[1] J. A. Zukas, 1990, High velocity impact dynamics, John Wiley, New York
[2] T. Børvik, O. Hopperstad, T. Berstad, M. Langseth, A computational model of viscoplasticity and ductile damage for impact and penetration, European Journal of Mechanics-A/Solids, Vol. 20, No. 5, pp. 685-712, 2001.
[3] L. L. Wang, F. H. Zhou, Z. J. Sun, Y. Z. Wang, S. Q. Shi, Studies on rate-dependent macro-damage evolution of materials at high strain rates, International Journal Of Damage Mechanics, 2010.
[4] J. DiLellio, W. Olmstead, Numerical solution of shear localization in Johnson-Cook materials, Mechanics of Materials, Vol. 35, No. 3-6, pp. 571-580, 2003.
[5] R. Mahnken, M. Johansson, K. Runesson, Parameter estimation for a viscoplastic damage model using a gradient-based optimization algorithm, Engineering Computations, Vol. 15, No. 7, pp. 925-955, 1998.
[6] M. Johansson, R. Mahnken, K. Runesson, Efficient integration technique for generalized viscoplasticity coupled to damage, International Journal for Numerical Methods in Engineering, Vol. 44, No. 11, pp. 1727-1747, 1999.
[7] P. Perzyna, Fundamental problems in viscoplasticity, Advances in Applied Mechanics, Vol. 9, pp. 243-377, 1966.
[8] G. Duvaut, J. L. Lions, 1972, Les inéquations en mécanique et en physique, Dunod, Paris
[9] J. P. Ponthot, Radial return extensions for visco-plasticity and lubricated friction, in Proceeding of.
[10] W. M. Wang, 1997, Stationary and propagative instabilities in metals: a computational point of view, Delft University Press,
[11] W. M. Wang, L. J. Sluys, R. De Borst, Viscoplasticity for instabilities due to strain softening and strain-rate softening, International Journal for Numerical Methods in Engineering, Vol. 40, No. 20, pp. 3839-3864, 1997.
[12] O. M. Heeres, A. S. J. Suiker, R. de Borst, A comparison between the Perzyna viscoplastic model and the Consistency viscoplastic model, European Journal of Mechanics-A/Solids, Vol. 21, No. 1, pp. 1-12, 2002.
[13] M. Ristinmaa, N. S. Ottosen, Consequences of dynamic yield surface in viscoplasticity, International Journal of Solids and Structures, Vol. 37, No. 33, pp. 4601-4622, 2000.
[14] T. Saksala, D. Brancherie, I. Harari, A. Ibrahimbegovic, Combined continuum damage‐embedded discontinuity model for explicit dynamic fracture analyses of quasi‐brittle materials, International Journal for Numerical Methods in Engineering, Vol. 101, No. 3, pp. 230-250, 2015.
[15] R. Zaera, J. Fernández-Sáez, An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations, International Journal of Solids and Structures, Vol. 43, No. 6, pp. 1594-1612, 2006.
[16] K. Hashiguchi, T. Okayasu, K. Saitoh, Rate-dependent inelastic constitutive equation: the extension of elastoplasticity, International Journal of Plasticity, Vol. 21, No. 3, pp. 463-491, 2005.
[17] J. C. Simo, J. W. Ju, Strain- and stress-based continuum damage models - I. Formulation, International Journal of Solids and Structures, Vol. 23, pp. 821-840, 1987.
[18] M. Johansson, K. Runesson, Viscoplasticity with dynamic yield surface coupled to damage, Computational Mechanics, Vol. 20, No. 1, pp. 53-59, 1997.
[19] C. L. Chow, X. J. Yang, E. Chu, Viscoplastic constitutive modeling of anisotropic damage under nonproportional loading, Journal of Engineering Materials and Technology, Vol. 123, No. 4, pp. 403-408, 2001.
[20] X. Ren, J. Li, A unified dynamic model for concrete considering viscoplasticity and rate-dependent damage, International Journal of Damage Mechanics, Vol. 22, No. 4, pp. 530-555, 2013.
[21] T. Carniel, P. Muñoz-Rojas, M. Vaz, A viscoelastic viscoplastic constitutive model including mechanical degradation: Uniaxial transient finite element formulation at finite strains and application to space truss structures, Applied Mathematical Modelling, Vol. 39, No. 5, pp. 1725-1739, 2015.
[22] R. K. A. Al-Rub, A. H. Tehrani, M. K. Darabi, Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites, International Journal of Damage Mechanics, Vol. 24, No. 2, pp. 198-244, 2015.
[23] G. Z. Voyiadjis, F. H. Abed, A coupled temperature and strain rate dependent yield function for dynamic deformations of bcc metals, International Journal of Plasticity, Vol. 22, No. 8, pp. 1398-1431, 2006.
[24] C. L. Chow, J. Wang, Ductile fracture characterization with an anisotropic continuum damage theory, Engineering Fracture Mechanics, Vol. 30, No. 5, pp. 547-563, 1988.
[25] C. Chow, T. Lu, On evolution laws of anisotropic damage, Engineering Fracture Mechanics, Vol. 34, No. 3, pp. 679-701, 1989.
[26] A. Rusinek, J. A. Rodríguez-Martínez, A. Arias, A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper, International Journal of Mechanical Sciences, Vol. 52, No. 2, pp. 120-135, 2//, 2010.
[27] G. Z. Voyiadjis, F. H. Abed, Microstructural based models for bcc and fcc metals with temperature and strain rate dependency, Mechanics of Materials, Vol. 37, No. 2–3, pp. 355-378, 2//, 2005.
[28] R. Liang, A. S. Khan, A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures, International Journal of Plasticity, Vol. 15, No. 9, pp. 963-980, //, 1999.
[29] C. L. Chow, J. Wang, An anisotropic theory of continuum damage mechanics for ductile fracture, Engineering Fracture Mechanics, Vol. 27, No. 5, pp. 547-558, 1987.
[30] M. Ganjiani, Identification of damage parameters and plastic properties of an anisotropic damage model by micro-hardness measurements, International Journal of Damage Mechanics, March 27, 2013, 2013.
[31] A. Mkaddem, F. Gassara, R. Hambli, A new procedure using the microhardness technique for sheet material damage characterisation, Journal of Materials Processing Technology, Vol. 178, No. 1-3, pp. 111-118, 2006.
[32] G. Le Roy, J. D. Embury, G. Edward, M. F. Ashby, A model of ductile fracture based on the nucleation and growth of voids, Acta Metallurgica, Vol. 29, pp. 1509-1522, 1981.
[33] S. P. F. C. Jaspers, J. H. Dautzenberg, Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone, Journal of Materials Processing Technology, Vol. 122, pp. 322-330, 2002.