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Abstract 

The accuracy and efficiency of the elements proposed by finite element method (FEM) considerably depend on the 
interpolating functions namely shape functions used to formulate the displacement field within the element. In the 
present study, novel functions, namely basic displacements functions (BDFs), are introduced and exploited for 
structural analysis of nanobeams using finite element method based on Eringen’s nonlocal elasticity and Euler-
Bernoulli beam theory. BDFs are obtained through solving the governing differential equation of motion of nanobeams 
using the power series method. Unlike the conventional methods which are almost categorized as displacement-based 
methods, the flexibility basis of the method ensures true satisfaction of equilibrium equations at any interior point of 
the element. Accordingly, shape functions and structural matrices are achieved in terms of BDFs by application of 
merely mechanical principles. In order to evaluate the competency and accuracy of the proposed method with different 
boundary conditions, several numerical examples with various boundary conditions are scrutinized. Carrying out 
several numerical examples, the results in stability analysis, free longitudinal vibration and free transverse vibration 
show a complete accordance with those in literature. 
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1.   Introduction 

Due to rapidly developing nanotechnology industries, 
which lead to more advanced nano electromechanical 
equipment [1-3], the research in the field of 
mechanical properties of these nano-scale devices has 
attracted a great deal of attention. There are many 
researches in the literature substantiating that the 
mechanical characteristics of materials including 
elasticity modulus, flexural stiffness and etc. are 
greatly dependent on their size [4-7]. Basically, this 
effect is pertinent to atoms and molecules forming the 
material. The classical continuum theories aren’t able 
to properly describe the structural behavior when 
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dimensions of the structure become comparable to the 
nano-structural size of its material. Discrete models 
and modified continuum theories are the two common 
methods presented in order to take into account the 
size-dependent mechanical properties. Discrete 
models for instance molecular dynamics simulation 
are appropriate in precisely modeling nano-scale 
structures [8]. Among the modified continuum 
theories, the most frequent used in the literature are 
gradient elasticity theories, modified coupled theory 
and nonlocal elastic theories. 

The nonlocal elasticity theory proposed by Eringen [9-
12] is used by many researchers because of its 
competency based on which some of the shortcomings
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Nomenclature 
 

l  Beam length ub  First derivative of ub with respect to x  

x  Longitudinal coordinate iF   Equivalent nodal forces 

E   Modulus of elasticity 11F  Nodal flexibility matrix of the left node 

0E  Modulus of elasticity at origin 22F  Nodal flexibility matrix of the right node 

A   Cross-sectional area aG  Matrix containing nodal axial stiffness matrices 

0A   Cross-sectional area at origin fG Matrix containing nodal flexural stiffness matrices 

  Mass density uN , wN Shape functions 

0  Mass density at origin wN , wN First and  second derivative of wN with  

I   Moment of inertia respect to x  

0I   Moment of inertia at origin uN  First derivative of uN with respect to x  

( , )w x t   Transverse displacement 
g

K  Element geometrical stiffness  matrix 

( , )u x t   Axial displacement aK  Element axial stiffness matrix 

NE  Total number of beam elements fK  Element flexural stiffness matrix 

q x , n x  External loading aM , fM Element consistent mass matrix 

1ub  , 1wb , 1b , 2ub  , 2wb , 2b   Non-dimensional size effect parameter 

Basic Displacement Functions L  Non-dimensional longitudinal frequencies 

wb , wb  First and second derivative of wb  T Non-dimensional transverse natural frequencies 

with respect to x   

of the classical continuum theory can be completely 
obviated. Especially, it is useful in analysis of carbon 
nanotubes [13-14]. The nonlocal elasticity theory of 
Eringen is developed and formulated by many 
researchers [15-23]. These formulations can be 
categorized into differential nonlocal form [15-18] and 
integral nonlocal form [19-23]. The distinctive 
differences between integral and differential forms are 
described by Lim [20]. Among the nonlocal elasticity 
theories, nonlocal differential elasticity is the most 
commonly used in the analysis of nano-scaled 
structures because of its simplicity [19].  

Wang & Wang [24] presented the constitutive 
relations of nonlocal elasticity theory for application in 
the analysis of carbon nanotubes (CNTs) when 
modelled as Euler–Bernoulli beams, Timoshenko 
beams or as cylindrical shells. 

