[1] Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson J.W. (1994). Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia, 42(2): 475–487.
[2] Stolken, J.S. and Evans, A.G. (1998). A microbend test method for measuring the plasticity length scale, Acta Materialia, 46(14): 5109–5115.
[3] Chong, A.C.M., Yang, F., Lam, D.C.C. and Tong, P. (2001). Torsion and bending of micron-scaled structures, Journal of Materials Research, 16(4): 1052–1058.
[4] Koiter, W.T. (1964). Couple stresses in the theory of elasticity, I and II, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series, B 67: 17–44.
[6] Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003). Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51(8): 1477–1508.
[7] Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002). Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(10): 2731–2743.
[8] Tsiatas G.C. (2009). A new Kirchhoff plate model based on a modified couple stress theory, International Journal of Solids and Structures, 46(13): 2757–2764.
[9] Yin, L., Qian, Q., Wang, L. and Xia, W. (2010). Vibration analysis of microscale plates based on modified couple stress theory, Acta Mechanica Solid a Sinica, 23(5): 386–393.
[10] Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011). The size-dependent vibration analysis of micro plates based on a modified couple stress theory, Physica E: Low-dimensional Systems and Nanostructures, 43(4), 877–883.
[11] Asghari, M. (2012). Geometrically nonlinear micro-plate formulation based on the modified couple stress theory, International Journal of Engineering Science, 51: 292–309.
[12] Sahmani, S. and Ansari, R. (2013). On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory, Composite Structures, 95: 430–442.
[13] Mohammadimehr, M., Mohandes, M. and Moradi, M. (2014). Size dependent effect on the buckling and vibration analysis of double bonded nanocomposite piezoelectric plate rein- forced by BNNT based on modified couple stress theory, Journal of Vibration and Control, doi: 10.1177/1077546314544513.
[14] Kim, M., Park, Y.B., Okoli, O.I. and Zhang, C. (2009). Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites, Composites Science and Technology, 69(3-4): 335-342.
[15] Bhardwaj, G., Upadhyay, A.K., Pandey, R. and Shukla, K.K. (2013). Non-linear flexural and dynamic response of CNT reinforced laminated composite plates, Composites Part B: Engineering, 45(1): 89-100.
[16] Reddy, J.N. (2004). Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, Second Edition.
[17] GhorbanpourArani, A. and Haghparast, E. (2015). Size-dependent vibration of axially moving viscoelastic microplates based on sinusoidal shear deformation theory, International Journal of Applied Mechanics.
[18] Ghorbanpour Arani, A., Khoddami Maraghi, Z. and Khani Arani, H. (2015). Orthotropic patterns of Pasternak foundation in smart vibration analysis of magnetostrictive nanoplate, Journal of Mechanical Engineering Science, doi: 10.1177/0954406215579929.
[19] Rafiee, M., He, X.Q., Mareishi, S. and Liew, K.M. (2014). Modeling and stress analysis of smart CNTs/fiber/polymer multiscale composite plates, International Journal of Applied Mechanics, 6(3): 1450025-1450048.
[20] M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of the effect of pre-stressed on vibration frequency of rectangular nanoplate based on a visco pasternak foundation, Journal of Solid Mechanics, Vol. 6, pp. 98-121, 2014.
[21] Ke, LL., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012). Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory, Journal of Sound and Vibration, 331: 94–106