Computational Fluid Dynamics Simulation of Rotor Blade Aerodynamics for the Mars Ingenuity Helicopter

Document Type : Research Paper

Authors

1 MPESG, Corrosion Lab, 3-08, Aeronautical and Mechanical Engineering Division, University of Salford, M5 4WT, UK

2 Engineering Mechanics Research, Israfil House, Dickenson Rd., Manchester, M13, UK

3 Department of Physics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

4 Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa

Abstract

The Mars Ingenuity helicopter, a coaxial rotor aerial vehicle, is a pioneering venture into extraterrestrial flight. Rotorcraft technology plays a significant role in future mission development, as it offers advantages for specific applications, particularly in rugged terrain or confined spaces. Mars' landscape presents challenges, including unpredictable wind patterns and dust particles. To fly in the thin, predominantly carbon-dioxide-based atmosphere, rotor blades are designed for efficiency in low density environments with a large blade diameter. This work examines the aerodynamic performance of the blade configuration in a quadcopter Mars Ingenuity design using ANSYS FLUENT computational fluid dynamics. A detailed rotor blade model for CFD analysis has been developed for flow behavior around the rotor blades in Mars atmospheric conditions. Data from the Mars 2020 mission and the Mars Ingenuity Helicopter is used as a baseline. Extensive simulations are described for contour plots and flow vectors, focusing on vortex effects and performance in the Mars atmosphere. The study also addresses unsteady airflow around the rotor disk, leading to instabilities such as blade-vortex interactions and retreating blade stall. Future pathways include control aspects of the blade configuration and blade twist.

Keywords

Main Subjects

[1]          O. Beg, S. Kuharat, A. Kadir, W. Jouri, CFD simulation of diamond and zinc smart nanoparticles performance in a water-based trapezium direct absorber solar collector, Materials of the Future: Smart Applications in Science and Engineering 2021.
[2]          A. Imam, R. Bicker, Effects of propeller blade twist on reconnaissance quad-rotor UAV, in Proceeding of, Military Technical College, pp. 1-15.
[3]          H. Shao, D. Li, Z. Kan, H. Li, D. Yuan, J. Xiang, Influence of wing camber on aerodynamic performance of flapping wing rotor, Aerospace Science and Technology, Vol. 113, pp. 106732, 2021.
[4]          K. Pandey, U. Kumar, G. Kumar, D. Deka, D. Das, A. Surana, CFD analysis of an isolated main helicopter rotor for a hovering flight at varying RPM, in Proceeding of, American Society of Mechanical Engineers, pp. 543-551.
[5]          K. Corfeld, R. Strawn, L. Long, Computational analysis of a prototype martian rotorcraft experiment, in Proceeding of, 2815.
[6]          L. A. Young, E. Aiken, M. Derby, R. Demblewski, J. Navarrete, Experimental investigation and demonstration of rotary-wing technologies for flight in the atmosphere of mars, 58th Annual Forum of the AHS, International, Montreal, Canada, June 11-13, 2002., 2002.
[7]          M. Ammoo, Z. Awal, Main Rotor Blade Air Flow Characteristics & Behaviour of a Remote Controlled Sub-scale Helicopter: A Case Study, International Journal of Research in Aeronautical and Mechanical Engineering, Vol. 1, No. 7, pp. 228-235, 2013.
[8]          A. Fluent, Ansys Fluent Theory Guide, ANSYS Inc, 2011.
[9]          B. T. Pipenberg, M. Keennon, J. Tyler, B. Hibbs, S. Langberg, J. Balaram, H. F. Grip, J. Pempejian, Design and fabrication of the mars helicopter rotor, airframe, and landing gear systems, in Proceeding of, 0620.
[10]        G. J. Leishman, 2006, Principles of helicopter aerodynamics with CD extra, Cambridge university press,
[11]        W. Johnson, S. Withrow-Maser, L. Young, C. Malpica, W. J. Koning, W. Kuang, M. Fehler, A. Tuano, A. Chan, A. Datta, Mars science helicopter conceptual design,  pp. 2020.
[12]        W. J. Koning, E. A. Romander, W. Johnson, Optimization of low Reynolds number airfoils for Martian rotor applications using an evolutionary algorithm, in Proceeding of, 0084.
[13]        S. Kuharat, O. A. Bég, A. Kadir, T. A. Bég, W. Jouri, Computation of gold-water nanofluid natural convection in a three-dimensional tilted prismatic solar enclosure with aspect ratio and volume fraction effects, Nanoscience and Technology: An International Journal, Vol. 11, No. 2, 2020.
[14]        M. J. Akbar, O. Anwar Bég, T. Anwar Bég, M. M. Bhatti, A. Kadir, S. Kuharat, CFD simulation of turbulent aerodynamics of a hummingbird wing for gliding micro-UAVs, Journal of Computational
Applied Mechanics, Vol. 57, pp. 230-256, 2026.
[15]        S. Kuharat, O. Anwar Bég, A. Kadir, B. Vasu, Computation of metallic nanofluid natural convection in a two-dimensional solar enclosure with radiative heat transfer, aspect ratio and volume fraction effects, Arabian Journal for Science and Engineering, Vol. 45, No. 11, pp. 9075-9093, 2020.
[16]        S. Kuharat, M. Chaudhry, O. A. Beg, T. A. Bég, Computational hemodynamic simulation of non-Newtonian fluid-structure interaction in a curved stenotic artery, European Mechanical Science, Vol. 8, No. 4, pp. 226-256, 2024.
[17]        S. F. Ramadan, M. M. Bhatti, K. S. Mekheimer, A. M. A. S. Moawad, C. M. Khalique, Magneto-Bioconvection Dynamics of Synovial Nanofluids: Consequences of Porosity, Rheology, and Heat Generation, Journal of Computational Applied Mechanics, Vol. 57, No. 1, pp. 122-133, 2026.
[18]        H. A. Daud, Q. Li, O. A. Bég, S. AbdulGhani, Numerical investigations of wall-bounded turbulence, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 225, No. 5, pp. 1163-1174, 2011.
[19]        O. A. Bég, H. Javaid, S. Kuharat, A. Kadir, H. J. Leonard, W. S. Jouri, T. A. Bég, V. Prasad, Z. Ozturk, U. F. Khan, Computational fluid dynamic simulation of thermal convection in green fuel cells with finite volume and lattice Boltzmann methods,  in: Energy Conversion and Green Energy Storage, Eds., pp. 133-170: CRC Press, 2022.
[20]        O. A. Bég, S. Kuharat, T. A. Bég, J. Pattison, A. Kadir, H. J. Leonard, W. Jouri, Two-Way Fluid-Structure Interaction Hydroelastic Simulation of Vibrating Membranes with Applications in Marine Renewable Wave Power,  in: Eco-Materials and Green Energy for a Sustainable Future, Eds., pp. 295-329: CRC Press, 2024.
[21]        M. E. GENDY, O. A. Bég, A. Kadir, M. Islam, D. Tripathi, Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump, Journal of Mechanics in Medicine and Biology, Vol. 21, No. 08, pp. 2150058, 2021.
[22]        B. N. Perez Perez, Rotor CFD Analysis at Terrestrial and Martian Atmospheric Densities,  pp. 2018.
Volume 57, Issue 2
April 2026
Pages 296-325
  • Receive Date: 29 January 2026
  • Accept Date: 30 January 2026