The small scale effect on the axial vibration of a 
tapered nanorod was studied by Danesh et al. using 
nonlocal elasticity theory and DQM method. It was 
concluded that the nonlocal effect has a significant 
influence on the axial vibration of nanorods [25]. 
Moreover, Aghababaei and Reddy [26] presented a 
third-order shear deformation plate theory capable of 
capturing both small scale effects and shear stress 
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through the plate thickness and clarifed the effect of 
nonlocal theory on natural vibration frequency of the 
plates. Furthermore, the buckling behavior of 
nanoscale circular plates under uniform radial 
compression was scrutinized by Farajpour et al. [27] to 
evaluate and illustrate the small-scale effect in the 
buckling of circular nanoplates.  

The application of thin beams in nano-scale 
devices such as Nano-Electro-Mechanical Systems 
(MEMS), atomic force microscopes and etc. in which 
small-scale size effects are commonly observed [28], 
has gained considerable attention in the literature. 
Euler-Bernoulli beam theory based on Eringen’s 
nonlocal elasticity theory is an innovative solution 
presented for the analysis of thin beams in nano-scale 
applications [29]. 

Nonlocal Euler-Bernoulli beam theory was 
implemented by Peddieson et al. to investigate the 
flexural behavior of a nano beam based on which the 
importance of nonlocal effects was estimated [13]. Xu 
[30] employed the integral equation approach and the 
nonlocal elasticity theory to scrutinize the nonlocal 
effect on the free transverse vibrations of nano-to-
micron scale beams and demonstrated a noticeable 
influence on higher vibration modes. 

Reddy [31], analytically examined bending, 
buckling and vibration of nanobeams through 
reformulating various local beam theories by means of 
the nonlocal differential constitutive relations of 
Eringen. Wang et al. [32] obtained governing 
equations and boundary conditions for the free 
vibration of beams in accordance with Timoshenko 
beam theory and Eringen’s nonlocal elasticity theory. 

Heireche et al. [33] modeled a single-elastic beam 
based on the Bernoulli–Euler and Timoshenko beam 
theories using nonlocal elasticity for the wave 
propagation in carbon nanotubes (CNTs). 
Furthermore, Aydogu [34] suggested a generalized 
nonlocal beam theory whose formulation is based on 
nonlocal constitutive equations of Eringen, to examine 
bending, buckling, and free vibration of nanobeams. 

Kong et al. [35] formulated free vibration of Euler–
Bernoulli micro-beams based on modified couple 
stress theory. Additionally, the static and dynamic 
problems of Euler–Bernoulli beams are analytically 
solved according to strain gradient elasticity theory by 
Kong et al. [36]. Filiz and Aydogu [37] investigated 
vibration of carbon nanotube heterojunctions along 
axial direction implementing nonlocal rod theory in 
which the nonlocal constitutive equations of Eringen 
are used. 

In addition, finite element formulations for 
analysis of Euler–Bernoulli nanobeam and Kirchoff 

nanoplate have been presented by Phadikar and 
Pradhan [19] which are based on nonlocal differential 
elasticity theory. Finite element results for bending, 
buckling and vibration for nonlocal beam are obtained. 
Xia et al. [38] implemented DQM to study static and 
dynamic behavior of nonlinear microbeams. The 
presented nonlinear model is conducted within the 
context of non-classical continuum mechanics by 
defining a material length scale parameter. Wang et al. 
[39] modeled a buckling of nanotubes embedded in an 
elastic matrix on the basis of Timoshenko beam theory. 
Both of stress gradient and strain gradient approaches 
are followed. 

In order to investigate the small-scale effect on the 
axial vibration of nano-rods, Aydogdu developed a 
nonlocal elastic rod model and obtained explicit 
expressions for natural frequencies of the rod with 
different boundary conditions [40]. Moreover, Wang 
et al. [41] investigated the elastic buckling analysis of 
micro- and nano-rods/tubes according to the nonlocal 
elasticity theory of Eringen. They proposed explicit 
expressions for calculating the critical buckling loads 
of axially loaded rods/tubes with various boundary 
conditions. 

In an attempt to solve the governing differential 
equation of non-prismatic beams, Attarnejad [42] 
introduced the novel concept of BDFs. Subsequently, 
Attarnejad and Shahba extended the scope for both of 
static [42-45] and dynamic [46-49] BDFs which are 
used in different beam theories. In this paper, we aim 
to propose a new application of dynamic BDFs for 
nanobeams. Firstly, BDFs are briefly described and 
calculated through a power series solution for 
governing differential equation of Euler-Bernoulli 
nanobeams. Afterwards, shape functions and structural 
matrices are derived in term of BDFs based on the 
analysis procedure is carried out. In order to evaluate 
the efficiency and competency of the proposed method 
several numerical examples are presented and the 
results show a good agreement with those in literature. 

