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Abstract

The accuracy and efficiency of the elements proposed by finite element method (FEM) considerably depend on the
interpolating functions namely shape functions used to formulate the displacement field within the element. In the
present study, novel functions, namely basic displacements functions (BDFs), are introduced and exploited for
structural analysis of nanobeams using finite element method based on Eringen’s nonlocal elasticity and Euler-
Bernoulli beam theory. BDFs are obtained through solving the governing differential equation of motion of nanobeams
using the power series method. Unlike the conventional methods which are almost categorized as displacement-based
methods, the flexibility basis of the method ensures true satisfaction of equilibrium equations at any interior point of
the element. Accordingly, shape functions and structural matrices are achieved in terms of BDFs by application of
merely mechanical principles. In order to evaluate the competency and accuracy of the proposed method with different
boundary conditions, several numerical examples with various boundary conditions are scrutinized. Carrying out
several numerical examples, the results in stability analysis, free longitudinal vibration and free transverse vibration
show a complete accordance with those in literature.

Keywords: Nanobeams, size-effect, Basic displacement functions (BDFs), Free vibration, Instability analysis

dimensions of the structure become comparable to the
1. Introduction nano-structural size of its material. Discrete models
and modified continuum theories are the two common
methods presented in order to take into account the
size-dependent mechanical properties. Discrete
models for instance molecular dynamics simulation
are appropriate in precisely modeling nano-scale
structures [8]. Among the modified continuum
theories, the most frequent used in the literature are
gradient elasticity theories, modified coupled theory
and nonlocal elastic theories.

Due to rapidly developing nanotechnology industries,
which lead to more advanced nano electromechanical
equipment [1-3], the research in the field of
mechanical properties of these nano-scale devices has
attracted a great deal of attention. There are many
researches in the literature substantiating that the
mechanical characteristics of materials including
elasticity modulus, flexural stiffness and etc. are
greatly dependent on their size [4-7]. Basically, this

effect is pertinent to atoms and molecules forming the The nonlocal elasticity theory proposed by Eringen [9-
material. The classical continuum theories aren’t able 12] is used by many researchers because of its
to properly describe the structural behavior when competency based on which some of the shortcomings
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Nomenclature

| Beam length
X Longitudinal coordinate

E Modulus of elasticity

E, Modulus of elasticity at origin

A Cross-sectional area
A, Cross-sectional area at origin
p Mass density

P, Mass density at origin

I Moment of inertia

I, Moment of inertia at origin
w(x,t) Transverse displacement
u(x,t) Axial displacement

NE Total number of beam elements

a(x),n(x) External loading
bul ' bwl ' b&l ' buZ ' be ' b92

Basic Displacement Functions

b;, . by,

First and second derivative ofb,,

with respect to X

of the classical continuum theory can be completely
obviated. Especially, it is useful in analysis of carbon
nanotubes [13-14]. The nonlocal elasticity theory of
Eringen is developed and formulated by many
researchers [15-23]. These formulations can be
categorized into differential nonlocal form [15-18] and
integral nonlocal form [19-23]. The distinctive
differences between integral and differential forms are
described by Lim [20]. Among the nonlocal elasticity
theories, nonlocal differential elasticity is the most
commonly used in the analysis of nano-scaled
structures because of its simplicity [19].

b, First derivative of b with respect to x

F. Equivalent nodal forces

F,, Nodal flexibility matrix of the left node

F,, Nodal flexibility matrix of the right node

G, Matrix containing nodal axial stiffness matrices

G, Matrix containing nodal flexural stiffness matrices

N, , N,, Shape functions

N, , N’ Firstand second derivative of N, with

respect to X

N, First derivative of N, with respect to X

Kg Element geometrical stiffness matrix

K, Element axial stiffness matrix

K, Element flexural stiffness matrix

M, ,

M, Element consistent mass matrix

a Non-dimensional size effect parameter

4, Non-dimensional longitudinal frequencies

4 Non-dimensional transverse natural frequencies
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Wang & Wang [24] presented the constitutive
relations of nonlocal elasticity theory for application in
the analysis of carbon nanotubes (CNTSs) when
modelled as Euler—Bernoulli beams, Timoshenko
beams or as cylindrical shells.

The small scale effect on the axial vibration of a
tapered nanorod was studied by Danesh et al. using
nonlocal elasticity theory and DQM method. It was
concluded that the nonlocal effect has a significant
influence on the axial vibration of nanorods [25].
Moreover, Aghababaei and Reddy [26] presented a
third-order shear deformation plate theory capable of
capturing both small scale effects and shear stress
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through the plate thickness and clarifed the effect of
nonlocal theory on natural vibration frequency of the
plates. Furthermore, the buckling behavior of
nanoscale circular plates under uniform radial
compression was scrutinized by Farajpour et al. [27] to
evaluate and illustrate the small-scale effect in the
buckling of circular nanoplates.

