[1] H. A. Pohl, Some effects of nonuniform fields on dielectrics, Journal of Applied Physics, Vol. 29, No. 8, pp. 1182-1188, 1958.
[2] X. Feng, W. Du, Q. Luo, B.-F. Liu, Microfluidic chip: next-generation platform for systems biology, Analytica Chimica Acta, Vol. 650, No. 1, pp. 83-97, 2009.
[3] K. Khoshmanesh, N. Kiss, S. Nahavandi, C. W. Evans, J. M. Cooper, D. E. Williams, D. Wlodkowic, Trapping and imaging of micron‐sized embryos using dielectrophoresis, Electrophoresis, Vol. 32, No. 22, pp. 3129-3132, 2011.
[4] J. P. Vacanti, R. Langer, Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation, The Lancet, Vol. 354, pp. S32-S34, 1999.
[5] B. H. Weigl, R. L. Bardell, C. R. Cabrera, Lab-on-a-chip for drug development, Advanced drug delivery reviews, Vol. 55, No. 3, pp. 349-377, 2003.
[6] P. C. Li, D. J. Harrison, Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects, Analytical Chemistry, Vol. 69, No. 8, pp. 1564-1568, 1997.
[7] E. Verpoorte, Microfluidic chips for clinical and forensic analysis, Electrophoresis, Vol. 23, No. 5, pp. 677-712, 2002.
[8] Y. Cho, S. Lee, B. Kim, T. Fujii, Fabrication of silicon dioxide submicron channels without nanolithography for single biomolecule detection, Nanotechnology, Vol. 18, No. 46, pp. 465303, 2007.
[9] S. K. Sia, G. M. Whitesides, Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies, Electrophoresis, Vol. 24, No. 21, pp. 3563-3576, 2003.
[10] R. Pethig, G. H. Markx, Applications of dielectrophoresis in biotechnology, Trends in biotechnology, Vol. 15, No. 10, pp. 426-432, 1997.
[11] L. Zheng, J. P. Brody, P. J. Burke, Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly, Biosensors and Bioelectronics, Vol. 20, No. 3, pp. 606-619, 2004.
[12] P. R. Gascoyne, J. Vykoukal, Particle separation by dielectrophoresis, Electrophoresis, Vol. 23, No. 13, pp. 1973, 2002.
[13] R. Pethig, Review article—dielectrophoresis: status of the theory, technology, and applications, Biomicrofluidics, Vol. 4, No. 2, pp. 022811, 2010.
[14] X. Wang, X.-B. Wang, P. R. Gascoyne, General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method, Journal of electrostatics, Vol. 39, No. 4, pp. 277-295, 1997.
[15] T. Jones, M. Washizu, Multipolar dielectrophoretic and electrorotation theory, Journal of Electrostatics, Vol. 37, No. 1, pp. 121-134, 1996.
[16] C. H. Kua, Y. C. Lam, C. Yang, K. Youcef-Toumi, I. Rodriguez, Modeling of dielectrophoretic force for moving dielectrophoresis electrodes, Journal of Electrostatics, Vol. 66, No. 9, pp. 514-525, 2008.
[17] T. Jones, Electromechanics of ParticlesCambridge Univ, Press, Cambridge, 1995.
[18] N. G. Green, T. B. Jones, Numerical determination of the effective moments of non-spherical particles, Journal of Physics D: Applied Physics, Vol. 40, No. 1, pp. 78, 2006.
[19] A. Ogbi, L. Nicolas, R. Perrussel, S. J. Salon, D. Voyer, Numerical identification of effective multipole moments of polarizable particles, IEEE Transactions on Magnetics, Vol. 48, No. 2, pp. pp 675-678, 2012.
[20] D. L. House, H. Luo, Effect of direct current dielectrophoresis on the trajectory of a non‐conducting colloidal sphere in a bent pore, Electrophoresis, Vol. 32, No. 22, pp. 3277-3285, 2011.
[21] Y. Liu, W. K. Liu, T. Belytschko, N. Patankar, A. C. To, A. Kopacz, J. H. Chung, Immersed electrokinetic finite element method, International Journal for Numerical Methods in Engineering, Vol. 71, No. 4, pp. 379-405, 2007.
[22] R. Saunders, Static magnetic fields: animal studies, Progress in biophysics and molecular biology, Vol. 87, No. 2, pp. 225-239, 2005.
[23] A. Pazur, C. Schimek, P. Galland, Magnetoreception in microorganisms and fungi, Open Life Sciences, Vol. 2, No. 4, pp. 597-659, 2007.
[24] R. H. W. Funk, T. Monsees, N. Özkucur, Electromagnetic effects–From cell biology to medicine, Progress in histochemistry and cytochemistry, Vol. 43, No. 4, pp. 177-264, 2009.
[25] J. Miyakoshi, Effects of static magnetic fields at the cellular level, Progress in biophysics and molecular biology, Vol. 87, No. 2, pp. 213-223, 2005.
[26] T. Sakurai, S. Terashima, J. Miyakoshi, Effects of strong static magnetic fields used in magnetic resonance imaging on insulin‐secreting cells, Bioelectromagnetics, Vol. 30, No. 1, pp. 1-8, 2009.
[27] S. Di, Z. Tian, A. Qian, J. Li, J. Wu, Z. Wang, D. Zhang, D. Yin, M. L. Brandi, P. Shang, Large gradient high magnetic field affects FLG29. 1 cells differentiation to form osteoclast-like cells, International journal of radiation biology, Vol. 88, No. 11, pp. 806-813, 2012.
[28] V. Zablotskii, T. Polyakova, O. Lunov, A. Dejneka, How a High-Gradient Magnetic Field Could Affect Cell Life, Scientific Reports, Vol. 6, 2016.
[29] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation, Journal of Solid Mechanics, Vol. 6, pp. 98-121, 2014.
[30] M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013.
[31] M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, Journal of Solid Mechanics, Vol. 4, No. 2, pp. 128-143, 2012.
[32] M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 4, pp. 659-682, 2014.
[33] R. J. Leveque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM Journal on Numerical Analysis, Vol. 31, No. 4, pp. 1019-1044, 1994.
[34] M. R. Hossan, R. Dillon, A. K. Roy, P. Dutta, Modeling and simulation of dielectrophoretic particle–particle interactions and assembly, Journal of colloid and interface science, Vol. 394, pp. 619-629, 2013.
[35] I. Isaac Hosseini, and M. Moghimi Zand, Optimized Microstructure for Single Cell Trapping Utilizing Contactless Dielectrophoresis, Journal of Thermal Engineering, in press.
[36] M. Shiri, M. Moghimi Zand, Design and simulation of a novel motile sperm separation microfluidic system by use of electrophoresis, Sharif Journal, in press.