2.   Basic Displacement Functions 

BDFs are apparently mathematical functions holding a 
profound mechanical concept. In the following 
section, firstly, the explicit definitions of BDFs and the 
calculation procedure are described. Accordingly, 
nodal flexibility matrices of the system are developed 
based on the BDFs. 

BDFs definition: 

1wb : Transverse displacement of the left node due to a 
unit lateral load at distance x when the beam is free-
clamped as depicted in Figure 1(a). 
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1b : Angle of rotation of the left node due to a unit 
lateral load at distance x when the beam is free-
clamped as depicted in Figure 1(b). 

2wb : Transverse displacement of the right node due to 
a unit lateral load at distance x when the beam is 
clamped-free as depicted in Figure 1(c). 

2b : Angle of rotation of the right node due to a unit 
lateral load at distance x when the beam is clamped-
free as depicted in Figure 1(d). 

1ub : Axial displacement of the left node due to a unit 
axial load at distance x  when the beam is free-clamped 
as depicted in Figure 1(e). 

2ub : Axial displacement of the right node due to a unit 
axial load at distance x  when the beam is clamped-free 
as depicted in Figure 1(f). 

Regarding the well-known reciprocal theorem, 
BDFs can be redefined through the following 
procedure: 

1wb : Transverse displacement at distance x  due to a 
unit lateral load at the left node of the free-clamped 
beam as shown in Figure 2(a). 

1b : Transverse displacement at distance x  due to a 
unit moment at the left node of a free-clamped beam 
as shown in Figure 2(b). 

2wb : Transverse displacement at distance x  due to a 
unit lateral load at the right node of a clamped-free 
beam as shown in Figure 2(c). 

2b : Transverse displacement at distance x  due to a 
unit moment at the right node of a clamped-free beam 
as shown in Figure 2(d). 

1ub : Axial displacement at distance x  due to a unit 
axial load at the left node of a free-clamped beam as 
shown in Figure 2(e). 

2ub : Axial displacement at distance x  due to a unit 
axial load at the right node of a clamped-free beam as 
shown in Figure 2(f). 

3.   Calculating the BDFs: 

Based on the equivalent definitions of BDFs As 
illustrated in Figure 2, BDFs can be expressed as the 
transverse and axial displacements of a cantilever 
beam at distance x due to a unit nodal load or moment 
depending on the type of BDF; thus, each BDF can be 

achieved through solving the governing differential 
equations in terms of transverse and axial 
displacements and imposing the corresponding 
boundary conditions. The governing differential 

 
Figure 1. Description of BDFs: (a) 1wb ; (b) 1b ; (c) 2wb ; (d)

2b ; (e) 1ub ; (f) 2ub  

 
Figure 2. Equivalent definitions of BDFs: (a) 1wb ; (b) 1b ; 

(c) 2wb ; (d) 2b ; (e) 1ub ; (f) 2ub  

equations for the Euler-Bernoulli nano-beam are as 
follows [31]

24 2

2 2 2 2

,
, 0

n x tu u uEA x n x t A x A x
x x x t x t

                                                             (1a)    
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2 2 2 2 2 4

2 2 2 2 2 2 2

2 2 4

2 2 2 2

,

, 0

w w w wEI x N q x t A x I x
x x x x t x t

w w wN q x t A I
x t x t

                                                            (1b) 

where EI x  and EA x  are flexural and axial 

stiffness respectively; ,q x t  is the external lateral 

loading and ,n x t  is the external axial loading. The 

parameter  is defined as 2
0( )e a   in which 0e a  

captures the small scale effect on the response of the 
structure. N  is a constant axial force within the 
element length. 

Since all external forces in BDFs are point forces, 
,n x t  and ,q x t  is set to zero. Moreover, the 

variation of axial and transverse displacements are 
assumed to be sinusoidal with a circular frequency of 

L  and T  respectively.

, sin Lu x t U x t                                                                                                                                      (2a)

, sin Tw x t W x t                                                                                                                                              (2b) 

Then equations (1a) and (1b) are rewritten as 
2

2 2
2 0L L

d dU d UEA x A x A x U
dx dx dx

                                                                        (3a)

2 2 2 2 2
2 2

2 2 2 2 2

2 2
2 2

2 2 0

T T

T T

d d W d d W d WEI x N A x W I x
dx dx dx dx dx

d W d WN AW I
dx dx

                                                                   (3b) 

Furthermore, introducing the dimensionless 
parameter /x L , equations (3a) and (3b) yield   

2 2 2 0L LEA U EA U A U L A U                                                                                   (4a) 

(4) (4) 2 2 2 2

2 2 2 2 2 (4) 2

4 2 2 2

2 2

2

0

T T

T T T T

T T

EI W EI W EI W NW L AW L A W

L A W I W I W IW L NW

L AW L IW

                                             (4b) 

in which primes denote differentiation with respect to . 

