQM results are very sensitive to 

mesh grid points and there are several sets of the 

mesh grid points. One of the grid point sets is the 

non-uniform grid points and it was shown that this 

grid point set gives the results with good accuracy 

and low computational cost in comparison with other 

grid point sets. For this purpose, in this paper, we 

choose these set of grid points in terms of natural 

coordinate directions ξ as  

ξi =
1

2
 (1 − cos (

(i − 1)π

(Nξ − 1)
))    

(21) 

 

After implementation of the boundary conditions, the 

Eq. (10) is rewritten in the DQM terms as the 

following form 

[M]{d̈} + [C]{ḋ} + [K]{d} = 0     (22) 

In the equation (22), the matrices M, C and K are the 

mass, damper and stiffness matrix, respectively. By 

defining the new freedom vector and general solution 

of the Eq. (10) as the following form 

{Q} = {
d
ḋ
} ,                   y(x, τ) = {Q} eητ       (23) 

By using the Eq. (22), we can rewrite the Eq. (23) as 

ηA{Q̇} + B{Q} = 0,       A = [
0 M
I 0

] ,           B

= [
K C
0 −I

]      (24) 

In the above equation, η is a complex number and 

pipe vibration frequency is the imaginary part of it. 

After the implementation of the Eq. (10) in the DQM 

form, the elements of stiffness, mass and damper 

matrix are given in the Eq. (25), respectively. 

K                         

= ℵ∑Cik
(4)

Nξ

k=1

 Wk,j

+ P(1 − 2νδ)∑Cik
(2)

Nξ

k=1

 Wk,j

− T ∑Cik
(2)

Nξ

k=1

 Wk,j +∑sin2(πξi)Cik
(2)

Nξ

k=1

 Wk,j

+ 2ηAH0
2∑sin(πξi) cos(πξi)Cik

Nξ

k=1

Wk,j

− ηAH0
2 (
π

l
)
2

∑sin2(πξi)

Nξ

k=1

Wk,j

− 2IgfUg
2
l

D
 ∑Cik

(2)

Nξ

k=1

 Wk,j

+ Nth∑Cik
(2)

Nξ

k=1

 Wk,j + N
h∑Cik

(2)

Nξ

k=1

 Wk,j 

C = 2IgUg
2
l

D
 ∑Cik

(1)

Nξ

k=1

 Wk,j,             M

= (Ig + I)Wk,j 

 (25) 

4.   Multi objective optimization problems 

Solving multi-objective optimization problems, 

finally, give rise to a system of Pareto–optimal 

solutions, so, Evolutionary Algorithms (EAs) are 

ideal to handle this kind of problems. To have an 

effective search, it is necessary to guide the search 

toward the Pareto-optimal set. Prevention of 

premature saturation and a well distributed population 

in Pareto front are also two important issues in the 

search process. Pioneering work in context of 

Evolutionary Algorithms has been performed by 

Schaffer [32]; other significant developments are 

explained in the works by Fonseca and Fleming [33], 

Horn et al [34], Knowles et al [35], Zitzler et al 
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[36]and Deb et al [37]. Mathematically, multi-

objective optimization problems can be stated as 

 

Minimize y = {f1(x), f2(x), f3(x), … fM(x)} 

Subject to g(x)

= {g1(x), g2(x), g3(x), … gJ(x)} ≤ 0 

h(x) = {h1(x), h2(x), h3(x), … hk(x)} = 0 

Where x = {x1, x2, x3, … , xN} ϵ X 

y = {y1, y2, y3, … , yN} ϵ Y    (26) 

 

X is the vector of decision variables, y is the objective 

vector, X is the decision space, and Y is called 

objective space .The solution of Eq. (26) usually is 

not unique, but a set of equally efficient, no inferior, 

non-dominated solutions which are named as Pareto-

optimal set. A no inferior solution is one that is not 

overcome by any other possible solution. For the 

maximization case, mathematically, it is said that 

solution x1 dominates  x2 or  x1 is superior to  x2 

when 

 

∀ i ∈ {1,2, … ,M}      ,             y(x1)
≥ y(x2)          ∀ i
∈ {1,2, … ,M} | yi(x

1)
> yi(x

2)      (27) 

 

If any x is not dominated by any other one, then it is a 

non-inferior, non-dominated or Pareto-optimal point. 

