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Abstract

In recent decades the effects of magnetic and electric fields on living cells and organisms have gained the increased
attention of researchers. In recent years, dielectrophoresis based microfluidics systems have been used to manipulate
biological micro particles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast,
microorganisms, proteins, DNA, etc. So most previous researchers have studied particle trajectory under the
application of electric field in order to better design of such micro devices. In the current study the effect of nonuniform
electric field on a single cell is investigated. A neutral particle polarizes in the presence of electric field. It causes local
change in electrostatic potential distribution and local nonuniformity in electric field. These changes are ignored in
previous researches and effective dipole moment (EDM) approximation is applied to predict the DEP force exerted on
cells. In the present research the effect of cell on electrostatic potential distribution and electric stresses acting on cell
surface is studied. To this end, the cell shape and internal boundary conditions on cell surface must be considered in
computational domain. To do this, Immersed Interface Method (IIM) which is a modified finite difference method is
employed. Some numerical results are presented to show the good accuracy of mentioned numerical method. The
electric stresses on cell surface are calculated by Maxwell Stress Tensor (MST). Also some results are presented to
validate the numerical solution and investigate the accuracy of EDM approximation. Other electrokinetic effects such
as electrophoresis and electro-osmosis are neglected in this study.
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1. Introduction

Dielectrophoresis phenomena has been introduced by
H. A. Pohl who performed experiments with applying
a non-uniform AC and DC electric field on a
suspension of small plastic particles and dielectric
liquids [1]. He observed that particles move under the
application of non-uniform electric field. The force
applied on particles in the presence of non-uniform
electric field is called dielectrophoresis (DEP) force.
DEP force depends on dielectric properties of cell and
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buffer fluid. So the magnitude and direction of DEP
force is different for different cell types. This is the
basis of designing microsystems for the purpose of
manipulating biological particles such as cell, DNA,
gene, etc. which is greatly important in various
biotechnological applications [2-5]. Several researches
have been done recently to design microsystems to
manipulate bioparticles using electrokinetic forces [6-
8]. Some important advantages of microfluidics
systems are low energy consumption, low cast and
short time reaction [9].
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The dielectrophoresis phenomena can be explained
by charge distribution on particle surface. It polarizes,
when a neutral particle is exposed to an electric field.
Thus positive and negative induced charges
accumulate on inner and outer side of particle surface.
If the applied electric field is uniform the resultant of
Columbic forces applied on charges is zero, but if it is
non-uniform the particle experiences a net DEP force
which drives it toward higher or lower electric field. If
the particle polarizes more than buffer fluid, the
particle moves toward high electric field region. This
phenomenon is called positive dielectrophoresis
(pDEP). Otherwise the particle moves toward lower
electric field which is called nDEP. The DEP force
type depends on dielectric properties of particle and
medium.

Particle trajectory is highly important in
microfluidics systems designed for separating different
particles. Microfluidics systems designed for
separating, particle assembly, and filtration work
based on force variation applied on different particle
types [10]. For further studies on such microfluidic
devices, study [35,36].

In the most of previous researches, effective dipole
moment approximation has been considered to study
the behavior of particle in the presence of electric field
and investigating particle trajectory [11-13]. In some
researches multipole approximation is used to
calculate DEP force [14,15]. In another research, Kua
et.al. have presented an analytical method, called
Wiener-Hopf, to solve the electrostatic equation and
calculate multipolar DEP forces [16]. They have
investigated the particle trajectory caused by dipole,
quadrupole and octapole forces in the presence of non-
uniform electric field and concluded that considering
the first order force is sufficient to determine the
particle trajectory. Point dipole approximation is
accurate when the particle size is not comparable to the
device size. Otherwise local non-uniformities of the
induced field due to the particles is not negligible and
higher order multipolar terms must be retained [17].
Dipole moment has been calculated and presented in
literature for several ideal-shaped geometries. In
previous researches, higher-order forces have been
calculated for spherical particles. While the shape of
cells and biological particles is not spherical in reality
and polar moments are heavily dependent on particle
shape. In some researches, higher order DEP force is
calculated for some simple non-spherical particles
using multipolar approximation [18,19].

Effective dipole approximation (EDM) is easy to
use but has the disadvantage of being very hard to
apply when the particle shape is not spherical and less
accuracy while the particle size is not negligible. In

these cases, Maxwell stress tensor (MST) can be used
to calculate DEP force [19,20]. For using this method,
governing electrostatic or quasi-electrostatic equations
must be solved in the presence of particle. In a research
D. L. Hous and H. Luo have determined the trajectory
of a non-conducting colloidal sphere in a bent pore
[20]. They have calculated the DEP force using MST
and EDM and compered the trajectory determined by
each method. Y. Liu et al. have used immersed
electrokinetic method to solve the quasi-electrostatic
equation in the presence of particle with the aim of
calculating Maxwell stress tensor [21].