The variations of both axial and flexural stiffness 
along the element can be defined in the form of power 
series respectively as [50-52]

0

i
i

i

EA EA                                                                                                                                                        (5a)                             

0

i
i

i

EI EI                                                                                                                                                         (5b)       

The mass inertias A  and I  are represented in power  

series by 
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0

i
i

i

A A                                                                                                                                                       (5c)                             

0

i
i

i

I I                                                                                                                                                       (5d)    

 

General solution of equations (4a) and (4b) can be represented  

by power series of the form 

0

( ) i
i

i

U U                                                                                                                                                          (5e) 

0

( ) i
i

i

W W                                                                                                                                                         (5f) 

Consequently 

1
0

( ) ( 1) i
i

i

U i U                                                                                                                                             (5g) 

2
0

( ) ( 1) 2 i
i

i

U i i U                                                                                                                                   (5h) 

1
0

( ) ( 1) i
i

i

W i W                                                                                                                                               (5i)    

2
0

( ) ( 1)( 2) i
i

i

W i i W                                                                                                                                    (5j) 

3
0

( ) ( 1)( 2)( 3) i
i

i

W i i i W                                                                                                                          (5k) 

(4)
4

0

( ) ( 1)( 2)( 3)( 4) i
i

i

W i i i i W                                                                                                               (5l) 

Substituting equations (5) into the every single 

 term of equations (4) leads to 

2
0 0

2
0 0

1 2

1 2

i i
i i

i i

i
i

i j j
i j

EAU EA i i U

j j EA U

                                                                                                (6a) 
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1 1
0 0

1 1
0 0

1 1

1 1

i i
i i

i i

i
i

i j j
i j

EA U i EA i U

j i j EA U

                                                                                             (6b) 

2
0 0

2
0 0

1 2

1 2

i i
i i

i i

i
i

i j j
i j

AU A i i U

j j A U

                                                                                       (6c) 

0 0 0 0

i i i
i i i j j

i i i j

A U A U A U                                                                   (6d) 

(4)
4

0 0

4
0 0

1 2 3 4

1 2 3 4

i i
i i

i i

i
i

i j j
i j

EI W EI i i i i W

j j j j EI W

                                                         (6e)                               

1 3
0 0

1 3
0 0

1 1 2 3

1 2 3 1

i i
i i

i i

i
i

i j j
i j

EI W i EI i i i W

j j j i j EI W

                                                            (6f) 

  

2 2
0 0

2 2
0 0

1 2 1 2

1 2 1 2

i i
i i

i i

i
i

i j j
i j

EI W i i EI i i W

j j i j i j EI W

                                                      (6g) 

2 2
0 0 0 0

1 2 1 2i i i
i i i j j

i i i j

A W A i i W j j A W                      (6h) 

1 1 1 1
0 0 0 0

1 1 1 1i i i
i i i j j

i i i j

A W i A i W j i j A W              (6i) 

2 2
0 0 0 0

1 2 1 2i i i
i i i j j

i i i j

A W i i A W i j i j A W            (6j)  

 
0 0 0 0

i i i
i i i j j

i i i j

A W A W A W                                                                    (6k) 
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2 2
0 0 0 0

1 2 1 2i i i
i i i j j

i i i j

N W N i i W j j N W                           (6m) 

(4)
4

0 0

4
0 0

1 2 3 4

1 2 3 4

i i
i i

i i

i
i

i j j
i j

N W N i i i i W

j j j j N W

                                                                (6n) 

(4)
4

0 0

4
0 0

1 2 3 4

1 2 3 4

i i
i i

i i

i
i

i j j
i j

I W I i i i i W

j j j j I W

                                                            (6o)                              

1 3
0 0

1 3
0 0

1 1 2 3

1 2 3 1

i i
i i

i i

i
i

i j j
i j

I W i I i i i W

j j j i j I W

                                                          (6p) 

  

2 2
0 0

2 2
0 0

1 2 1 2

1 2 1 2

i i
i i

i i

i
i

i j j
i j

I W i i I i i W

j j i j i j I W

                                                     (6q) 

