Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution

Document Type: Research Paper


1 School of Civil Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 11365-4563, Iran.

2 School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran


The accuracy and efficiency of the elements proposed by finite element method (FEM) considerably depend on the interpolating functions namely shape functions used to formulate the displacement field within the element. In the present study, novel functions, namely basic displacements functions (BDFs), are introduced and exploited for structural analysis of nanobeams using finite element method based on Eringen’s nonlocal elasticity and EulerBernoulli beam theory. BDFs are obtained through solving the governing differential equation of motion of nanobeams using the power series method. Unlike the conventional methods which are almost categorized as displacement-based methods, the flexibility basis of the method ensures true satisfaction of equilibrium equations at any interior point of the element. Accordingly, shape functions and structural matrices are achieved in terms of BDFs by application of merely mechanical principles. In order to evaluate the competency and accuracy of the proposed method with different boundary conditions, several numerical examples with various boundary conditions are scrutinized. Carrying out several numerical examples, the results in stability analysis, free longitudinal vibration and free transverse vibration show a complete accordance with those in literature.


Main Subjects

1. Postma H.W.C., Teepen T., Yao Z., Grifoni M., Dekker C., 2001, Carbon nanotube single- electron transistor at room temperature, Science 293: 76-79.
2. Kim C., Zhang S., 2009, Conductivity of carbon nanofiber/polypyrrole conducting nanocomposites, J Mech Sci Technol 23: 75-80.
3. Hall A.R., Falvo M.R., 2006, Superfine R and Washburn S. Electromechanical response of singlewalled carbon nanotubes to torsional strain in a selfcontained device, Nature 2: 413-416.
4. Kis A., Kasas S., Babic B., Kulik A.J., Benoit W., Briggs G.A.D., Schonenberger C., Catsicsa S., Forro L., 2002, Nanomechanics of Microtubules, Phys Rev Lett 89: 248101.
5. Cuenot S., Fretigny C., Demoustier-Champagne S., Nysten B., 2003, Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy, J Appl Phys 93: 5650.
6. Juhasz J.A., Best S.M., Brooks R., Kawashita M., Miyata N., Kokubo T., Nakamura T., Bonfield W., 2004, Mechanical properties of glass-ceramic A–Wpolyethylene composites: effect of filler content and particle size, Biomaterials 25: 949-955.
7. Sorop T.G., de Jongh L.J., 2007, Size-dependent anisotropic diamagnetic screening in superconducting Sn nanowires, Phys Rev B 75: 014510.
8. Ghoniem N.M., Busso E.P., Kioussis N., Huang H., 2003, Multiscale modelling of nanomechanics and micromechanics: an overview, Philos Mag 83: 3475.
9. Eringen A.C., 1972, Nonlocal polar elastic continua, Int J Eng Sci 10: 1–16.
10. Eringen A.C., and Edelen D., 1972, On nonlocal elasticity, Int J Eng Sci 10: 233–248.
11. Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J Appl Phys 54: 4703–4710.
12. Eringen A.C., 2002, Nonlocal continuum field theories, New York: Springer-Verlag.
13. Peddieson J., Buchanan G.R., McNitt R.P., 2003, Application of nonlocal continuum models to nanotechnology, Int J Eng Sci 41: 305–312.
14. Sudak L.J., 2003, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, J Appl Phys 94: 72-81.
15. Polizzotto C., Fuschi P., Pisano A.A., 2006, A nonhomogeneous nonlocal elasticity model, Eur J
Mech A Solids 25: 308–333.
16. Pisano A.A., Sofi A., Fuschi P., 2009, Finite element solutions for nonhomogeneous nonlocal elastic problems, Mech Res Commun 36: 755–761.
17. Paola M.D., Pirrotta A., Zingales M., 2010, Mechanically-based approach to non-local elasticity: variational principles, Int J Solids Struct 47: 539–548.
18. Mahmoud F.F., Meletis E.I., 2010, Nonlocal finite element modeling of the tribological behavior of nanostructured materials, Interact Multiscale Mech 3: 267–276.
19. Phadikar J.K., Pradhan S.C., 2010, Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates, Comput Mater Sci 49: 492–499.
20. Lim C.W., 2010, On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection, Appl Math Mech 31: 37–54.
21. Rafiei M., Mohebpour S.R., Daneshmand F., 2012, Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium, Phys E 44: 1372–1379.