The biological effects of magnetic field and
electric field have captivated the interest of many
researches in recent years. Many works have been
done on the response of living organisms to low,
moderate and strong magnetic and electric fields [22-
27]. In a research a theoretical framework has been
presented to understand the effect of high gradient
magnetic field on intercellular processes and cell life
[28]. One of the most important effects of electric field
on cells is the dielectrophoresis phenomenon. In most
previous researches the dielectrophoretic effect of
electric field on a cell group has been studied [29-30].
But in the present work we have studied the interaction
of electric field and a single cell. To the best of the
researchers’ knowledge, in the literature, there is no
study carried out into studying the effect of cells on
electrostatic potential distribution which leads to local
nonuniformity in electric field. In this study the
interaction of a protoplast cell and electric field is
investigated in detail. The effect of cell type on electric
stress distribution on the cell surface under the
application of non-uniform DC voltage is studied. The
DEP force is calculated using both effective dipole
approximation and Maxwell stress tensor and results
are compared and difference of these two methods is
discussed. The governing electrostatic equation is
solved by immersed interface method (IIM) with
considering particle shape.

2. Theory

A dielectric protoplast cell without ohmic loss with
permittivity p is considered to be immersed in a

dielectric lossless fluid with permittivity f . The cell

is located at the center of a square enclosure with the
length 50a  μm. A DC voltage is applied on
enclosure. The governing electrostatic equation is as

Eq. 1.  ,x y is electrostatic potential at point  ,x y

2 0  (1)
The boundary conditions are as follow:

  0,x y  on electrode surfaces (2)
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The schematic of a protoplast cell and electric
model of the problem is shown in Fig. 1.

Fig. 1. A Schematic of the protoplast cell. Computational
domain

The general internal boundary conditions (jump
conditions) of a protoplast cell exposed to an electric
field is as follow [17].

p fp r f rE E  at r R (3-a)

  1 2 pm m p rj c g j E      at

r R
(3-b)

Where rE r   and r ij j         is

the complex permittivity. is ohmic conductivity and
2 f  in which f is the frequency of applied

electric field. Cell membrane is typically characterized
by effective capacitance mc and conductance mg both

per unit of surface area. In some practical cases in
which applied voltage is DC or ohmic losses can be
ignored, the boundary condition on interface can be
simplified as Eq. 4:

   , ,p fx y x y 
(4)

p f
p fn n

 
 
 


 

As mentioned, electric stresses acting on cell
surface in the presence of electric field are calculated
using Maxwell stress tensor. The surface integral of
electric stress is the net DEP force applied on cell.
Since electromagnetic effect is ignored, Maxwell

stress tensor is expressed as Eq. 5. iE and jE are

electric field vector components:

21

2ij i j ijT E E E    
 

(5)

Then surface DEP force density can be calculated
by Eq. 6:

  21

2
f E n E E n    (6)

DEP force density must be calculated on both sides
of interface. The net electric stress is the resultant of
inner and outer stresses. Subscript 1 shows the cell side
and number 2 shows the suspension side in the Eq. 7.
As shown in Fig. 2, is the normal vector of interface.

  2
1 1 1 1 1 1

1

2p pf E n E E n    (7-a)

  2
2 2 2 2 2 2

1

2f ff E n E E n    (7-b)

3. Solving method

With the aim of studying the electric stresses acting on
cell in the presence of electric field, the electrostatic
equation, which is the well-known Laplace equation 1
must be solved with considering the cell shape. So a
proper solving method must be selected which can
exactly implement the internal boundary conditions on
the interface that make the problem well-posed. In this
study, immersed interface method (IIM) is used to
solve the governing equation. There are other
approaches such as boundary element method. But the
special feature of IIM is that it doesn’t need to Green’s
function and it is applicable to general PDEs with or
without source term. IIM is based on finite difference
method or finite element method [31]. There are other
modified finite difference methods such as smoothing
method, harmonic averaging and well-known IBM to
solve PDEs which their coefficient is discontinuous or
there is singular force on interface [32,33]. These
methods use smoothed Heaviside and discrete delta
functions to implement the coefficient discontinuities.