The application of thin beams in nano-scale
devices such as Nano-Electro-Mechanical Systems
(MEMS), atomic force microscopes and etc. in which
small-scale size effects are commonly observed [28],
has gained considerable attention in the literature.
Euler-Bernoulli beam theory based on Eringen’s
nonlocal elasticity theory is an innovative solution
presented for the analysis of thin beams in nano-scale
applications [29].

Nonlocal Euler-Bernoulli beam theory was
implemented by Peddieson et al. to investigate the
flexural behavior of a nano beam based on which the
importance of nonlocal effects was estimated [13]. Xu
[30] employed the integral equation approach and the
nonlocal elasticity theory to scrutinize the nonlocal
effect on the free transverse vibrations of nano-to-
micron scale beams and demonstrated a noticeable
influence on higher vibration modes.

Reddy [31], analytically examined bending,
buckling and vibration of nanobeams through
reformulating various local beam theories by means of
the nonlocal differential constitutive relations of
Eringen. Wang et al. [32] obtained governing
equations and boundary conditions for the free
vibration of beams in accordance with Timoshenko
beam theory and Eringen’s nonlocal elasticity theory.

Heireche et al. [33] modeled a single-elastic beam
based on the Bernoulli-Euler and Timoshenko beam
theories using nonlocal elasticity for the wave
propagation in  carbon  nanotubes (CNTSs).
Furthermore, Aydogu [34] suggested a generalized
nonlocal beam theory whose formulation is based on
nonlocal constitutive equations of Eringen, to examine
bending, buckling, and free vibration of nanobeams.

Kong et al. [35] formulated free vibration of Euler—
Bernoulli micro-beams based on modified couple
stress theory. Additionally, the static and dynamic
problems of Euler—Bernoulli beams are analytically
solved according to strain gradient elasticity theory by
Kong et al. [36]. Filiz and Aydogu [37] investigated
vibration of carbon nanotube heterojunctions along
axial direction implementing nonlocal rod theory in
which the nonlocal constitutive equations of Eringen
are used.

In addition, finite element formulations for
analysis of Euler—Bernoulli nanobeam and Kirchoff
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nanoplate have been presented by Phadikar and
Pradhan [19] which are based on nonlocal differential
elasticity theory. Finite element results for bending,
buckling and vibration for nonlocal beam are obtained.
Xia et al. [38] implemented DQM to study static and
dynamic behavior of nonlinear microbeams. The
presented nonlinear model is conducted within the
context of non-classical continuum mechanics by
defining a material length scale parameter. Wang et al.
[39] modeled a buckling of nanotubes embedded in an
elastic matrix on the basis of Timoshenko beam theory.
Both of stress gradient and strain gradient approaches
are followed.

In order to investigate the small-scale effect on the
axial vibration of nano-rods, Aydogdu developed a
nonlocal elastic rod model and obtained explicit
expressions for natural frequencies of the rod with
different boundary conditions [40]. Moreover, Wang
et al. [41] investigated the elastic buckling analysis of
micro- and nano-rods/tubes according to the nonlocal
elasticity theory of Eringen. They proposed explicit
expressions for calculating the critical buckling loads
of axially loaded rods/tubes with various boundary
conditions.

In an attempt to solve the governing differential
equation of non-prismatic beams, Attarnejad [42]
introduced the novel concept of BDFs. Subsequently,
Attarnejad and Shahba extended the scope for both of
static [42-45] and dynamic [46-49] BDFs which are
used in different beam theories. In this paper, we aim
to propose a new application of dynamic BDFs for
nanobeams. Firstly, BDFs are briefly described and
calculated through a power series solution for
governing differential equation of Euler-Bernoulli
nanobeams. Afterwards, shape functions and structural
matrices are derived in term of BDFs based on the
analysis procedure is carried out. In order to evaluate
the efficiency and competency of the proposed method
several numerical examples are presented and the
results show a good agreement with those in literature.

2. Basic Displacement Functions

BDFs are apparently mathematical functions holding a
profound mechanical concept. In the following
section, firstly, the explicit definitions of BDFs and the
calculation procedure are described. Accordingly,
nodal flexibility matrices of the system are developed
based on the BDFs.

BDFs definition:

b, : Transverse displacement of the left node due to a

unit lateral load at distance X when the beam is free-
clamped as depicted in Figure 1(a).
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by, : Angle of rotation of the left node due to a unit

lateral load at distance x when the beam is free-
clamped as depicted in Figure 1(b).

b,,, : Transverse displacement of the right node due to

a unit lateral load at distance Xxwhen the beam is
clamped-free as depicted in Figure 1(c).

b,, : Angle of rotation of the right node due to a unit

lateral load at distance X when the beam is clamped-
free as depicted in Figure 1(d).

by, : Axial displacement of the left node due to a unit
axial load at distance x when the beam is free-clamped
as depicted in Figure 1(e).

b,, : Axial displacement of the right node due to a unit

axial load at distance x when the beam is clamped-free
as depicted in Figure 1(f).