Two points in a Pareto-optimal set are indifferent to 

each other. If any of Pareto-optimal solutions is found 

then the optimization algorithm should be terminated, 

but it is of interest to achieve all Pareto-optimal 

solutions because, fitness of each one depends on 

number of factors such as: designer's choice, practical 

restrictions and project limitations. Bees Algorithm is 

explained in the following section in detail. 

4.1.   The Steps of Bees Algorithm 

The Bees Algorithm (BA) is a search method which 

is inspired by the foraging behavior of honey bees. 

This section summarizes the main steps of the Bees 

Algorithm. For more details reader is referred to 

references [11, 12, 38]. Table.1 shows the pseudo 

code for the Bees Algorithm in its simplest form 

which is dependent to some parameters described in 

Table.2. 

 

 

Table 1: Parameters of the Bees Algorithm 

Population 𝒏 

Number of selected sites 𝑚 

Number of top-rated sites out of m selected 

sites 
𝑒 

Number of bees recruited for best e sites 𝑛𝑒𝑝 

Number of bees recruited for the other (m-

e) selected sites 
𝑛𝑠𝑝 

Initial patch size 𝑛𝑔ℎ 

Number of iteration 𝑖𝑚𝑎𝑥 
 

Table 2: Pseudo code of the Bees Algorithm 

1-Initialize population with random solutions. 

2-Evaluate fitness of the population 

3-While (stopping criterion not met) // forming new 

population. 

4-Select sites for neighborhood search and determine the 

path size 

5-Recruit bees for selected sites (more bees for best e 

sites) and evaluate fitness 

6-Select the fitness bees from each path 

7-Amend the Pareto optimal set 

8- Assign remaining bees to search randomly and 

evaluate their fitness’s 

1-End While 

4.2.   Define Optimization Problem  

The objective functions of the optimization process 

are J1 and J2. The first criteria, J1 is the total weight of 

pipe and the second criteria, J2 is the natural 

frequency. The constraint of problem (g1) checks the 

ratio of outer diameter to the length of pipe in order to 

keep assuming of optimization problem formulated as 

Minimize              J1 = 2πρLg 
Dout+Din

2
 ×

 
Dout−Din

2
  Minimize             J2 = −ω Subjected to:      g1 =

Dout

L
< 0.1 

Where, 0.5 < 𝐿 < 5        0.15 <  Dout < 0.35       

  0.1 <  Din < 0.3      0 <  𝑢 < 3 

5.   Results and discussions 

5.1.   Vibration Results 

In this part, in order to illustrate the prominent 

features of the mechanical behavior of fluid conveyed 
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pipe, the selected numerical results are presented, as 

well as the effects of humidity percentage and 

temperature effect. The material property constants 

have been reported by Ref. [13]. To indicate the 

minimum number of grid points for convergence 

analysis of the DQM, a MATLAB code is written 

based on the Eq. (19). It is based on the fact that the 

DQM results are sensitive to lower grid points. To 

obtain the results of the convergence analysis, the 

pipe is studied by considering the fluid velocity, the 

temperature change, the humidity percentage, the 

length of the pipe and the radius, 10 m/s, 30, 10% and 

1 m, respectively. To show the convergence analysis, 

the error percent is defined as follow: 

Vibration error percent = |
df

cr
| × 100 

Here, the df is vibration present results-vibration 

converged results and the cr is converged vibration 

frequency. The vibration frequency error percent 

against the number of grid points are shown in the 

Figure 2. In accordance with Figure 2, present 

solution is convergent. From the figure it is obviously 

shown that the tenth number of grid points (Nξ = 10) 

are adequate to gain the accurate solutions for the 

present analysis. 

There are no published papers in the present class of 

problem; thus, the numerical solutions which are 

obtained in this study compare with those results 

presented by Zou et al. [13]. To this end, the gas 

velocity, the thermal change, the effect of the 

magnetic field and the humidity change are ignored. 

