Dielectrophoretic effect of nonuniform electric fields on the protoplast cell

Document Type : Research Paper


School of Mechanical Engineering, University of Tehran, Tehran, Iran


In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, micro‌organisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of studying particle-electric field dielectrophoretic interaction. Immersed Interface Method (IIM) which is a modified finite difference method is used to solve the governing 2D elliptic electrostatic equations with irregular boundaries. A neutral particle polarizes under the application of an electric field and causes local nonuniformity in electrostatic potential distribution. So cells experience electric stresses on its surface. The electric stress on cell surface is calculated by Maxwell Stress Tensor (MST) on both sides of cell. DEP force is calculated by integrating electric stress on particle surface. In the present study calculated electric stresses is validated by DEP force calculated using EDM method and exact solution. we neglect other electrokinetic effects such as electrophoresis and electro-osmosis. Electrophoresis can be neglected if the particles are not charged. The effect of applied voltage, dielectric constants of cells and cells orientation on particle-particle interaction force has been studied.


Main Subjects

[1]    H. A. Pohl, Some effects of nonuniform fields on dielectrics, Journal of Applied Physics, Vol. 29, No. 8, pp. 1182-1188, 1958.
[2]    X. Feng, W. Du, Q. Luo, B.-F. Liu, Microfluidic chip: next-generation platform for systems biology, Analytica Chimica Acta, Vol. 650, No. 1, pp. 83-97, 2009.
[3]    K. Khoshmanesh, N. Kiss, S. Nahavandi, C. W. Evans, J. M. Cooper, D. E. Williams, D. Wlodkowic, Trapping and imaging of micron‐sized embryos using dielectrophoresis, Electrophoresis, Vol. 32, No. 22, pp. 3129-3132, 2011.
[4]    J. P. Vacanti, R. Langer, Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation, The Lancet, Vol. 354, pp. S32-S34, 1999.
[5]    B. H. Weigl, R. L. Bardell, C. R. Cabrera, Lab-on-a-chip for drug development, Advanced drug delivery reviews, Vol. 55, No. 3, pp. 349-377, 2003.
[6]    P. C. Li, D. J. Harrison, Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects, Analytical Chemistry, Vol. 69, No. 8, pp. 1564-1568, 1997.
[7]    E. Verpoorte, Microfluidic chips for clinical and forensic analysis, Electrophoresis, Vol. 23, No. 5, pp. 677-712, 2002.
[8]    Y. Cho, S. Lee, B. Kim, T. Fujii, Fabrication of silicon dioxide submicron channels without nanolithography for single biomolecule detection, Nanotechnology, Vol. 18, No. 46, pp. 465303, 2007.
[9]    S. K. Sia, G. M. Whitesides, Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies, Electrophoresis, Vol. 24, No. 21, pp. 3563-3576, 2003.
[10]  R. Pethig, G. H. Markx, Applications of dielectrophoresis in biotechnology, Trends in biotechnology, Vol. 15, No. 10, pp. 426-432, 1997.
[11]  L. Zheng, J. P. Brody, P. J. Burke, Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly, Biosensors and Bioelectronics, Vol. 20, No. 3, pp. 606-619, 2004.
[12]  P. R. Gascoyne, J. Vykoukal, Particle separation by dielectrophoresis, Electrophoresis, Vol. 23, No. 13, pp. 1973, 2002.
[13]  R. Pethig, Review article—dielectrophoresis: status of the theory, technology, and applications, Biomicrofluidics, Vol. 4, No. 2, pp. 022811, 2010.
[14]  X. Wang, X.-B. Wang, P. R. Gascoyne, General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method, Journal of electrostatics, Vol. 39, No. 4, pp. 277-295, 1997.
[15]  T. Jones, M. Washizu, Multipolar dielectrophoretic and electrorotation theory, Journal of Electrostatics, Vol. 37, No. 1, pp. 121-134, 1996.
[16]  C. H. Kua, Y. C. Lam, C. Yang, K. Youcef-Toumi, I. Rodriguez, Modeling of dielectrophoretic force for moving dielectrophoresis electrodes, Journal of Electrostatics, Vol. 66, No. 9, pp. 514-525, 2008.