Fig. 2. Normal vectors of interface
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IIM first introduced by Z. Li [33]. One obvious
feature of IIM is using fixed and uniform mesh which
has almost no cost for grid generation. Another
characteristic of this approach is that the IIM uses the
standard 5-point central finite difference scheme at all
grid points and only adds a nonzero correction term to
the right hand side of the finite difference equations at
grid points near or on the interface. In this paper, fast
IIM is used to discretize the equation. Fast IIM is a
modified immersed interface method for solving
equations which their coefficient is constant in both
domains and it has a jump on interface. For more
details about fast IIM refer to [33]. The main idea of
fast IIM is weighted least square interpolation. For
testing the solution algorithm, a 2D elliptic equation
like Eq. 8 is solved by fast IIM and the numerical result
is compared with exact solution.

    , ,x y u f x y    (8)

The interface in the domain    1,1 1,1   is expressed

as Eq. 9.

  
  

0

0

0.2sin cos
0 2

0.2sin sin

c

c

X r x

Y r y

 
 

 

     
  

(9)

The exact solution is as Eq. 10 in which  is the
domain inside/outside the interface.
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                             

(10)

In which, 2 2r x y  . Dirichlet boundary equation

and jump conditions are determined from exact
solution. Consider the force as Eq. 11.

 
 

 
2

4
,

,
16

,

if x y

f x y
r

if x y











  
 

(11)

The problem is solved using 5-point central
difference stencil for 3  , 0 1 2r  , 0 0.1C   ,

1 1C  , 1   and 100   . In Fig. 3 the considered

uniform mesh is shown. Regular and irregular grid
points are shown by blue and red.

Fig. 3. The considered mesh. Blue and red points
correspond to regular and irregular grid points respectively.

The green point is the control point on interface at which
surface derivative of is interpolated. The squares show

points involved in interpolation.

Numerical solution is compared with the exact
solution in figures 4 and 5. Fig. 4 shows the plots of
exact and numeric solution. To closely compare the
numeric and exact solution, solution is plotted at line

0x  and 0y  in Fig. 5.  These figures show the

good accuracy of solution algorithm. Figures 4 and 5
shows that fast IIM can satisfy the discontinuity in
solution and its derivatives on the interface accurately.

The discrete form of Eq. 1 can be obtained using
fast IIM (with 5-point central difference stencil) as
presented in following equation, in which ijC is the

correction term which is zero at regular grid points
[33]. In other words, the solution approach in regular
grid points is the standard finite difference scheme. In
the following equation is the discrete form of  and

h is the mesh size.

 1, 1, , , 1 , 12

1
4i j i j i j i j i j

ij

h
C

        


(12)

Augmented variable is defined as Eq. 13 where  is

considered to be tangential direction on interface.

 p f g
n n

 


 
 

 
(13)

Discrete form of g is G . Interpolating surface

derivatives of electrostatic potential on interface using
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a b

Fig. 4. Plots of (a) exact solution and (b) numerical solution obtained by fast IIM with mesh size ℎ = 0.04

a b

Fig. 5. Comparing exact and numeric solutions at lines (a) = 0 and (b) = 0
weighted least square interpolation, the matrix form of
Eq. 12 can be written as

1G F  A B (14)
Also the matrix form of Eq. 13 is obtained as Eq. 15:

2G F E T (15)
It is not possible to express a closed form for

matrices B , E , T , G , 1F and 2F . They should be

calculated element by element in a solution loop.
Solving the following matrix equation, the problem
can be solved:

1

2

F

G F

     
     

     

A B

T G
(16)

4. Results and discussion

When cell is exposed to electric field, it causes local
changes in electrostatic potential and local

nonuniformity in electric field. These changes in
potential distribution are neglected in most previous
works. In the present study the local nonuniformity
caused by protoplast cell in an electric field is closely
monitored and electric stresses acting on cell surface
are investigated.

The first step in numerical analysis is convergence
study. To examine the convergence of the solution, one
can consider a cell with permittivity ratio 10p f  

located at the center of a square enclosure with 50a 
µm. Vertical sides are insulated and a 1V DC voltage
is applied to horizontal surfaces. The problem is solved
for different mesh sizes. Fig. 6 shows the electrostatic
potential at 25x  μm. In this figure N is the number
of control points on the interface. This figure shows
that the mesh size 0.8h  results in a good
convergence.
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Fig. 6. Electrostatic potential (V) at = 25 μm, ⁄ =10
Now a protoplast cell with permittivity p is

considered immersed in a dielectric fluid with
permittivity f . The cell is located at the center of a

square enclosure under the application of non-uniform
electric field. The potential boundary condition is as
follow.