2 2
0 0 0 0

1 2 1 2i i i
i i i j j

i i i j

I W I i i W j j I W                         (6r) 

Assembling equations (6) and equations (4) could be  

finally written as 

2 1 1
0 0 0

2 2 2
2

0 0

( 1)( 2) ( 1)( 1)

( 1)( 2) 0

i i

i j j i j j
i j j

i i
i

L i j j L i j j
j j

j j EA U j i j EA U

j j A U L A U

                                                                     (7a)                              
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4 1 3
0 0 0

2 2 4
0 0

2 2 2 2
2

0

( 1)( 2)( 3)( 4) 2 ( 1)( 2)( 3)( 1)

( 1)( 2)( 1)( 2) ( 1)( 2)( 3)( 4)

( 1)( 2) 2 (

i i

i j j i j j
i j j

i i

i j j i j j
j j

i

T i j j T
j

j j j j EI W j j j i j EI W

j j i j i j EI W j j j j N W

L j j A W L 1 1
0

2 2 2
2 4

0 0

2 4 2
1 3

0 0

2
2

1)( 1)

( 1)( 2) ( 1)( 2)( 3)( 4)

2 ( 1)( 2)( 3)( 1)

( 1)( 2)( 1)( 2)

i

i j j
j

i i

T i j j T i j j
j j

i i

T i j j T i j j
j j

T i j
j

j i j A W

L i j i j A W j j j j I W

j j j i j I W L A W

j j i j i j I 2
2 2

0 0

2 2
2

0

( 1)( 2)

( 1)( 2) 0

i i

j i j j
j

i
i

T i j j
j

W L j j N W

L j j I W

                           (7b) 

Satisfying equations (7a) and (7b) for all values of , 

 recurrence formulas for iU  and iW  are achieved as 

2
2 1 12

0 00 0

1
2

2
0

1 ( 1)( 1)
( 1)( 2)

( 1)( 2)

i i

i i j j i j j
j jL

i

i j L i j j
j

U j i j A U L A U
i i EA A

j j EA A U

                                      (8a) 

4 2
4 2

00 0

2 2
2 1 1 2

0

2 2
0

1
( 1)( 2)( 3)( 4)

( 1)( 2) 2( 1)( 1) ( 1)( 2)

( 1)( 2)( 1)( 2) 2( 1)( 2)( 3)(

i

i T i j j
jT

i

T i j j i j j i j j
j

i

i j j
j

W L A W
i i i i EI N I

L j j A W j i j A W i j i j A W

j j i j i j EI W j j j 1 3

2
2 2 1 3

0

1
2

4
0

2 2
2 2

0

1)

( 1)( 2)( 1)( 2) 2( 1)( 2)( 3)( 1)

( 1)( 2)( 3)( 4)( )

( 1)( 2) ( 1)( 2)

i j j

i

T i j j i j j
j

i

i j i j T i j j
j

i

i j j T i j j
j

i j EI W

j j i j i j I W j j j i j I W

j j j j EI N I W

L j j N W j j I W

    

0,1,2,for i                                                                                                                                                         (8b) 
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Regarding the recurrence formulas, an explicit 
expression for longitudinal displacement ( )U  can be 

obtained in terms of the first two terms namely 0U  and 

1U   as

0
1 2

1
( ) ( ) ( ) .

U
U a a

U
a U                                                                                                                              (9) 

where ( 1,2)ia i  are polynomials resulted from solving equation (8a). 

Similarly, transverse displacement ( )W  can be expressed  

in terms of four constants 0 1 2, ,W W W and 3W  as 

0

1
1 2 3 4

2

3

( ) ( ) ( ) ( ) ( ) .

W
W

W f f f f
W
W

f W                                                                                              (10) 

in which ( 1,2,3,4)if i  are polynomial solutions 
of equation (8b) and W can be evaluated for each BDF 

through imposing the correspondent boundary 
conditions. As depicted in Figure 2, the boundary 
conditions for each BDF are

1wb :  

0 0 1 11 0 0 0V M W                                                                                                        (11a) 

1b :  

0 0 1 10 1 0 0V M W                                                                                                          (11b) 

2wb :  

0 0 1 10 0 1 0W V M                                                                                                         (11c) 

2b :  

0 0 1 10 0 0 1W V M                                                                                                            (11d) 

Additionally, the rotation angle, bending moments and shear forces are respectively expressed as [31] 

3

2
1 1u uN EA A
L L t

                                                                                                                             (12a) 

1( ) W
L

                                                                                                                                                           (12b) 

2 2 2 4

2 2 2 2 2 2 2 2
1 1 1( ) ( ) w w w wM EI N A I
L L t L t

                                                                   (12c) 

2

3 2

2 2 4 3

2 2 2 2 2 2 2

1 1

1 1 1

w wV EI N
LL x

w w w wN A I I
x LL t L t t

                                                                          (12d) 
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Since BDFs are calculated through a static 
analysis, the time derivative terms should be ignored. 
Imposing the boundary conditions for each BDF 
results in a set of four simultaneous equations from 
which W is calculated. 