According to the Table 3, the present results are in 

good agreement with those reported by Zou et al [13]. 

 

Figure 2: Convergence study and minimum number of grid 

points (𝑁𝜉  ) required to obtain accurate the vibration 

frequency for four different boundary conditions. 

 

 

 

Table 3: Comparison of natural frequency obtained from 

the present model with some known results available in the 

literature. 

Mode Structural frequency (Hz) 

Pipe without 

pressure 

Pipe with 3 Mpa 

pressure 

Present Ref. 

[13] 

Present Ref. 

[13] 

1 0.2630 0.2630 0.0000 0.0000 

2 1.6480 1.6480 1.1003 1.1003 

3 4.6144 4.6144 4.0907 4.0907 

4 9.0424 9.0424 8.4016 8.4016 

 

In this section, the effect of gas speed on vibration 

frequency is investigated. The Figure 3 shows the 

effect non-dimensional gas velocity 

(Ugl √( ρf Af )/ ℵ) on the non-dimensional vibration 

frequency Im (μ)l2√(ρfAf + ρpAp )/ ℵ  of the pipe 

for the various values of the temperature change. To 

plot this figure, the numerical results are based on the 

assumptions that the pipe length and the boundary 

condition are 1 m and SS, respectively. The Figure 3 

shows the effects of the temperature change and the 

gas velocity on the natural frequency of the pipe. The 

gas velocity has a diminishing effect on the vibration 

frequency of pipe. In the other words, the vibration 

frequency of pipe is decreased by the increasing of 

the gas velocity. Moreover, this figure shows the 

critical velocity of the laminate pipe. The pipe is 

buckle when the vibration of the pipe is vanished. In 

this figure, the intersection points on the vibration 

curves with the gas velocity axis are shown the 

critical velocity. This interesting phenomenon can be 

expressed by this fact that the gas velocity causes that 

the pipe becomes more flexible and by increasing the 

temperature change, the pipe rigidity factor becomes 

smaller and when the gas velocity reach to the critical 

velocity the rigidity factor is set to zero and the 

laminate pipe is buckled. Also, it is clearly seen that 

if the temperature change becomes larger the critical 

velocity keep on to decreasing. The same results have 

been seen for other boundary conditions. Thus, it is 

deduced that the temperature change has a significant 

role in the vibration and buckling behavior of 

laminate fluid conveyed gas pipe and this factor must 

be considered to design the transmission gas 

pipelines.  
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Figure 3: Change of the non-dimensional natural frequency 

of the pipe versus the non-dimensional gas velocity for 

various temperature changes. 

To show the effect of the nonlinearity of the thermal 

stress and comparison it with the linear thermal stress, 

the vibration frequency against the temperature 

change for the nonlinear thermal stress and linear 

thermal stress is illustrated in the Fig. 4. To this end, 

the temperature change varies from 0 to 100 K. From 

this figure, it is clear that the vibration frequency 

reduces with enhancing the temperature change. It is 

based on the fact that the pipe becomes more flexible 

in the thermal environment; thus, the temperature 

change has a reduction effect on the stiffness matrix 

of the pipe. Also, it is evidently that the nonlinear 

thermal stress curve and the linear thermal stress 

curve are farther away from each other with 

increasing the temperature change. Consequently, the 

vibration frequencies of the nonlinear thermal stress 

case are smaller than the vibration frequencies 

obtained linear thermal stress case. 

To show the importance of the humidity change on 

the vibration frequency of Nano-beam, the humidity 

difference percentage is defined as follow. 

Hdp = |
VfΔH=50% − VfΔH=0

VfΔH=0
| × 100 

Here the Hdp and Vf are humidity difference 

percentage and vibration frequency, respectively. To 

this end, the humidity difference percentage versus 

the temperature change is illustrated in the Fig. 5. 