9 210 y  at 0x 

(17)
 9 2 210 y a   at x a

9 210 x  at 0y 

 9 2 210 a x   at y a

The electrostatic potential distribution and electric
field without considering the cell presence are shown
in Fig. 7. Fig. 8 shows the effect of two kinds of

protoplast cells (which their permittivity is lesser and
more than the permittivity of surrounding fluid on
electrostatic potential distribution). Fig. 9 shows local
nonuniformity caused by the effect of two kinds of
cells. The vectors show electric field vector in this
picture. As can be seen in these figures, behavior of
cell in electric field depends of its dielectric properties.
So the electric stress distribution is expected to be
different for these two kinds of cells. Since the applied
voltage is DC, only the permittivity is important. But
if the applied voltage is AC and ohmic loss of cell and
suspension is not ignored, both conductivity and
permittivity of cell and fluid must be considered [17].
Also the other important parameter which affects cell
behavior is the Frequency of electric field.

As mentioned before, IIM is used to implement the
internal boundary conditions on cell interface. In order
to examine the accuracy of solution, electric filed is
interpolated on interface and rE which is r  has

been calculated on both sides of the interface. Fig. 10
shows that jump condition is satisfied very good and it
shows the good accuracy of solving algorithm.

In Fig. 11 electrostatic potential and electric field
intensity at 25x  μm are plotted. Cells with
permittivity ratio 0.02p f   and 10p f  
located at the center of the enclosure. In this figure red
curves show the electrostatic potential and electric
field intensity without considering the presence of the
cell. Blue curves show the effect of cell in potential
distribution and electric field. As can be seen in this
figure, electric potential is continuous across the
interface, but its gradient which is electric field is non-
continuous. It can be observed that IIM has satisfied

a b

Fig. 7. (a) Electric field and (b) electrostatic potential distribution without the effect of cell
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a b

Fig. 8. Local changes in electrostatic potential caused by protoplast cell with = 8 μm, permittivity ratio (a) ⁄ = 10, and (b)⁄ = 0.02
the discontinuity of solution accurately. Fig. 12 shows
the interpolated electric field vectors on both sides of
interface. Red and blue vectors indicate electric field
vectors on suspension side and cell side respectively.
The discontinuity of electric field is obvious in this
picture.

Now we calculate DEP force using both MST and
EDM method. Behavior of cell under the application
of electric field as mentioned, depends on dielectric
properties of cell and buffer and the frequency of

applied voltage as well. Complex Clausius-Mossotti

factor  K  which is a function of dielectric

properties of cell and fluid, determines the behavior of
cell in electric field. DEP force depends upon the
magnitude and sign of Clausius-Mossotti factor.
Consistent to this, we choose to distinguish between

pDEP and nDEP effects. If  Re 0K     the cell is

attracted toward higher electric field region. This
phenomenon is called positive dielectrophoresis. If

a b

Fig. 9. Local nonuniformity in electric field caused by protoplast cell with = 8 μm, permittivity ratio (a) ⁄ = 10 and (b)⁄ = 0.02
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a b

Fig. 10. Interpolated on both sides of the interface of a cell with permittivity ratio (a) ⁄ = 0.5 and (b) ⁄ = 0.3
 Re 0K     the cell is driven toward lower electric

field region. It is called negative dielectrophoresis. If
we ignore the ohmic loss of cell or the applied voltage
is DC, the permittivity ratio p f  distinguishes

between pDEP and nDEP. If it is less or more than 1
cell experience nDEP and pDEP effects respectively.

DEP force using EDM approximation is calculated by
Eq. 18.

3 2
02

2
p f

DEP f
p f

F R E
 


 

 
    

(18)
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⁄ =1
0

a b

Fig. 11. (a) electric field intensity and (b) electrostatic potential (V) at = 25 μm. Red curve shows the potential and electric
field while cell does not present and blue curves show the effect of cell

In Fig. 13 nDEP and pDEP effects are shown. DEP
force contour that is obtained from exact solution is
plotted in this figure. In Fig. 13-a which shows nDEP

02p  and 0100f  . In Fig. 13-b in which pDEP

effect is shown 020p  and 02f  . Vectors

show DEP force in this figure.

Electric field discontinuity on cell surface causes
electric stresses on cell surface. DEP force can be
calculated by integrating surface electric stresses. If
the applied electric field is uniform, the net force is
zero. In Fig. 14 electric stresses on cell surface with
permittivity ratio 0.02p f   and 10p f   are

shown. Red and blue vectors show electric force on
suspension side and cell side respectively. Total
electric stress distribution acting on cell membrane is
shown in Fig. 15. As can be seen stress distribution is
different for two different cell types.