Following the similar procedure U could be 
evaluated for each BDF by imposing the appropriate 
boundary conditions. According to Figure 2, the 
boundary conditions for each BDF are as follows

1ub :  

10 1 0N U  ,                                                                                                                                             (13a) 

2ub :   

0 10 1U N ,                                                                                                                                              (13b)                                

4.   New shape functions 

Consider a general nanobeam with clamped-
clamped boundary conditions. The element is 
subjected to distributed axial and lateral external 
loadings as illustrated in Figure 3(a). With the aim of 
calculating the support reactions, the structural system 
should be decomposed into statically determinate 
systems. Therefore, each cantilever beam as shown in 
Figure 3, is analyzed separately and finally the support 
reactions are obtained by applying the superposition 
principle. 

 
Figure 3. General beam element decomposed into isostatic 

structures. 

Regarding the definitions of BDFs shown in Figure 
1, one could express the nodal displacements of point 
(2) in Figure 3(b) in terms of BDFs as

( )
2 2

2 2
0 02 2

0
( ) 0 ( )

0

b
l lu

w

u b
w n x dx q x b dx

b
                                                                                                             (14) 

where 2u , 2w and 2 are the axial, lateral and 
rotational displacements at point (2) respectively. The 

nodal displacements of point (2) in Figure 3(c) can be 
obtained using flexibility matrix of point (2).

 

( )
2 2

2 2

2 2

cu N
w V

M
22F                                                                                                                                                    (15) 

in which 2N , 2V and 2M are the axial force, shear 
force and bending moment at point (2) respectively. 

According to the superposition principle, one can 
easily write.

( ) ( ) ( )
2 2 2

2 2 2

2 2 2

b c au u u
w w w 0                                                                                                                                (16) 

Substituting equations (14) and (15) into equation (16),  

reaction forces are obtained as 

2 2

2 2
0 02 2

0
( ) 0 ( )

0

l lu

w

N b
V n x dx q x b dx
M b

22K                                                                                                   (17) 
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Following similar procedure for point (1) yields. 

1 1

1 1
0 01 1

0
( ) 0 ( )

0

l lu

w

N b
V n x dx q x b dx
M b

11K                                                                                                     (18) 

Regarding the fact that the equivalent nodal forces 
have the same value and the opposite sign of support 
reactions, by rewriting equations (17) and (18) and 

separating the axial and flexural deformations, it can 
be obtained

1

4 0

( )
lF

n x dx
F a aG b                                                                                                                                        (19a) 

2

3

5 0

6

( )
l

F
F

q x dx
F
F

f fG b                                                                                                                                         (19b) 

Where 1 2
T

u ub bab and 

1 1 2 2
T

w wb b b bfb . aG  and fG are 
matrices containing the nodal axial and flexural 
stiffness matrices respectively. , 1,2,...,6iF i  are the 
equivalent nodal forces depicted in Figure 4. 

 
Figure 4. Nodal degrees of freedom and forces (positive 

sign convention) 

1
1

2

(0) 0
0 ( )

u

u

b
b laG                                                                                                                                             (20a) 

1
1 1

1 1

0 0

2 2

2 2

(0) (0) 0 0

0 0

0 0 ( ) ( )

0 0

w

w

x x

w

w

x l x l

b b
db db
dx dx

b l b l
db db
dx dx

fG                                                                                                 (20b)  

5.   Strain and kinetic energy formulas Based on the nonlocal elasticity of Eringen and 
Euler-Bernoulli beam theory, the strain energy of 
element could be written as [31]

2 22 22 2

2 2
0 0 0 0

1 1 1 1
2 2 2 2

L L L L

U
d W dW d W dUE EI x dx N dx N EA x

dx dxdx dx
                                          (21) 

where x is the longitudinal coordinate along beam 
element, L is the length of beam element, W is the 

lateral displacement, E and I are the modulus of 
elasticity and area moment of inertia, respectively. 
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Furthermore, the kinetic energy of the nanobeam 
element could be expressed as