Regarding the well-known reciprocal theorem,
BDFs can be redefined through the following
procedure:

b, Transverse displacement at distance X due to a

unit lateral load at the left node of the free-clamped
beam as shown in Figure 2(a).

by, : Transverse displacement at distance X due to a

unit moment at the left node of a free-clamped beam
as shown in Figure 2(b).

b, : Transverse displacement at distance X due to a
unit lateral load at the right node of a clamped-free
beam as shown in Figure 2(c).

b,, : Transverse displacement at distance X due to a

unit moment at the right node of a clamped-free beam
as shown in Figure 2(d).

b, : Axial displacement at distance X due to a unit
axial load at the left node of a free-clamped beam as

shown in Figure 2(e).

b, : Axial displacement at distance X due to a unit

axial load at the right node of a clamped-free beam as
shown in Figure 2(f).

3. Calculating the BDFs:

Based on the equivalent definitions of BDFs As
illustrated in Figure 2, BDFs can be expressed as the
transverse and axial displacements of a cantilever
beam at distance x due to a unit nodal load or moment
depending on the type of BDF; thus, each BDF can be

0

o*u B azn(x,t)

&(EA(X)%)+ n(xJ)w[pA(X)

ox%ot? ox?

achieved through solving the governing differential
equations in terms of transverse and axial
displacements and imposing the corresponding
boundary conditions. The governing differential

bé’l
. =
JE— | — 1
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Figure 2. Equivglent defl itions of BDFs: l;a) By (b)
(€) ™™2; (d) B2 HOREHUR

equations for the Euler-Bernoulli nano-beam are as
follows [31]

82

J— PA(X) 5 =0 (1a)
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0? o%w o [ o%w o*w
ZEN(X) = | = g | N —q(x,t)+ pA(X) = —
ax2£ ()asz ﬂaxz( ox? a(xt)+p ()at2 P
o*w o°w o*w
NZ—qg(x,t)+ pA——pl ——— =0
ox? a(xt)+p ot? P ox%ot?

where EI(x) and EA(x) are flexural and axial
stiffness respectively; q(x,t) is the external lateral
loading and n(x,t) is the external axial loading. The
parameter z is defined as y:(eoa)2 in which eja
captures the small scale effect on the response of the

structure. N is a constant axial force within the
element length.

o*w
I(X)——
( )axzatJ

(1b)

Since all external forces in BDFs are point forces,
n(xt) and q(xt) is set to zero. Moreover, the
variation of axial and transverse displacements are
assumed to be sinusoidal with a circular frequency of
o, and w; respectively.

u(xt)=U(x)sin(ayt) (2a)
w(x,t) =W (x)sin(ert) (2b)

Then equations (1a) and (1b) are rewritten as
d du 2 d?U )
—| EA(X)— |- A(X)— [+ A(x)U =0 3a
dx( ()de #{wLp()dsz o PA) (32)
d? dw d? [ dWw 2 d’w
—| El(X)— |- u— - A(X)W + I(x
dxz( ()dsz#dxz dx? o PA(X) a)Tp()dxz

) ) (3b)

dw 2 s dW
+N —— AW + | =0

ae TP P 0e

Furthermore, introducing the dimensionless
parameter £ = x/ L, equations (3a) and (3b) yield
EA(E)U"+EA (E)U' - > upA(E)U" + Lo’ pA(E)U =0 (4a)
EL(EWS® +2E1"(E)W" +EI"(E)W" = uNW @ + 20 ? ip AW + 2% a2 pyp AW
+L2a)T2,upA"W—a)rz,upl”\N”—Za)rzypIW”'—a)szpIW(A') +L2NW” (4b)
L2 pAW + LPax 2 pIW" =0

in which primes denote differentiation with respect to & .

The variations of both axial and flexural stiffness
along the element can be defined in the form of power
series respectively as [50-52]
EA(£)=D EAZ (52)

i=0

EI(£)=) El¢' (5b)

i=0
The mass inertias pA and pl are represented in power

series by
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General solution of equations (4a) and (4b) can be represented

by power series of the form

U(g“):f)ui:‘

i=0

W (&) = iwi(s‘

i=0

Consequently

U'(€) =D (i+)U; ;&
i=0

U"(€) =D (i+1)(i+2)U;,,¢'
i=0

W(E) = D (i +DW, '

i=0

W(&) =D (i +1)i+2W, ¢

i=0

W) =Y i+ +2)(i +3W,, 58

i=0
w®(g) = i(i + 1)+ 2)(i +3)([ + AW, 4&
i=0

Substituting equations (5) into the every single

term of equations (4) leads to

EAU"(&) = Hi EAS J(i(i +1)(i+2)Uj,, 8" ]]

= i{i(i+1)(i+2)EAi_jUj+z}§i

j=0
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(5¢)

(5d)

(5¢)

(5f)

(59)

(Sh)

(5i)

(5))

(5k)

©h

(6a)
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EA'U'(&){[E( VDEA £ j[z< >umfsiﬂ

i=0

w ( i (6b)
:Z{ (J+1)(i- J+1)EAj+1Uj+1}§i
pAU" (&) Hiﬂ J{i Ui, 8! ﬂ
f 0 (6¢)

i{z (i+1)(i+2)pA_Y; 2}5
0 0

]