[17]  T. Jones, Electromechanics of ParticlesCambridge Univ, Press, Cambridge, 1995.
[18]  N. G. Green, T. B. Jones, Numerical determination of the effective moments of non-spherical particles, Journal of Physics D: Applied Physics, Vol. 40, No. 1, pp. 78, 2006.
[19]  A. Ogbi, L. Nicolas, R. Perrussel, S. J. Salon, D. Voyer, Numerical identification of effective multipole moments of polarizable particles, IEEE Transactions on Magnetics, Vol. 48, No. 2, pp. pp 675-678, 2012.
[20]  D. L. House, H. Luo, Effect of direct current dielectrophoresis on the trajectory of a non‐conducting colloidal sphere in a bent pore, Electrophoresis, Vol. 32, No. 22, pp. 3277-3285, 2011.
[21]  Y. Liu, W. K. Liu, T. Belytschko, N. Patankar, A. C. To, A. Kopacz, J. H. Chung, Immersed electrokinetic finite element method, International Journal for Numerical Methods in Engineering, Vol. 71, No. 4, pp. 379-405, 2007.
[22]  R. Saunders, Static magnetic fields: animal studies, Progress in biophysics and molecular biology, Vol. 87, No. 2, pp. 225-239, 2005.
[23]  A. Pazur, C. Schimek, P. Galland, Magnetoreception in microorganisms and fungi, Open Life Sciences, Vol. 2, No. 4, pp. 597-659, 2007.
[24]  R. H. W. Funk, T. Monsees, N. Özkucur, Electromagnetic effects–From cell biology to medicine, Progress in histochemistry and cytochemistry, Vol. 43, No. 4, pp. 177-264, 2009.
[25]  J. Miyakoshi, Effects of static magnetic fields at the cellular level, Progress in biophysics and molecular biology, Vol. 87, No. 2, pp. 213-223, 2005.
[26]  T. Sakurai, S. Terashima, J. Miyakoshi, Effects of strong static magnetic fields used in magnetic resonance imaging on insulin‐secreting cells, Bioelectromagnetics, Vol. 30, No. 1, pp. 1-8, 2009.
[27]  S. Di, Z. Tian, A. Qian, J. Li, J. Wu, Z. Wang, D. Zhang, D. Yin, M. L. Brandi, P. Shang, Large gradient high magnetic field affects FLG29. 1 cells differentiation to form osteoclast-like cells, International journal of radiation biology, Vol. 88, No. 11, pp. 806-813, 2012.
[28]  V. Zablotskii, T. Polyakova, O. Lunov, A. Dejneka, How a High-Gradient Magnetic Field Could Affect Cell Life, Scientific Reports, Vol. 6, 2016.
[29]          M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation, Journal of Solid Mechanics, Vol. 6, pp. 98-121, 2014. 
[30]          M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type solution for nonlocal thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium, Journal of Solid Mechanics, Vol. 5, No. 2, pp. 116-132, 2013. 
[31]          M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale effect on the vibration of orthotropic plates embedded in an elastic medium and under biaxial in-plane pre-load via nonlocal elasticity theory, Journal of Solid Mechanics, Vol. 4, No. 2, pp. 128-143, 2012. 
[32]          M. Mohammadi, A. Farajpour, M. Goodarzi, F. Dinari, Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium, Latin American Journal of Solids and Structures, Vol. 11, No. 4, pp. 659-682, 2014. 
[33]  R. J. Leveque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM Journal on Numerical Analysis, Vol. 31, No. 4, pp. 1019-1044, 1994.
[34]  M. R. Hossan, R. Dillon, A. K. Roy, P. Dutta, Modeling and simulation of dielectrophoretic particle–particle interactions and assembly, Journal of colloid and interface science, Vol. 394, pp. 619-629, 2013.
[35]  I. Isaac Hosseini, and M. Moghimi Zand, Optimized Microstructure for Single Cell Trapping Utilizing Contactless Dielectrophoresis, Journal of Thermal Engineering, in press.
[36]  M. Shiri, M. Moghimi Zand, Design and simulation of a novel motile sperm separation microfluidic system by use of electrophoresis, Sharif Journal, in press.
Volume 48, Issue 1
June 2017
Pages 1-14
  • Receive Date: 29 April 2017
  • Revise Date: 26 May 2017
  • Accept Date: 08 June 2017