2 2
2 2

0 0 0 0

1 1 1 1
2 2 2 2

L L L L

T
dW dUE A x W dx A x dx A x U A x
dx dx

2 222
1

L
d A x

ddd22
W dx A x12W 22W 2W dx A x2 dx A x UA x UA x U

d
dx A x UA x U

2 22 2d 2 2

22
W dU1 1

L L2

A xA dUA1 122 1222 122dx A x UA x U 2                                           (22) 

The structural matrices including stiffness matrices 
( ,a fK K ), geometric stiffness matrix ( gK ) and 

consistent mass matrices ( ,a fM M ) and the vector of 

equivalent nodal forces ( F ) can be written according 
to FEM

0

( )
T

l

EA x dxa u uK N N                                                                                                                                             (23a) 

0

( )
T

l

EI x dxf w wK N N                                                                                                                                             (23b) 

0 0

l l
T T

cr crP dx P dxg w w w wK N N N N                                                                                                                   (23c) 

0 0

( ) ( )
l l

T TA x dx A x dxa u u u uM N N N N                                                                                                           (23d) 

0 0

( ) ( )
l l

T TA x dx A x dxf w w w wM N N N N                                                                                                         (23e) 

0

l

n x dxT
a uF N                                                                                                                                                      (23f) 

0

l

q x dxT
f wF N                                                                                                                                                     (23g) 

in which primes denote differentiation with respect 
to x ; the subscripts a and f respectively refer to the 
axial and flexural deformations; wN and uN are 

vectors containing shape functions for the lateral and 
axial deformations respectively.

1

1
1 2 3 4

2

2

( ) w w w w

w

w x N N N N
w

wN

4w w w w1 2 32 3N N N N1 2 32 3w1 2 32 32 3
11

2w2
N

                                                                                                                 (24a) 

1
1 2

2
( ) u u

u
u x N N

u
uN

2u u1N N1u1
1

2u
N

                                                                                                                                                   (24b) 

Comparing equation (20a) with equation (23a),  

the axial shape functions can be achieved. 
T

u a aN b G                                                                                                                                                                 (25) 

Similarly, the transverse shape functions are obtained 
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 by comparing equation (20b) with equation (23b). 
T

w f fN b G                                                                                                                                                                (26) 

The structural matrices and vectors can be calculated 

 using equations (23).  

0

( )
T

l

H x dxa a u u aK G b b G                                                                                                                                 (27a) 

0

( )
T

l

D x dxf f w w fK G b b G                                                                                                                                 (27b) 

0 0

l l
T T

cr crP dx P dxg f w w w w fK G b b b b G                                                                                                       (27c) 

0 0

( ) ( )
l l

T TA x dx A x dxa a u u u u aM G b b b b G                                                                                                (27d) 

0 0

( ) ( )
l l

T TA x dx A x dxf f w w w w fM G b b b b G                                                                                               (27e) 

0

l
Tn x dxa a uF G b                                                                                                                                                  (27f) 

0

l
Tq x dxf f wF G b                                                                                                                                                 (27g)       

Owing to the fact that the transverse natural 
frequency disappears when the axial compressive load 
reaches its critical value ( crP ); in other words, T  in 
equation (4b) is set to zero for instability analysis. 
Consequently, the following equation can be deduced 
from equation (4b) for calculation of critical 
compressive load. 

6.   Structural analysis 

Free vibration and instability analyses of nanobeams 
can be investigated through solving an eigenvalue 
problem of the following equations 

Free longitudinal vibration

2
L

g g
a aK M                                                                                                                                                           (28a) 

Free transverse vibration 
2
T

g g
f fK M                                                                                                                                                           (28b) 

Instability analysis 

( )g g
f gK K 0                                                                                                                                                       (28c) 

where L  and T are the longitudinal and 
transverse natural frequencies of the beam, 
respectively and  is the mode shape vector. The 
superscript  g  is used to denote the global structural 

matrix obtained by assembling the matrices of all 
elements and imposing the b T boundary conditions. 

  is the eigenvalue of the instability analysis equation 
and the critical load can be expressed as
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crP P                                                                                                                                                                              (28d) 

where P  is the constant compressive load. 