This figure is plotted for different boundary 

conditions. From this figure, it is evidently that the 

humidity difference percentage increases with 

increase the temperature change for all of the 

boundary conditions. Consequently, the humidity 

change has important effect on the vibration 

frequency of the fluid conveyed pipe with 

temperature change in comparison with the pipe 

without temperature change. Another point to 

consider is that, as the stiffness of the boundary 

condition increases the effect of the humidity 

percentage on the vibration frequency decreases. 

 

Figure 4: Change of non-dimensional vibration frequency 

with temperature change for linear and nonlinear thermal 

stress cases. 

 

Figure 5: Change of humidity difference percentage with 

nonlocal parameter for various boundary conditions. 

5.2.   Optimization results  

This section includes two parts. The first part gives 

the best parameters for the present models with Bees 

algorithm method and Genetic Algorithm NSGA II 

while the second part deals with simulation of present 

optimally designed pipe. Given the conflicting 

objective functions, the optimization algorithms 

clearly did not give rise to an optimum set-up, but to 

a Pareto frontier including several set-ups. The 

reverse tendency of some parameters was verified. 

On the other hand, as compared to the initial, 

previously manually optimized set-up, some 

important improvements are achieved. The 

optimization approach provided obvious indications 

for the optimum values of input variables, especially 

with regards to minimum weight and maximum 

natural frequency. The actual figures verified 

important improvements of the most of parameters. 

The empirically chosen parameters for the 

optimization are given in the Table 4. Figures 6 and 7 

show the non-dominated solutions obtained using 

Bees Algorithm and Genetic Algorithm for pipe 

respectively. It is clear that Bees Algorithm can find 



A. Moradi et al. 

62 

 

more non-dominated solutions than non-dominated 

genetic algorithm.   

Table 4: Parameters of the Bees Algorithm for optimization 

of pipe 

𝐧 𝐦 𝐞 𝐧𝐞𝐩 𝐧𝐬𝐩 𝐧𝐠𝐡 𝐢𝐦𝐚𝐱 

50 20 4 20 15 0.01 200 

 

 

Figure 6: Non-dominated solutions obtained for 

optimization using BA Algorithm. 

Table 5 shows that Bees Algorithm and NSGA II.  

It is an advantage of Bees Algorithm, Compared to 

Other optimization methods. 

Table 5: Optimization results for conveyed pipe by using 

BA algorithm. 

Poi

nt 

L Din Dout U Weigh

t 

Freque

ncy 

NSGAII algorithm results 

A 1.77

02 

0.05

28 

0.15

38 

0.01

50 

1309.8

703 

15.4181

2103 

B 1.77

23 

0.05

17 

0.15

40 

0.01

42 

1323.0

236 

15.4181

3028 

C 1.77

52 

0.03

56 

0.16

06 

0.01

41 

1544.4

307 

15.4181

3087 

BA algorithm results 

A 1.54

02 

0.03

45 

0.15 0.66

79 

1163.8

658 

15.2506

8529 

B 1.83

47 

0.05

42 

0.17

33 

0.32

63 

1762.4

634 

15.3783

9394 

C 2.94

78 

0.08

55 

0.20

94 

0 3819.0

194 

15.4182

0571 

 

Figure 5: Non-dominated solutions obtained for 

optimization using GA Algorithm. 

6.   Conclusion 

The vibration analysis of the fluid conveying pipe has 

been investigated by considering the effects of 

humidity and temperature changes. The effect of non-

uniform magnetic field on the vibration behavior of 

fluid conveying pipe is also considered. Moreover, 

the linear and nonlinear thermal stress cases are 

studied in this work. Then, the Bees algorithm and 

NSGA II for multi-objective optimization of a pipe 

model to minimize total weight and maximize the 

natural frequency of pipe are applied. From the 

results of the present study, the following conclusions 

are noticeable: 

1. The natural frequency of pipe depends on the 

flow velocity as well as temperature change 

and humidity percent. 

2. The influence of temperature change on the 

instability of fluid conveying pipe is 

significant. 

3. The simulation results unveil the robust 

performance of the proposed optimization 

approach based on the BA technique to 

minimize total weight and maximize the 

natural frequency of pipe. 
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