PA(EU (§)=l(ip%‘}[gu g H i{i(m,—uj)}é‘ (60)

i=0 0

e <:)w<4><¢>{[i Encsij{z( V(i 2)(1+3)(1+ AW H

i= i=0

o (i (6e)
:Z{ (I+D)(i+2)(i+3)(i+4)El_;w, 4}5
EI’(§)W”’(§)=H§: i) El, 8! J{i W& H
o O (60
=Z{Z(J+1)(J+2)(J+3)(i—J'+1)Eh,-+1Wj+3}f‘
EI"(@)W"@):[[E( 0028 | 3002 ﬂ
ol h (60)
:Z{Z(J+1)(J+2)(i_j+l)(i_j+2)E|i—j+2Wj+2}§i
pA(é)W"(é):HipMi](i(i+1)(i+2)vvi+2§J i{i j+1)(i+2)pA_ ,wﬁz}g (6h)

PA’(f)W,(f) = [{i(' +1)pAi+1§i j[i(' +1)Wi+1§ ]

i=0

&MS

{Zm ~j+1) A ,+1vvj+1}f (6i)

j=0

PA"(E)W (&)= HZ( i+1)(i+2) p/’nszz H{:Z —j+1)(i- j+2) pA_; W, }5 (6i)
0

i=0 (]

pA(é)W(é){(iMii ZWf } Z{i PA JW,)}éi (6K)
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é){[iNé'j{ wo (i+1)(i+2)w .xﬂ i{i i+1)(i+2)N;; Hz}éi

i=0 ! J

W ( Hi N,& J( > (i+1)(i+2)(( +3)(i+4)JWi+4§i}

(i+1)(i+2)(j+3)(j+4)N;_ JWJ+4}§

%
(i ol j[ - 2)(1+3)(i+ AW ﬂ
53

(i+D)(i+2)(i+3)(i+4)pl; JW,+4}§

prI (e )l[z (ot j[Z " ﬂ

=0

:i{ (i+1)(i+2)(i+3)(i-] +1)p|i—j+le+3}§i

oW (0 {{i(m)(i et | Saeni0 2 H

i=0

(J+1)(J+2)(i_ j +1)(i_ j +2) i- J+2\N1+2}éz

pl(f)wﬂ(é):{(ipliéij{i(i+1)( |+2§ J] i{i J+1 J+2 p|| JWJ+2}§

i=0 i=0 [ j=0
Assembling equations (6) and equations (4) could be

finally written as

Z{Z(Hl)(nz)EA JU,+2+Z(J+1>(I J+DEA_ Uy

i=0 | j=0

—wL/JZ(J+1)(J+2),DA ,U,+2+L2wLZpA ,uJ}f =0

j=0
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(6n)

(60)

(6p)

(609)

(6r)

(7a)
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Z{Z(J+1)(J+2)(J+3)(J+4)E|| j ,+4+22(J+1)(J+2)(J+3)(l—J+1)E|. Wi

i=0 | j j=0

+Z(J+1)(J+2)(l—J+1)(|—J+2)E|. W2 — Z(J+1)(J+2)(J+3)(J+4)ﬂN.J jra
j=0 j=0

1 I
+ Pt 1) I+ +DpA_ Wy + 2007 1) (J+D)( - j+DpA_ Wi,

j=0 j=0
R (- D+ DA W, of Y (4D D+ + Dl Wy (7b)
J =0 j=0

—2a’rﬂZ(J+1)(J+2)(J+3)(I—J+1)P|. joWiis— LwerA W,
j=0 j=0

_a)T#Z(J+1)(J+2)(|_J+1)(|_J+2)p|| J+2WJ+2+LZZ(J+1)(J+2)N| jihj+2
j=0 j=0

cho%Z(j+1>(j+2)pli_jwj+z}§‘ =0
j=0

Satisfying equations (7a) and (7b) for all values of &,

recurrence formulas for U; and W, are achieved as

1
; D@i—-j+1 U, ,—L U;
2 D +2)(EA - ,UCULPAO){ Z(H)(l VoA ZPAH '
(8a)
—Z(j +1)(j+2){EA_j — ol pA U
j=0
: ZL“a}rpA W,

