[1] M. C. Sukop and D. T. Thorne, Lattice Boltzmann Modeling: An introduction for Geoscientists and Engineers. Berlin: Springer, 2005.
[2] H. X and L. Ls, "A priori derivation of the lattice Boltzmann equation," Phys Rev E, vol. 55, p. R6333, 1997.
[3] S. Chen and G. D. Doolen, "Lattice Boltzmann method for fluid flows," Ann. Rev. Fluid Mech. , vol. 30, pp. 329-364, 1998.
[4] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyound, 2001.
[5] A. Fakhari and M. H. Rahimian, "SIMULATION OF AN AXISYMMETRIC RISING BUBBLE BY A MULTIPLE RELAXATION TIME LATTICE BOLTZMANN METHOD," International Journal of Modern Physics B, vol. 23, 2009.
[6] M. Taghilou and M. H. Rahimian, "Investigation of two-phase flow in porous media using lattice Boltzmann method," Computers & Mathematics with Applications, vol. 67, pp. 424–436, 2014.
[8] A. Begmohammadi, M. H. Rahimian, M. Farhadzadeh, and M. A. Hatani, "Numerical simulation of single-and multi-mode film boiling using lattice Boltzmann method," Computers & Mathematics with Applications, vol. 71, pp. 1861–1874, 2016.
[9] M. A. Hatani, M. Farhadzadeh, and M. H. Rahimian, "Investigation of vapor condensation on a flat plate and horizontal cryogenic tube using lattice Boltzmann method," International Communications in Heat and Mass Transfer, vol. 66, pp. 218–225, 2015.
[10] H. Amirshaghaghi, M. H. Rahimian, and H. Safari, "Application of a two phase lattice Boltzmann model in simulation of free surface jet impingement heat transfer " International Communications in Heat and Mass Transfer, vol. 75, pp. 282–294, 2016.
[11] A. L. Yarin and D. A. Weiss, "Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity," J Fluid Mech, vol. 283, pp. 283-141, 1995.
[12] D. Morton, M. Rudman, and L. Jong-Leng, "An investigation of the flow regimes resulting from splashing drops," Phys Fluid, vol. 12, 2000.
[13] S. Mukherjee and J. Abraham, "Lattice Boltzmann simulations of two-phse flow with high density ratio in axially symmetric geometry," Phys Rev E, vol. 75, p. 026701, 2007.
[14] S. Sikalo, M. Marengo, C. Tropea, and E. N. Ganic, "Analysis of impact of droplets on horizontal surfaces," Exp. Therm. Fluid Sci., vol. 25, pp. 503-510, 2005.
[15] S. Sikalo, C. Tropea, and E. N. Ganic, "Dynamic wetting angle of spreading droplet," Exp. Therm. Fluid Sci., vol. 29, pp. 795-802, 2005.
[16] S. Sikalo, C. Tropea, and E. N. Ganic, "Impact of droplets onto inclined sufraces," J. Colloid Interf. Sci., vol. 286, pp. 661-669, 2005.
[17] R. Haghani, M. H. Rahimian, and M. Taghilou, "LBM Simulation of a Droplet Dripping Down a Hole," Eng. App. Comp. Fluid Mech., vol. 7, pp. 461-470, 2013.
[18] S. F. Lunkad, V. V. Buwa, and K. D. P. Nigam, "Numerical simulations of drop impact and spreading on horizontal and inclined surface," Chem. Eng. Sci., vol. 62, pp. 7214-7224, 2007.
[19] X. He, X. Shan, and G. D. Doolen, "Discrete Boltzmann equation model for nonideal gases," Physical Review E, vol. 57, pp. R13--R16, 1998.
[20] T. Lee, "Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids," Com. Math. App., vol. 58, pp. 987-994, 2009.
[21] T. Lee and L. Liu, "Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces," J. Com. Phy., vol. 229, pp. 8045-8063, 2010