Defects and Structural Analysis of Multi-Wall Carbon Nano Tubes via Ball milling and Cryo-milling

Document Type: Research Paper

Authors

1 Department of Mechanical Engineering, University of Tehran, Tehran, Iran Nano Technology Research Center, Research Institute of Petroleum Industry, Tehran, Iran

2 Department of Mechanical Engineering, University of Tehran, Tehran, Iran

3 Vice-Presidency for Science and Technology, Tehran, Iran Nano Technology Research Center, Research Institute of Petroleum Industry, Tehran, Iran

4 Nano Technology Research Center, Research Institute of Petroleum Industry, Tehran, Iran Received: 9

Abstract

Nano fillers are part of new studies to enhance various properties of fluids and solids. For example, adding nanoparticles as an enforcement in nanocomposites or as an additive to improve thermal or electrical properties in nano-fluids are of extreme importance in science and industry. There are numerous methods to uniformly disperse nanoparticles in fluid and solid phase. One of the well-used techniques is utilizing ball mills. Milling method is treated widely to uniformly disperse Carbon Nano Tubes (CNTs) in solid or fluid state materials. However, the issue is that this method abolishes some part of CNTs' structure. As a result, this defect adversely decreases the improvement of designated properties. In this research, two methods of milling conditions have been analyzed to find out their impacts on CNTs' structure. The first method is milling Multi-Wall Carbon Nano Tubes (MWCNTs) in ambient temperature. On the other hand, in the second method the temperature dwindled to -196°C by Retsch new generation ball mills (Cryo-mill). This apparatus flows liquid nitrogen (LN2) around the shaking jar and decreases the temperature as low as -196°C. To analyze the impact of these methods of milling on MWCNTs, Field Emission Gun-Scanning Electron Microscopy micrograph, X-Ray Diffraction, Raman Spectroscopy, and Thermo Gravimetric Analysis are scrutinized on MWCNTs’ structure. In conclusion, all the aforementioned experiments provide sufficient support to implicitly convince that cryo-milling method has less defective impact on initial MWCNTs.