(|+l)(|+2)(|+3)(|+4)(EI0 N - uet plo )| 2 o

- LzawZu FD(j+2)pA Wjp + 20+ D~ j+DPA_ W, + (- J+D( - +2)pA W,
j=0

= GDG+ 2= 41—+ 2Bl Wy 20+ D +2)(+3)(i — J+DEl_j W5}

j=0
+f )y {(+D(+ 2 - j+D - j+ 2o Wip +2(J+D(i +2)(+3)( - J +Dpli W) ,s

j=0

i-1 J
—Z(j+1)(j+2)(j+3)(j+4)(E|i-j—ﬂNi-j—ﬂwrz/?|i-j)Wj+4

i=0
L (4D + 2N Wi, + 0F (j+D(J +2)pli Wi

j=0
fori=0,1,2,... (8b)
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Regarding the recurrence formulas, an explicit obtained in terms of the first two terms namely U, and
expression for longitudinal displacement U (&) can be U, as
Uo
U@ =[a() 2@l r=au ©
1

where g (i =1,2) are polynomials resulted from solving equation (8a).
Similarly, transverse displacement W (&) can be expressed

in terms of four constants Wy, W, ,W, andW; as

WO
Wl
W) =[f(5) (&) (&) (8] w. [~ TW (10)
2
W3
in which f; (i=12,3,4) are polynomial solutions throu_gh imposing. the _ cor_respondent boundary
of equation (8b) and W can be evaluated for each BDF conditions. As depicted in Figure 2, the boundary
conditions for each BDF are
Dyt
V|5:o =1 Mlg:o =0 W|§:1 =0 elgzl =0 (11a)
by, :
V[, =0 M| _g=-1 W[, =0 ¢, =0 (11b)
Do
W|§:O=O .9|§:O=o v|§:1:—1 |v||§:1=o (11c)
by, :
W[, ,=0 6, ,=0 V[, =0 M| =1 (11d)
Additionally, the rotation angle, bending moments and shear forces are respectively expressed as [31]
1_.0u 1 &u
N(&)==EA—+= upA—— 12a
(&)=1 PRy (122)
1 oW
(&) ==—"— 12b
(&) L o¢ (12b)
1 o*w 1 o%w o’w 1 o*w
M(&E) = —=| EI(&)— |+ u| N ==+ pA———pl —— (12c)
&) LZ{ (5)852} /{ 2 o PAZZ T 2° s
1] 0 Pwll 1. ow
V(E)=—=| =| ElI(&)— ||-=N=—
(¢) L{ag( (€) ox? H L o
(12d)
+ 3 iNaz_W_i_ Aaz_w_ip —84W +lp aSW
"o 2 0&? P T oc%at? | LT osat?
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Since BDFs are calculated through a static
analysis, the time derivative terms should be ignored.
Imposing the boundary conditions for each BDF
results in a set of four simultaneous equations from
which W is calculated.

By
ng‘z:O :1 Ué:]_:o’
by,

Uso=0 N =1,

4. New shape functions

Consider a general nanobeam with clamped-
clamped boundary conditions. The element is
subjected to distributed axial and lateral external
loadings as illustrated in Figure 3(a). With the aim of
calculating the support reactions, the structural system
should be decomposed into statically determinate
systems. Therefore, each cantilever beam as shown in
Figure 3, is analyzed separately and finally the support
reactions are obtained by applying the superposition
principle.

(b)

Uz [ P [ 0
W, =In(x) 0 X+Iq(x) b, rdx
6, 0 0 0 bya

where u,, w,and 6,are the axial, lateral and
rotational displacements at point (2) respectively. The

uy | © N,
W, =FpV,
0, M,

in which N,, V,and M, are the axial force, shear
force and bending moment at point (2) respectively.
(b) (c) (a)

Uz Uz )
Wy ¢ +qW, » =<W, ¢ =0
6, 6, 0,

Substituting equations (14) and (15) into equation (16),

reaction forces are obtained as

NZ | bu2 | 0
V (= —Ka| [n00{ 0 fdx+ [a(x){b,, fdx
0

Following the similar procedure U could be
evaluated for each BDF by imposing the appropriate
boundary conditions. According to Figure 2, the
boundary conditions for each BDF are as follows

(13a)

(13b)

alx) )

e 1Im

U] m ) ¥
tx)
é é "

(6) ] ©

Figure 3. General beam element decomposed into isostatic
structures.

Regarding the definitions of BDFs shown in Figure
1, one could express the nodal displacements of point
(2) in Figure 3(b) in terms of BDFs as

(14)

nodal displacements of point (2) in Figure 3(c) can be
obtained using flexibility matrix of point (2).

(15)

According to the superposition principle, one can
easily write.

(16)

17
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Following similar procedure for point (1) yields.

N, | by | 0
V, =Ky, In(x) 0 x+J'q(x) by ¢ dx
M, 0 0 0 boy

Regarding the fact that the equivalent nodal forces
have the same value and the opposite sign of support
reactions, by rewriting equations (17) and (18) and

i G b,d
R

F
Fs
Fs
Fs

- GfJ'q(x)bfdx

0

Where b, ={b, buz}T and

by ={bm by By byl .G, and  Gjare
matrices containing the nodal axial and flexural
stiffness matrices respectively. F,i=12,...,6 are the
equivalent nodal forces depicted in Figure 4.

o _[u@ 0 T
-
L0 hyu()
[ b, (0) by (0) 0 o T
db, | dby 0 0
G, - dx o dx 0
0 0 by (1) by, (1)
0 o b dby
L dx x=I dx x=1_|

