1. Postma H.W.C., Teepen T., Yao Z., Grifoni M., Dekker C., 2001, Carbon nanotube single- electron transistor at room temperature, Science 293: 76-79.
2. Kim C., Zhang S., 2009, Conductivity of carbon nanofiber/polypyrrole conducting nanocomposites, J Mech Sci Technol 23: 75-80.
3. Hall A.R., Falvo M.R., 2006, Superfine R and Washburn S. Electromechanical response of singlewalled carbon nanotubes to torsional strain in a selfcontained device, Nature 2: 413-416.
4. Kis A., Kasas S., Babic B., Kulik A.J., Benoit W., Briggs G.A.D., Schonenberger C., Catsicsa S., Forro L., 2002, Nanomechanics of Microtubules, Phys Rev Lett 89: 248101.
5. Cuenot S., Fretigny C., Demoustier-Champagne S., Nysten B., 2003, Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy, J Appl Phys 93: 5650.
6. Juhasz J.A., Best S.M., Brooks R., Kawashita M., Miyata N., Kokubo T., Nakamura T., Bonfield W., 2004, Mechanical properties of glass-ceramic A–Wpolyethylene composites: effect of filler content and particle size, Biomaterials 25: 949-955.
7. Sorop T.G., de Jongh L.J., 2007, Size-dependent anisotropic diamagnetic screening in superconducting Sn nanowires, Phys Rev B 75: 014510.
8. Ghoniem N.M., Busso E.P., Kioussis N., Huang H., 2003, Multiscale modelling of nanomechanics and micromechanics: an overview, Philos Mag 83: 3475.
9. Eringen A.C., 1972, Nonlocal polar elastic continua, Int J Eng Sci 10: 1–16.
10. Eringen A.C., and Edelen D., 1972, On nonlocal elasticity, Int J Eng Sci 10: 233–248.
11. Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J Appl Phys 54: 4703–4710.
12. Eringen A.C., 2002, Nonlocal continuum field theories, New York: Springer-Verlag.
13. Peddieson J., Buchanan G.R., McNitt R.P., 2003, Application of nonlocal continuum models to nanotechnology, Int J Eng Sci 41: 305–312.
14. Sudak L.J., 2003, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, J Appl Phys 94: 72-81.
15. Polizzotto C., Fuschi P., Pisano A.A., 2006, A nonhomogeneous nonlocal elasticity model, Eur J
Mech A Solids 25: 308–333.
16. Pisano A.A., Sofi A., Fuschi P., 2009, Finite element solutions for nonhomogeneous nonlocal elastic problems, Mech Res Commun 36: 755–761.
17. Paola M.D., Pirrotta A., Zingales M., 2010, Mechanically-based approach to non-local elasticity: variational principles, Int J Solids Struct 47: 539–548.
18. Mahmoud F.F., Meletis E.I., 2010, Nonlocal finite element modeling of the tribological behavior of nanostructured materials, Interact Multiscale Mech 3: 267–276.
19. Phadikar J.K., Pradhan S.C., 2010, Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates, Comput Mater Sci 49: 492–499.
20. Lim C.W., 2010, On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection, Appl Math Mech 31: 37–54.
21. Rafiei M., Mohebpour S.R., Daneshmand F., 2012, Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium, Phys E 44: 1372–1379.
22. Eltaher M.A., Emam S.A, Mahmoud F.F., 2012, Free vibration analysis of functionally graded sizedependent nanobeams, Appl Math Comput 218: 7406– 7420.
23. Mahmoud F.F., Eltaher M.A., Alshorbagy A.E., Meletis E.I., 2012, Static analysis of nanobeams including surface effects by nonlocal finite element, J Mech Sci Tech 26: 1–9.
24. Wang Q., C M Wang C.M., 2007, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology 18(7): 075702.
25. Danesh M., Farajpour A., Mohammadi M., 2012, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mech. Res. Comm. 39: 23–27.
26. Aghababaeia R, Reddy, J.N., 2009, Nonlocal thirdorder shear deformation plate theory with application to bending and vibration of plates, J. Sound Vib., Vol. 326: 277–289.