22. Eltaher M.A., Emam S.A, Mahmoud F.F., 2012, Free vibration analysis of functionally graded sizedependent nanobeams, Appl Math Comput 218: 7406– 7420.
23. Mahmoud F.F., Eltaher M.A., Alshorbagy A.E., Meletis E.I., 2012, Static analysis of nanobeams including surface effects by nonlocal finite element, J Mech Sci Tech 26: 1–9. 
24. Wang Q., C M Wang C.M., 2007, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology 18(7): 075702.
25. Danesh M., Farajpour A., Mohammadi M., 2012, Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method, Mech. Res. Comm. 39: 23–27.
26. Aghababaeia R, Reddy, J.N., 2009, Nonlocal thirdorder shear deformation plate theory with application to bending and vibration of plates, J. Sound Vib., Vol. 326: 277–289.
27. Farajpoura A., Mohammadia M., Shahidia A.R., Mahzoonb M., 2011, Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E, 43(10): 1820-1825.
28. McFarland A.W., and Colton J.S., 2005, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, J Micromech Microeng 15: 1060–1067.
29. Wang Q., Liew K.M., 2007, Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures, Phys Lett A 363: 236–242.
30. Xu M., 2006, Free transverse vibrations of nanoto-micron scale beams, Proc Roy Soc A 462: 2977– 2995.
31. Reddy J.N., 2007, Nonlocal theories for bending, buckling and vibration of beams, Int J Eng Sci 45: 288 307.
32. Wang C.M., Zhang Y.Y., He X.Q., 2007, Vibration of nonlocal Timoshenko beams, Nanotechnology 18: 105401.
33. Heireche H., Tousi A., Benzair A., Maachou M., Bedia E.A., 2008, Sound wave propagation in singlewalled carbon nanotubes using nonlocal elasticity. Phys E 40: 2791–2799.
34. Aydogu M., 2009 A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys E 41: 1651–1655.
35. Kong S., Zhou S., Nie Z., wang K., 2008, The sizedependent natural frequency of Bernoulli–Euler micro beams, Int J Eng Sci 46: 427–437.
36. Kong S., Zhou S., Nie Z., wang K., 2009, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, Int J Eng Sci 47: 487–498.
37. Filiz S., Aydogu M., 2010, Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity, Comput Mater Sci 49: 619–627.
38. Xia W., Wang L., Yin L., 2010, Nonlinear nonclassical microscale beams: static bending, postbuckling and free vibration, Int J Eng Sci 48: 2044–2053.
39. Wang B.L., Hoffman M., Yu A.B.m 2012, Buckling analysis of embedded nanotubes using gradient continuum theory, Mech Mater 45: 52–60.
40. Aydogdu M., 2009, Axial vibration of the nanorods with the nonlocal continuum rod model, Physica E 41: 861–864.
41. Wang C.M., Zhang Y.Y., Ramesh S.S., Kitipornchai S., 2006, Buckling analysis of micro- and nano rods/tubes based on nonlocal Timoshenko beam theory, J Phys D: Appl Phys 39: 3904–3909.
42. Attarnejad R., 2010, Basic displacement functions in analysis of nonprismatic beams, Eng Comput 27: 733-745.
43. Shahba A., Attarnejad R., Hajilar S., 2013, A Mechanical-Based Solution for Axially Functionally Graded Tapered Euler-Bernoulli Beams, Mech Adv Mater Struc 20: 696–707.
44. Attarnejad R., Shahba A., 2011, Basic Displacement Functions in Analysis of Centrifugally Stiffened Tapered Beams, Arab J Sci Eng 36: 841–853.
45. Attarnejad R., Shahba A., Jandaghi Semnani S., 2011, Analysis of Non-Prismatic Timoshenko Beams Using Basic Displacement Functions, Adv Struct Eng14: 319-332.
46. Attarnejad R., Shahba A., Eslaminia M., 2011, Dynamic basic displacement functions for free vibration analysis of tapered beams, JVC 17: 1–17.
47. Attarnejad R., Shahba A., 2011, Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams; a mechanical solution, Meccanica 46: 1267-1281.
48. Attarnejad R., Jandaghi Semnani S., Shahba A., 2010, Basic displacement functions for free vibration analysis of non-prismatic Timoshenko beams, Finite Elem Anal Des 46: 916–929.
49. Shahba A., Attarnejad R., Jandaghi Semnani S., Shahriari V., Dormohammadi A.A., 2012, Derivation of an efficient element for free vibration analysis of rotating tapered Timoshenko beams using basic displacement functions, P I Mech Eng G-J Aer 226:(11) 1455-1469.
50. Qaisi M.I., 1996, A power series approach for the study of periodic motion, JSV 196(4):401–406. 

51. Bhaskar K, Dhaoya J., 2009, Straightforward power series solutions for rectangular plates, Compos Struct 89: 253–61.

52. M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation, Journal of Solid Mechanics, Vol. 6, pp. 98-121, 2014.
53. A. Farajpoura A., Shahidia A.R., Mohammadia M., 2012, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Compos Struct 94: 1605–1615.