Vibration Analysis of Stiffened Composite Plates Reinforced by Nano materials: Analytical and Experimental Investigations.

Document Type : Research Paper

Authors

1 Department of Prosthetics and Orthotic Devices Engineering, Techniques College of Medical Rehabilitation and Prosthetics, Al-Furat Al-Awsat Technical University, Najaf, Iraq

2 Ministry of Industry and Minerals, State Company for Rubber and Tires Industries, Najaf, 00964, Iraq

3 Fuel and Energy Techniques Engineering Department, College of Engineering, AL-Mustaqbal University, 51001, Babylon, Iraq

4 Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India

Abstract

In this work, rectangular plate samples are designed and fabricated using four arrangements: pure epoxy with a stiffener, pure epoxy plate without a stiffener, homogeneous composite plate with 0.5% Vf and a stiffener, and homogeneous composite plate with a FGM stiffener. The mathematical model is formulated based on the first-order shear deformation theory (FSDT). The free vibration test is conducted, and the signal is analyzed to obtain the free vibration characteristics. The results show that the homogeneous composite plate with 2% Vf and FGM stiffener exhibited a significant improvement in the natural frequency. However, using a Functionally Graded Material (FGM) stiffener and increasing the nano-volume fraction increases the natural frequency. Also, the plate without any filler (pure epoxy) and without a stiffener has the lowest frequencies among the composite plates employed. The discrepancy between the analytical and experimental techniques was no more than 10%.