5. Strain and kinetic energy formulas

By = IEI( (

where x is the longitudinal coordinate along beam
element, L is the length of beam element, Wiis the

(18)

separating the axial and flexural deformations, it can
be obtained

(19a)

(19b)

Figure 4. Nodal degrees of freedom and forces (positive
sign convention)

(20a)

(20b)

Based on the nonlocal elasticity of Eringen and
Euler-Bernoulli beam theory, the strain energy of
element could be written as [31]

(e (S 22

lateral displacement, E and | are the modulus of
elasticity and area moment of inertia, respectively.
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Furthermore, the kinetic energy of the nanobeam
element could be expressed as

aw

L L 2 L L -N\2
E :%ij(x)WZuH%yij(x)[—] u’x+%J-pA(x)0"2 +%ﬂij(x)[%] (22)
0 0 0 0

(04

The structural matrices including stiffness matrices
(Ka,K¢), geometric stiffness matrix (K,) and

consistent mass matrices (M,, M; ) and the vector of

|
K, = J' N;," EAGON dx
0
|
K, = INW E1 (XN, dx
0
| |
Kq = IN'J P, N\’NdX+,uI N/TR, N7, dx
0 0
| |
M, :JNEpA(X)NUdX+yIN[]TpA(x)N[]dx
0 0

| |
M, = j NT pAGON,, dx + ,uj N p AN, dx
0 0

|
F, = Jn (X)NJ dx
0

|
F =Iq(x)NI,dx
0

in which primes denote differentiation with respect
to X ; the subscripts aand f respectively refer to the

axial and flexural deformations; N,and N, are
W

W(X):{Nwl NWZ Nw3 NW4}J
NW

Wy

6,

U(X) = {Nul NHZ}{:II}
(2

Comparing equation (20a) with equation (23a),

the axial shape functions can be achieved.

Nu = b;Ga

Similarly, the transverse shape functions are obtained

equivalent nodal forces (F) can be written according
to FEM

(23a)

(23b)

(23c)

(23d)

(23e)

(23f)

(239)

vectors containing shape functions for the lateral and
axial deformations respectively.

(24a)

(24b)

(25)
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by comparing equation (20b) with equation (23b).
NW = bIGf
The structural matrices and vectors can be calculated

using equations (23).

|
K, :Ga[IbLT H(x)b[,deGa

0

|
K =G, j by, D(x)b(}\,dx]Gf
0
| |
Ky =Gy J.b\’; P, bl dx+ u j bR, b;'vdeGf
0 0
| |
M, =G, [ j bY pA(X)b,dx + 4 J b7 pA(x)lo'uolx]Ga
0 0

| |
M; =G j by, pPA(X)b,, dx + yj by pA(X)b\'NdXJGf
0 0

|
Fa:Gajn(x)bde
0

|
Fr = Gf_[CI(X)vadX
0
Owing to the fact that the transverse natural
frequency disappears when the axial compressive load
reaches its critical value ( P, ); in other words, @; in

equation (4b) is set to zero for instability analysis.
Consequently, the following equation can be deduced
from equation (4b) for calculation of critical
compressive load.

K¢ = Mg

Free transverse vibration
Kig= ;Mg
Instability analysis

(K{ +AK3)p =0

where g and g are the longitudinal and

transverse natural frequencies of the beam,
respectively and ¢ is the mode shape vector. The

superscript g is used to denote the global structural

(26)

(27a)

(27b)

(27¢c)

(27d)

(27¢)

(27f)

(279)

6. Structural analysis

Free vibration and instability analyses of nanobeams
can be investigated through solving an eigenvalue
problem of the following equations

Free longitudinal vibration

(28a)

(28b)

(28c)

matrix obtained by assembling the matrices of all
elements and imposing the b 4 boundary conditions.
A isthe eigenvalue of the instability analysis equation
and the critical load can be expressed as
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P = 4P

where P is the constant compressive load.
7. Numerical examples

7.1. Free transverse vibration

In this section, we scrutinize the effect of small scale
on the frequency of free transverse vibration of
nanobeams through solving a numerical example.
Consider a (5,5) armchair SWNT as described in [32]
with the following properties: diameter d = 0.678 nm,
length L = 10d, effective tube thickness t =0.066 nm,
Young’s modulus E = 5.5 TPa. Symbols C, S and F
represent clamped, simple and free boundary
conditions, respectively. The beam is divided to 10
elements in order to solve the problem numerically.

In addition, the six shape functions are presented

in Figure 5.

8. Discussion

The first five dimensionless natural frequencies of free
transverse vibration of the nanobeam with various
boundary conditions for different values of scaling
effect parameter are presented in Table 1. Comparing
the results with those in the literature, it is observed

(28d)

7.2. Free longitudinal vibration

Considering the nanobeam described in previous
section and dividing it to 20 elements, the first three
free longitudinal frequencies have been computed and
the results have been tabulated in Table 1 and
compared with those presented by Aydogdu [40].

7.3.