Keywords

Main Subjects


1] Iijima, S. (1991). "Helical microtubules of graphitic carbon", Nature, 354(6348): 56-58.
[2] Popov, V.N. (2004). "Carbon nanotubes: properties and application", Materials Science and Engineering: R: Reports, 43(3): 61-102.
[3] Kim, H.S., Park, W.I., Kang, M. and Jin, H.J. (2008). "Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions", Journal of Physics and Chemistry of Solids, 69(5–6): 1209-1212.
[4] Robertson, J. (2004). "Realistic applications of CNTs", Materials Today, 7(10): 46-52.
[5] Suryanarayana, C. (2001). "Mechanical alloying and milling", Progress in Materials Science, 46(1–2): 1-184.
[6] Fogagnolo, J.B., Velasco, F., Robert, M.H. and Torralba, J.M. (2003). "Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders", Materials Science and Engineering: A, 342(1–2): 131-143.
[7] Son, H.T., Kim, T.S., Suryanarayana, C. and Chun, B.S. (2003). "Homogeneous dispersion of graphite in a 6061 aluminum alloy by ball milling", Materials Science and Engineering: A, 348(1–2): 163-169.
S. Azimi et al.
8
[8] Ruiz-Navas, E.M., Fogagnolo, J.B., Velasco, F., Ruiz-Prieto, J.M. and Froyen, L. (2006). "One step production of aluminium matrix composite powders by mechanical alloying", Composites Part A: Applied Science and Manufacturing, 37(11): 2114-2120.
[9] Liu, F., Zhang, X., Cheng, J., Tu, J., Kong, F., Huang, W. and Chen, C. (2003). "Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior", Carbon, 41(13): 2527-2532.
[10] Kim, Y.A., Hayashi, T., Fukai, Y., Endo, M., Yanagisawa, T. and Dresselhaus, M.S. (2002). "Effect of ball milling on morphology of cup-stacked carbon nanotubes", Chemical Physics Letters, 355(3–4): 279-284.
[11] Pierard, N., Fonseca, A., Konya, Z., Willems, I., Van Tendeloo, G. and B.Nagy, J. (2001). "Production of short carbon nanotubes with open tips by ball milling", Chemical Physics Letters, 335(1–2): 1-8.
[12] Kónya, Z., Zhu, J., Niesz, K., Mehn, D. and Kiricsi, I. (2004). "End morphology of ball milled carbon nanotubes", Carbon, 42(10): 2001-2008.
[13] Pierard, N., Fonseca, A., Colomer, J.F., Bossuot, C., Benoit, J.M., Van Tendeloo, G. Pirard, J.P. and Nagy, J. B. (2004). "Ball milling effect on the structure of single-wall carbon nanotubes", Carbon, 42(8–9): 1691-1697.
[14] Rubio, N., Fabbro, C., Herrero, M.A., de la Hoz, A., Meneghetti, M., Fierro, J.L., Prato, M. and Vázquez, E. (2011). "Ball‐Milling Modification of Single‐Walled Carbon Nanotubes: Purification, Cutting, and Functionalization", Small, 7(5): 665-674.
[15] Papp, I.Z., Kozma, G., Puskás, R., Simon, T., Kónya, Z. and Kukovecz, Á. (2013). "Effect of planetary ball milling process parameters on the nitrogen adsorption properties of multiwall carbon nanotubes", Adsorption, 19(2-4): 687-694.
[16] Li, Y.B., Wei, B.Q., Liang, J., Yu, Q. and Wu, D.H. (1999). "Transformation of carbon nanotubes to nanoparticles by ball milling process", Carbon, 37(3): 493-497.
[17] Wu, C.Z., Wang, P., Yao, X., Liu, C., Chen, D.M., Lu, G.Q., and Cheng, H.M. (2006). "Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling", Journal of Alloys and Compounds, 420(1–2): 278-282.
[18] Chen, D., Chen, L., Liu, S., Ma, C.X., Chen, D.M. and Wang, L.B. (2004). "Microstructure and hydrogen storage property of Mg/MWNTs composites", Journal of Alloys and Compounds, 372(1–2): 231-237.
[19] Enqvist, E., Ramanenka, D., Marques, P.A., Gracio, J. and Emami, N. (2014). "The effect of ball milling time and rotational speed on ultra high molecular weight polyethylene reinforced with multiwalled carbon nanotubes", Polymer Composites.
[20] Retsch, "CryoMill", http://www.retsch.com/products/milling/ball-mills/mixer-mill-cryomill/.
[21] Wang, Z.L. and Hui, C. (2013). Electron microscopy of nanotubes, Springer Science & Business Media.
[22] García-Gutiérrez, M.C., Nogales Ruiz, A., Hernández, J.J., Rueda, D.R. and Ezquerra Sanz, T.A. (2007). "X-ray scattering applied to the analysis of carbon nanotubes, polymers and nanocomposites", Óptica Pura y Aplicada, 40(2): 195-205.
[23] Liu, J., Bai, L., Wang, J., Zhao, G., Sun, X. and Zhong, J. (2014). "Measuring inside damage of individual multi-walled carbon nanotubes using scanning transmission X-ray microscopy", Applied Physics Letters, 104(24): 241602.