As mentioned before, effective dipole moment
(EDM) approximation is accurate only when the cell
size is much smaller than the device size and its shape
is simple. Now DEP force calculated using exact
solution of electrostatic potential field will be
compared with DEP force obtained by integrating the
surface electric stresses. The results are presented in

a b

Fig. 12. Electric field vectors on cell surface. cell permittivity ratio is (a) ⁄ = 10 and (b) ⁄ = 0.02. Red and blue vectors

indicate electric field vectors on suspension side and cell side respectively
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a b

Fig. 13. DEP force (N) contours for (a) = 2 , = 100 and (b) = 20 , = 2 . pDEP and nDEP effect are shown in

(a) and (b) respectively

tables 1 to 4. The particle is located at 25xC  μm and
25yC  μm. As can be seen, when the cell radius is

smaller than 3 μm the deviation of two methods is
negligible. This shows that the solution algorithm is
valid. But when the cell radius increases the accuracy

of EDM approximation decreases. Results for cell with
permittivity ratio 1p f   and 1p f   are

presented in tables 1 and 2 and tables 3 and 4
respectively.

a b

Fig. 14. DEP force density on both sides of interface of protoplast cell under the application of non-uniform electric field. Cell

radius is 8 µm. (a) = 20 , = 2 and (b) = 2 , = 100 . Red and blue vectors show the DEP force density on

suspension and cell side respectively
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a b

Fig. 15. Electric stress distribution on the cell surface with radius 8 μm. (a) = 20 , = 2 and (b) = 2 , = 100 .

Table 1. comparing MST and EDM methods. ⁄ = 0.02
error (%)MSTF (N)EDMF (N)R (µm)

0.6663×10-63.02×10-62

3.5467.05×10-66.8×10-63

8.0351.12×10-51.21×10-54

10.521.71×10-51.89×10-55

10.562.46×10-52.72×10-56

11.443.32×10-53.7×10-57

14.154.24×10-54.84×10-58

17.465.21×10-56.12×10-59

18.496.38×10-57.56×10-510

Table 2. comparing MST and EDM methods. ⁄ = 0.2
error (%)MSTF (N)EDMF (N)R (µm)

0.961.04×10-61.05×10-62

2.602.3×10-62.36×10-63

6.883.92×10-64.19×10-64

7.736.08×10-66.55×10-65

8.388.71×10-69.44×10-66

8.471.18×10-51.28×10-57

11.251.51×10-51.68×10-58

13.361.87×10-52.12×10-59

14.912.28×10-52.62×10-510
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Table 3. comparing MST and EDM methods. ⁄ = 10
error (%)MSTF (N)EDMF (N)R (µm)

0.482.91×10-72.89×10-73

0.685.18×10-75.15×10-74

0.878.12×10-68.04×10-65

1.091.17×10-61.16×10-66

3.601.63×10-61.57×10-67

6.162.19×10-62.06×10-68

10.052.86×10-62.60×10-69

14.103.66×10-63.21×10-610

Table 4. comparing MST and EDM methods. ⁄ = 50
error (%)MSTF (N)EDMF (N)R (µm)

0.121.36×10-71.36×10-73

0.552.55×10-72.42×10-74

2.433.86×10-73.77×10-75

2.465.58×10-75.44×10-76

4.387.73×10-77.41×10-77

8.331.05×10-69.67×10-68

12.141.37×10-61.22×10-69

16.821.77×10-61.51×10-610

5. Conclusion

Cells are exposed to external electric fields in many
biomedical and biological applications such as
electroporation and electrofusion. Therefore, it is
necessary to closely study the interaction of cells and
electric field. The most famous effect of electric field
on cells is the dielectrophoresis phenomenon. In the
previous researches mostly the behavior of a cell group
under the application of electric field has been studied
due to design microfluidics systems for medical
applications like particle separating, assembly and
filtration. But in this study the behavior of a single cell
in the presence of non-uniform electric field is studied.
To this end, we needed to solve the governing
equations with considering the cell presence in the
solution domain. IIM is used to solve the governing
equations. Some numerical results are presented to
examine the accuracy of IIM to satisfy the internal
boundary conditions on the cell interface. By
calculating Maxwell stress tensor, electric stress
distribution on cell surface is investigated. In order to
examine the validity of solution and the accuracy of
EDM, we compared DEP force calculated using EDM
method and DEP force obtained by integrating
Maxwell stress tensor. Results are matched when the
cell radius is smaller than 3 μm. It shows that solution
method is valid. But when cell radius is more than 3
μm EDM approximation becomes very inaccurate. The
results of this research can help to better understanding
the phenomenon electroporation.
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