27. Farajpoura A., Mohammadia M., Shahidia A.R., Mahzoonb M., 2011, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E, 43(10): 1820-1825.
28. McFarland A.W., and Colton J.S., 2005, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, J Micromech Microeng 15: 1060–1067.
29. Wang Q., Liew K.M., 2007, Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures, Phys Lett A 363: 236–242.
30. Xu M., 2006, Free transverse vibrations of nanoto-micron scale beams, Proc Roy Soc A 462: 2977– 2995.
31. Reddy J.N., 2007, Nonlocal theories for bending, buckling and vibration of beams, Int J Eng Sci 45: 288 307.
32. Wang C.M., Zhang Y.Y., He X.Q., 2007, Vibration of nonlocal Timoshenko beams, Nanotechnology 18: 105401.
33. Heireche H., Tousi A., Benzair A., Maachou M., Bedia E.A., 2008, Sound wave propagation in singlewalled carbon nanotubes using nonlocal elasticity. Phys E 40: 2791–2799.
34. Aydogu M., 2009 A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys E 41: 1651–1655.
35. Kong S., Zhou S., Nie Z., wang K., 2008, The sizedependent natural frequency of Bernoulli–Euler micro beams, Int J Eng Sci 46: 427–437.
36. Kong S., Zhou S., Nie Z., wang K., 2009, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, Int J Eng Sci 47: 487–498.
37. Filiz S., Aydogu M., 2010, Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity, Comput Mater Sci 49: 619–627.
38. Xia W., Wang L., Yin L., 2010, Nonlinear nonclassical microscale beams: static bending, postbuckling and free vibration, Int J Eng Sci 48: 2044–2053.
39. Wang B.L., Hoffman M., Yu A.B.m 2012, Buckling analysis of embedded nanotubes using gradient continuum theory, Mech Mater 45: 52–60.
40. Aydogdu M., 2009, Axial vibration of the nanorods with the nonlocal continuum rod model, Physica E 41: 861–864.
41. Wang C.M., Zhang Y.Y., Ramesh S.S., Kitipornchai S., 2006, Buckling analysis of micro- and nano rods/tubes based on nonlocal Timoshenko beam theory, J Phys D: Appl Phys 39: 3904–3909.
42. Attarnejad R., 2010, Basic displacement functions in analysis of nonprismatic beams, Eng Comput 27: 733-745.
43. Shahba A., Attarnejad R., Hajilar S., 2013, A Mechanical-Based Solution for Axially Functionally Graded Tapered Euler-Bernoulli Beams, Mech Adv Mater Struc 20: 696–707.
44. Attarnejad R., Shahba A., 2011, Basic Displacement Functions in Analysis of Centrifugally Stiffened Tapered Beams, Arab J Sci Eng 36: 841–853.
45. Attarnejad R., Shahba A., Jandaghi Semnani S., 2011, Analysis of Non-Prismatic Timoshenko Beams Using Basic Displacement Functions, Adv Struct Eng14: 319-332.
46. Attarnejad R., Shahba A., Eslaminia M., 2011, Dynamic basic displacement functions for free vibration analysis of tapered beams, JVC 17: 1–17.
47. Attarnejad R., Shahba A., 2011, Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams; a mechanical solution, Meccanica 46: 1267-1281.
48. Attarnejad R., Jandaghi Semnani S., Shahba A., 2010, Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams, Finite Elem Anal Des 46: 916–929.
49. Shahba A., Attarnejad R., Jandaghi Semnani S., Shahriari V., Dormohammadi A.A., 2012, Derivation of an efficient element for free vibration analysis of rotating tapered Timoshenko beams using basic displacement functions, P I Mech Eng G-J Aer 226:(11) 1455-1469.
50. Qaisi M.I., 1996, A power series approach for the study of periodic motion, JSV 196(4):401–406.
51. Bhaskar K, Dhaoya J., 2009, Straightforward power series solutions for rectangular plates, Compos Struct 89: 253–61.
52. M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation, Journal of Solid Mechanics, Vol. 6, pp. 98-121, 2014.
53. A. Farajpoura A., Shahidia A.R., Mohammadia M., 2012, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Compos Struct 94: 1605–1615.