7.   Numerical examples 

7.1.   Free transverse vibration 

In this section, we scrutinize the effect of small scale 
on the frequency of free transverse vibration of 
nanobeams through solving a numerical example. 
Consider a (5,5) armchair SWNT as described in [32] 
with the following properties: diameter d = 0.678 nm, 
length L = 10d, effective tube thickness t =0.066 nm, 
Young’s modulus E = 5.5 TPa. Symbols C, S and F 
represent clamped, simple and free boundary 
conditions, respectively. The beam is divided to 10 
elements in order to solve the problem numerically.   

7.2.   Free longitudinal vibration  

Considering the nanobeam described in previous 
section and dividing it to 20 elements, the first three 
free longitudinal frequencies have been computed and 
the results have been tabulated in Table 1 and 
compared with those presented by Aydogdu  [40]. 

7.3.   Instability analysis 

The instability analysis of the axially loaded nanobeam 
element is presented here. We have assumed E = 1TPa, 
diameter d=1 nm, and I = πd4/64. The beam has been 
divided into 10 elements and the results have been 
compared to those of Wang et al. [41]. Good 
agreement between the calculated results and those are 
in the literature has been demonstrated through the 
Table 3. 

In addition, the six shape functions are presented 

 in Figure 5. 

 

8.   Discussion 

The first five dimensionless natural frequencies of free 
transverse vibration of the nanobeam with various 
boundary conditions for different values of scaling 
effect parameter are presented in Table 1. Comparing 
the results with those in the literature, it is observed 

that the results predicted by the proposed method are 
in good agreement with the previously published ones 
though considering just a few elements (10 elements). 
As illustrated in Figure 6, an increase in scaling effect 
parameter results in a decrease in the first three natural 
frequencies of vibration for all various boundary 
conditions. It is also can be concluded that the effect of 
the scale parameter intensifies in higher modes. 
Regarding Table 2 and Figure 7, natural longitudinal 
frequencies of the nanobeam decreases as the size 
effect parameter increases and this effect is more 
significant in higher modes. 

Table 1. The first five frequency parameters   of cantilever and clamped rods, with L/d = 10 for different values of scaling 
effect parameter 0e a L . (frequency parameter 2 2 2

L L E ) 
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Table 1. The first five frequency parameters  of simply supported, clamped–simply supported, clamped and cantilever beams 
with / 10L d  for different values of scaling effect parameter 0e a L . (frequency parameter 2 2 4

T AL EI )  

 
Figure 5. Shape functions of a general nanobeam element
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Figure 6. The first four dimensionless natural frequencies of free transverse vibration of the nanobeam for different boundary 

conditions ( 0 /e a l ). 

 
Figure 7. The first three dimensionless natural frequencies of free transverse vibration of the nanobeam for different boundary 

conditions ( 0 /e a l ).  
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Figure 8. The critical buckling load for different values of L/d and 0 0e a

The critical buckling loads for different values of 
L/d and  are presented In Table 3. As depicted in Figure 
8 the scaling effect has a considerable adverse 

influence on critical buckling load particularly in lower 
L/d ratios. 

 
Table 3. Critical buckling loads crP  ( nN  ) for simply supported, clamped–simply supported, clamped and cantilever beams with 

various length-to-diameter ratios L/d and scaling coefficients 0e a .

The six shape functions for free longitudinal and 
transverse vibration of the nanobeam are derived in 
terms of BDFs. It is noteworthy that these functions 
depend on physical and geometrical properties of the 
nanobeam; however, in this case, due to the constant 
modulus of elasticity, cross section, mass density and 

moment of inertia they are apparently independent.
0 0e a  

The first four mode shapes of transverse vibration 
of the nanobeam are depicted in Figure 9 for different 
values of the scaling effect parameter. It is observed 
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that the size effect influences on mode shapes 
especially in higher vibration modes.

 
Figure 9. The first four normalized mode shapes of nanobeams described in the examples 
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9.    Conclusions 

In this article, the innovative basic displacements 
functions were introduced, developed and exploited 
for structural analysis of nanobeams employing 
Eringen’s nonlocal elasticity and Euler-Bernoulli 
beam theory. The flexibility basis of the proposed 
method inherently satisfies the equilibrium equations 
at each inner point of the element. The efficiency and 
accuracy of the proposed method for the above 
mentioned boundary conditions in stability analysis, 
free longitudinal vibration and free transverse 
vibration were demonstrated through several 
numerical examples. Convergence of the result was 
achieved by exploiting just 10 of the proposed 
elements in the finite element procedure []. 
According to the attained results, it is concluded that 
the size effect plays an important role in stability 
analysis, free longitudinal vibration and free transverse 
vibration of nanobeam.  
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