The instability analysis of the axially loaded nanobeam
element is presented here. We have assumed E = 1TPa,
diameter d=1 nm, and I = nd4/64. The beam has been
divided into 10 elements and the results have been
compared to those of Wang et al. [41]. Good
agreement between the calculated results and those are
in the literature has been demonstrated through the
Table 3.

Instability analysis

that the results predicted by the proposed method are
in good agreement with the previously published ones
though considering just a few elements (10 elements).
As illustrated in Figure 6, an increase in scaling effect
parameter results in a decrease in the first three natural
frequencies of vibration for all various boundary
conditions. It is also can be concluded that the effect of
the scale parameter intensifies in higher modes.
Regarding Table 2 and Figure 7, natural longitudinal
frequencies of the nanobeam decreases as the size
effect parameter increases and this effect is more
significant in higher modes.

Table 1. The first five frequency parameters \E of cantilever and clamped rods, with Léd = %O for different values of scaling
effect parameter o = eoa/ L. (frequency parameter Q° = 14 © pL / E)

[44

0 0.1 03 0.3 0.7
Mode number BDF [40] EDF [40] EDF  [40] EDF [40] EDF [40]
Clamped beam

17727 1.7725 1.7314 1.7312 1.5121 1.5120 1.298% 1.2989 1.1404  1.1404
2 2.5079 25066 23074 23066 1.7162 1.7160 1.3806 1.3805 1.18¢3 1.1803
3 30735 3.0700 26205 2.6189 1.7973  1.9727 1.3988 1.3987 1.1885 1.1883
Cantilever beam
1 1.2534  1.2333 1.2457 1.2457 1.1921 1.1920 1.1115 1.1115 1.0281 1.0280
2 21714 21708 2.0651 2.0647 1.6498 1.64%6 1.3569 1.3569 1.1693 1.1692
3 2.8047 2.B025 24865 24833 1.7519 1.7517 1.3922 1.3922 1.1856 1.1853
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Table 1. The first five frequency parameters \E of simply supported, clamped—simply supported, clamped and cantilever beams
with L/d =10 for different values of scaling effect parameter o = eya/L . (frequency parameter Q% = /1T2 pAL4 El)

[#4
0 0.1 03 0.3 0.7

Mode
number

BEDF  [32] BDF  [3] BDF [32] BDF  [32] BDF  [32]

Bimply supported beam

1 31416 31416 3.0683 3.06835 26300 2.6800 23022 23022 20212 20212
2 62832 62832 57817 57817 43014 43013 34604 34604 19385 209385
3 9.4249 9.42438 E.0401 E.0400 54423 54422 42941 42941 16485 36485
4 12.5670 1.566 9.9166 99161 63633 6.3630 49813 458320 41234 42234
5 15,710 13,708 113126 11.5111 7.1377  7.1368 5.3832 3.3833 47273 47273
Clamped—smaply supported beam
1 3.9266 3.9266 3.3209 3.3209 32828 32328 2.789%  1.783% 24364 24364
2 T.0586 T.0586 6.4649 6.4549 47668  4.7668 38313 38323 32776 32776
3 102104  10.2102 E6519 E6517 58373 58371 46106 46103 38202 35201
4 13.3527  13.3318 104695 10.469 6.T148 67143 52636 352632 44648 44644
5 16.4960 16.4934 12.0198 12018 74786 74773 58395 53384 49473 45484
Clamped beam
1 4.7300 4.7300 4 3945 4 3945 39183 39184 33153 33153 28893 28893
2 78533 7.8532 71403 T7.1402 51964 5.1963 41361 4.1361 315463  3.5462
3 109960  10.9938 52386 52583 62320  6.2317 43330 45328 41998 41936
4 141384 141372 110163 11016 7.0430 70482 535219 53213 4 6822 46816
5 72820 172787 125222 12.520 7.7974 77955 6.0978  6.0963 51703 51689
Cantilever beam
1 18751 18751 13339 18792 17135 19154 15380 2.021% 1.3809 —_
2 4 6941 4 6941 43745 43475 33671 3.7663 27911 129433 2.4404 —_
3 78548 78548 63187 T.1459 48041 52988 3.8520 — 32953 —
1 109959 10.9933 E.3440 92369 38415 61383 46110 — 318233 —
5 141384 141372 103743 11.016 6.7205  7.1430 52682 —_ 4.4703 —_
o N, - No
08 08
07 07
06 06
05 05
04 04
03 03
02 02
01 0.1
0 v v - - " 0 . . v "
0 02 04 06 038 1 0 02 04 06 08 1
2 ‘N‘—/J]
10
8
26
N
2
0 T -
0 02 04 0.6 08 1
19 . 0
09 N 02 04 06 08
08 2
07 4
06 -
05 ol
04 8
03 8
02 - R
01 o AP
0 12
0 02 04 06 08 1

Figure 5. Shape functions of a general nanobeam element
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5 First Mode 8.5 Second Mode I
45
4
35
a3
25
2 L
1.5 M
1 =g
0.5
0 1 ) 3 4
12,5 Third Mode Forth Mode

Figure 6. The first four dimensionless natural frequencies of free transverse vibration of the nanobeam for different boundary
conditions (o =ega/l).