[24] Poirier, D., Gauvin, R. and Drew, R.A.L. (2009). "Structural characterization of a mechanically milled carbon nanotube/aluminum mixture", Composites Part A: Applied Science and Manufacturing, 40(9): 1482-1489.
[25] Lee, J.H., Rhee, K.Y. and Park, S.J. (2010). "Effects of cryomilling on the structures and hydrogen storage characteristics of multi-walled carbon nanotubes", International Journal of Hydrogen Energy, 35(15): 7850-7857.
[26] Kim, H.S., Suhr, D.S., Kim, G.H. and Kum, D.W. (1996). "Analysis of X-ray diffraction patterns from mechanically alloyed Al-Ti powders", Metals and Materials International, 2(1): 15-21.
[27] Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A. and Veríssimo, C. (2006). "Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation", Carbon, 44(11): 2202-2211.
[28] Delhaes, P., Couzi, M., Trinquecoste, M., Dentzer, J., Hamidou, H. and Vix-Guterl, C. (2006). "A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes", Carbon, 44(14): 3005-3013.
Vol. 47, No. 1, June 2016
9
[29] Casiraghi, C., Ferrari, A. and Robertson, J. (2005). "Raman spectroscopy of hydrogenated amorphous carbons", Physical Review B, 72(8).
[30] McGuire, K., Gothard, N., Gai, P.L., Dresselhaus, M.S., Sumanasekera, G. and Rao, A.M. (2005). "Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes", Carbon, 43(2): 219-227.
[31] Harutyunyan, A.R., Pradhan, B.K., Chang, J., Chen, G. and Eklund, P.C. (2002). "Purification of Single-Wall Carbon Nanotubes by Selective Microwave Heating of Catalyst Particles", The Journal of Physical Chemistry B, 106(34): 8671-8675.
[32] Welham, N.J. and Williams, J.S. (1998). "Extended milling of graphite and activated carbon", Carbon, 36(9): 1309-1315.
[33] Fukunaga, T., Nagano, K., Mizutani, U., Wakayama, H. and Fukushima, Y. (1998). "Structural change of graphite subjected to mechanical milling", Journal of Non-Crystalline Solids, 232–234(0): 416-420.
[34] Shi, Z., Lian, Y., Liao, F.H., Zhou, X., Gu, Z., Zhang, Y., Iijima, S., Li, H., Yue, K.T. and Zhang, S.L. (2000). "Large scale synthesis of single-wall carbon nanotubes by arc-discharge method", Journal of Physics and Chemistry of Solids, 61(7): 1031-1036.
[35] Manafi, S.A., Amin, M.H., Rahimipour, M.R., Salahi, E. and Kazemzadeh, A. (2010). "Large scale and low cost synthesis of multiwalled carbon nanotubes by mechanothermal absence catalysts", Advances in Applied Ceramics: Structural, Functional & Bioceramics, 109(1): 25-30.
[36] Karimi, E.Z., Zebarjad, S.M., Khaki, J.V. and Izadi, H. (2010). "Production of carbon nanotubes using mechanical milling in the presence of an exothermic reaction", Journal of Alloys and Compounds, 505(1): 37-42.
[37] Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I. and Galiotis, C. (2008). "Chemical oxidation of multiwalled carbon nanotubes", Carbon, 46(6): 833-840.
[38] Schönfelder, R., Avilés, F., Bachmatiuk, A., Cauich-Rodriguez, J., Knupfer, M., Büchner, B. and Rümmeli, M. (2012). "On the merits of Raman spectroscopy and thermogravimetric analysis to asses carbon nanotube structural modifications", Applied Physics A, 106(4): 843-852.
[39] Bussy, C., Pinault, M., Cambedouzou, J., Landry, M.J., Jegou, P., Mayne-L’Hermite, M., Launois, P., Boczkowski, J. and Lanone, S. (2012). "Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity", Part Fibre Toxicol, 9(46): 1-15.
[40] Hänsch, S., Socher, R., Pospiech, D., Voit, B., Harre, K. and Pötschke, P. (2012). "Filler dispersion and electrical properties of polyamide 12/MWCNT-nanocomposites produced in reactive extrusion via anionic ring-opening polymerization", Composites Science and Technology, 72(14): 1671-1677.
[41] Martin-Gallego, M., Bernal, M., Hernandez, M., Verdejo, R. and Lopez-Manchado, M. (2013). "Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites", European Polymer Journal, 49(6): 1347-1353.

[42]          M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation, Journal of Solid Mechanics, Vol. 6, pp. 98-121, 2014.
[43] Park, K.S. and Youn, J.R. (2012). "Dispersion and aspect ratio of carbon nanotubes in aqueous suspension and their relationship with electrical resistivity of carbon nanotube filled polymer composites", Carbon, 50(6): 2322-2330.
[44] Choi, H., Shin, J. and Bae, D. (2012). "The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites", Composites Part A: Applied Science and Manufacturing, 43(7): 1061-1072.