——Mode 1
—o—Mode 2

—m=—Mode 3

0 0.5 1 15 2 0 0.3 | 1.5
o i)

Figure 7. The first three dimensionless natural frequencies of free transverse vibration of the nanobeam for different boundary
conditions (o =ega/l).
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Figure 8. The critical buckling load for different values of L/d and eya,

The critical buckling loads for different values of influence on critical buckling load particularly in lower
L/d and are presented In Table 3. As depicted in Figure L/d ratios.
8 the scaling effect has a considerable adverse
e,alnm) 0 0.5 1 13 2
Lid BDE _ [41] BDE  [41] BEDF _ [41] BDF _ [41] EDF _ [41]
Simply supperted beam
10 43447 43447 47281 47231 44085 44083 39644 315644 34735 314735
2 33644 313644 33077 33077 31436 31438 25145 2514% 26405 16405
14 24718 14718 24411 14411 23333 23333 22202 22202 20374 20374
16 1.8925  1.8923 18744 18744 1.8222 18222 17414 1.7414 1.8396 16398
18 14953 14833 14840 14540 14511 14311 1.39%94 1.3993 1.332% 13338
20 12112 1.2112 1.2038 1.2037 1.1820 1.1820 11475 11475 1.1024  1.1024
Clamped—zimply supported beam
10 29111 9.5135 94348 94348 £.2451 £.2461 3151 68131 3481% 34830
2 638827 63358 664596 66496 60364 60363 §2321 52321 44058 44098
14 50567 50385 45287 45287 45844 435844 41052 4.1052 315811 3581
1a 38715 38715 3.75967 37967 3.5885 35883 32830 328R0 25431 15431
18 30380 3.0603 30121 3.0121 2.8783 28783 16828  1.682% 14486 14485
20 24778 1.478% 24468 214488 13387 23397 22351 22231 20613 10615
Clamped beam
10 153751 15.37% 17.6383 17.6381 138940 13.5939 10,2629 10.263 7.5138 75137
2 134578 13458 12,5945 12.3944 105621 10562 83234 835233 64187 64187
14 28873 28872 24133 24132 82297 821596 63038  6.303% 14756 34738
1a TIT00 7.565% 72830 728838 65586 653849 36200 3.619% 46815 46315
18 5%812 35811 53044 530434 53316 533152 46945 46942 40215 40212
20 43443 43447 47281 4 7IRO7 44056 440952 39644 315644 34735 314735
Cantilsver beam
10 12112 1.2112 1.2038 1.2037 1.1820  1.183202 11475 11473 1.1024  1.1024
2 03411 03411 08373 08373 0.8268 03268 0.805%  0.30%% 07871 07871
14 06180  0.617% 06160 06160 0.6103 06103 06008 0.600% 0.5383  0.5383
1& 04731 04731 04720 04720 0.4636 04486 04631 04631 04356 04355
18 03738 03738 03731 0.3731 03710 03710 03675  0.3675 0.3628 03628
20 03028 05028 03023 0.3023 03009 03009 02987  0.2988 0.2955 02935

Table 3. Critical buckling loads P, (nN ) for simply supported, clamped-simply supported, clamped and cantilever beams with
various length-to-diameter ratios L/d and scaling coefficients eya .

The six shape functions for free longitudinal and moment of inertia they are apparently independent.
transverse vibration of the nanobeam are derived in €3
terms of BDFs. It is noteworthy that these functions
depend on physica| and geometrica| properties of the The first four mode Shapes of transverse vibration
nanobeam; however, in this case, due to the constant of the nanobeam are depicted in Figure 9 for different
modulus of elasticity, cross section, mass density and values of the scaling effect parameter. It is observed

176



Vol. 47, No. 2, December 2016

that the size effect influences on mode shapes
especially in higher vibration modes.

1
0.9 4
0.8
04 -
0.6
04 0.1 02 04
02
-0.6
0
0 02 0.4 0.6 0.8 1 .
09 4 09 1
04 4 0.4 A
0.1 0.1 g 02 0.4 0.6 08 1
06 0.6 1
BREE RN

Figure 9. The first four normalized mode shapes of nanobeams described in the examples
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9. Conclusions

In this article, the innovative basic displacements
functions were introduced, developed and exploited
for structural analysis of nanobeams employing
Eringen’s nonlocal elasticity and Euler-Bernoulli
beam theory. The flexibility basis of the proposed
method inherently satisfies the equilibrium equations
at each inner point of the element. The efficiency and
accuracy of the proposed method for the above
mentioned boundary conditions in stability analysis,
free longitudinal vibration and free transverse
vibration were demonstrated through several
numerical examples. Convergence of the result was
achieved by exploiting just 10 of the proposed
elements in the finite element procedure [].
According to the attained results, it is concluded that
the size effect plays an important role in stability
analysis, free longitudinal vibration and free transverse
vibration of nanobeam.
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