Keywords

Main Subjects

[1]          D. Van Doan, P. Van Minh, T. Van Ke, N. T. C. Nhung, D. Van Thom, An Overview of Functionally Graded Materials: From Civil Applications to Defense and Aerospace Industries, Journal of Vibration Engineering & Technologies, Vol. 13, No. 1, pp. 68, 2025/01/10, 2025.
[2]          S. Alkunte, I. Fidan, V. Naikwadi, S. Gudavasov, M. A. Ali, M. Mahmudov, S. Hasanov, M. Cheepu, Advancements and Challenges in Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Journal of Manufacturing and Materials Processing, Vol. 8, No. 1, pp. 23, 2024.
[3]          S. Yadav, S. Liu, R. K. Singh, A. K. Sharma, P. Rawat, A state-of-art review on functionally graded materials (FGMs) manufactured by 3D printing techniques: Advantages, existing challenges, and future scope, Journal of Manufacturing Processes, Vol. 131, pp. 2051-2072, 2024/12/12/, 2024.
[4]          T. Nakamura, T. Wang, S. Sampath, Determination of properties of graded materials by inverse analysis and instrumented indentation, Acta Materialia, Vol. 48, No. 17, pp. 4293-4306, 2000/11/08/, 2000.
[5]          M. Al-Shablle, E. K. Njim, M. J. Jweeg, M. Al-Waily, Free vibration analysis of composite face sandwich plate strengthens by Al2O3 and SiO2 nanoparticles materials, Diagnostyka, Vol. 24, No. 2, pp. 1-9, 2023.
[6]          S. Guo, X. Zhou, Free vibration analysis of multiphase reinforced resin-matrix composite shells with arbitrary boundaries and openings via back-propagation neural network algorithm, Structures, Vol. 80, pp. 110061, 2025/10/01/, 2025.
[7]          S. Gao, R. Wang, Y. Xu, H. Zhang, S. Zhang, M. Xu, L. Liu, B. Tao, H. Xue, S. Li, B. Li, Facile construction of a micro-nano structure of green polyvinyl alcohol-based composite aerogel with superior mechanical properties, thermal insulation, and fire safety, Polymer Degradation and Stability, Vol. 241, pp. 111522, 2025/11/01/, 2025.
[8]          D. Wang, Z. Zhang, S. Ding, C. Ning, C. Shi, Y. Ma, Q. Ren, Z. Jiang, Nano-structure and sensitivity of self-sensing geopolymer composites containing nano carbon black, Cement and Concrete Composites, Vol. 160, pp. 106072, 2025/07/01/, 2025.
[9]          L. Zhang, H. Yuan, L. Ma, Z. Jiao, Q. Wei, Construction of TiC-TiAl3 nano-interlayer and its effect on thermo-physical properties of diamond/Al composites, Materials Letters, Vol. 405, pp. 139626, 2026/02/15/, 2026.
[10]        M. Shishehsaz, H. Raissi, S. Moradi, Stress distribution in a five-layer circular sandwich composite plate based on the third and hyperbolic shear deformation theories, Mechanics of Advanced Materials and Structures, Vol. 27, No. 11, pp. 927-940, 2020/06/01, 2020.
[11]        3D free vibration analysis of nanocomposite beams carbon nanotube reinforced FGM using DQ method, Journal of Civil Engineering Researchers, Vol. 7, No. 2, pp. 21-37, %06/%01, 2025. en
[12]        E. Kadum Njim, M. H. Al-Maamori, R. Madan, S. H. Bakhy, M. Al-Waily, P. Khobragade, L. Hadji, Numerical and Analytical Investigation of Free Vibration Behavior of Porous Functionally Graded Sandwich Plates, Mechanics of Advanced Composite Structures, Vol. 12, No. 3, pp. 555-568, 2025.
[13]        S. Brischetto, D. Cesare, A 3D shell model for static and free vibration analysis of multilayered magneto-elastic structures, Thin-Walled Structures, Vol. 206, pp. 112620, 2025/01/01/, 2025.
[14]        K. Djilali Djebbour, N. Mokhtar, A. A. Hassen, R. A. Alghanmi, L. Hadji, B. Riadh, An enhanced quasi-3D HSDT for free vibration analysis of porous FG-CNT beams on a new concept of orthotropic VE-foundations, Mechanics of Advanced Materials and Structures, Vol. 32, No. 5, pp. 893-909, 2025/03/04, 2025.
[15]        A. Garg, P. Sabherwal, N. K. Shukla, L. Li, M. R. Raja, A. Sharma, R. Raman, H. D. Chalak, Free vibration analysis of laminated composite and sandwich shells using wavelet finite element method, Mechanics of Advanced Materials and Structures, Vol. 32, No. 11, pp. 2439-2447, 2025/06/03, 2025.
[16]        K. Arshadi, M. Abasi, H. Afshari, The free vibration analysis of ring-stiffened FG conical sandwich shells with auxetic and non-auxetic honeycomb cores, Noise & Vibration Worldwide, Vol. 56, No. 1-2, pp. 76-97, 2025.
[17]        L. Shan, C. Y. Tan, X. Shen, S. Ramesh, M. S. Zarei, R. Kolahchi, M. H. Hajmohammad, The effects of nano-additives on the mechanical, impact, vibration, and buckling/post-buckling properties of composites: A review, Journal of Materials Research and Technology, Vol. 24, pp. 7570-7598, 2023/05/01/, 2023.
[18]        P. Zhang, Z. Wang, H. Tian, X. Xi, X. Liu, On the Magnetically Tunable Free Damped-Vibration of L-Shaped Composite Spherical Panels Made of GPL-Reinforced Magnetorheological Elastomers: An Element-Based GDQ Approach, Thin-Walled Structures, Vol. 218, pp. 113987, 2026/01/01/, 2026.
[19]        R. A. Neamah, S. K. Al-Raheem, E. K. Njim, Z. Abboud, L. S. Al-Ansari, Experimental and Numerical Investigation of the Natural Frequency for the Intact and Cracked Laminated Composite Beam, Journal of Aerospace Technology and Management, Vol. 16, 2024.
[20]        G. Yu, L. Peng, Y. Cheng, Morphological and mechanical relaxation characteristics of nano-SiC/crosslinked polyethylene insulation composites, International Journal of Electrochemical Science, Vol. 20, No. 11, pp. 101198, 2025/11/01/, 2025.
[21]        K. Liu, L.-l. Xu, R. Wang, J.-L. Zhang, Y. Yuan, H. A. Mang, B. Pichler, Effect of nano-silica on material properties, pore structure, and hydration of polyacrylate/cement composite paste, Construction and Building Materials, Vol. 490, pp. 142503, 2025/09/05/, 2025.
[22]        E. K. Njim, H. R. Hasan, M. J. Jweeg, M. Al-Waily, A. A. Hameed, A. M. Youssef, F. M. Elsayed, Mechanical Properties of Sandwiched Construction with Composite and Hybrid Core Structure, Advances in Polymer Technology, Vol. 2024, No. 1, pp. 3803199, 2024.
[23]        F. Liu, R. Tang, Q. Li, H. Wang, Y. Zou, X. Yuan, Improved thermal performance, frost resistance, and pore structure of cement–based composites by binary modification with mPCMs/nano–SiO2, Energy, Vol. 332, pp. 137166, 2025/09/30/, 2025.
[24]        Y. Liu, L. Zhang, Y. Yin, N. Li, X. Chu, Q. Ma, J. Liu, W. Yang, Y. Lv, S. Tao, Fabrication of composite microspheres doped with nano-aluminum powder using melt spray technology, Chinese Journal of Chemical Engineering, 2025/10/17/, 2025.
[25]        R. Madan, P. Khobragade, E. K. Mussada, M. K. Singh, S. M. Rangappa, E. K. Njim, S. Siengchin, A novel two-step finite element approach to estimate the thermo-mechanical properties of two-phase and three-phase hybrid composites, Composites Communications, Vol. 53, pp. 102213, 2025/01/01/, 2025.
[26]        E. Sobhani, A. R. Masoodi, A comprehensive shell approach for vibration of porous nano-enriched polymer composite coupled spheroidal-cylindrical shells, Composite Structures, Vol. 289, pp. 115464, 2022/06/01/, 2022.
[27]        E. N. Abbas, E. Kadum Njim, M. J. Jweeg, R. Madan, A. A. F. Ogaili, F. Thair Al-Maliky, Experimental and theoretical analysis of mechanical properties of composite materials with diverse reinforcement types, World Journal of Engineering, 2025.
[28]        C. Shi, L. Zhang, J. Zhao, L. Tian, S. Wang, X. Liu, G. Liu, Y. Shao, Characterization and performance of organic-inorganic composite zinc phosphate with nano-sheet structure synthesized by a composite reaction of sol-gel with silane modification, Surfaces and Interfaces, Vol. 47, pp. 104225, 2024/04/01/, 2024.
[29]        P. Jankowski, K. K. Żur, Steady-state vibration of nanocomposite structures with discontinuities, Aerospace Science and Technology, Vol. 168, pp. 110885, 2026/01/01/, 2026.
[30]        B. Saiah, M. Bachene, M. Guemana, Y. Chiker, B. Attaf, On the free vibration behavior of nanocomposite laminated plates contained piece-wise functionally graded graphene-reinforced composite plies, Engineering Structures, Vol. 253, pp. 113784, 2022/02/15/, 2022.
[31]        Y. Abbood Mazin, S. Gill, N. Uwayed Ahmed, A. Mothanna, M. Ali, K. Njim Emad, A. Flayyih Mujtaba, R. Madan, A study of the quasi-static and low-velocity impact behavior of laminated CFRP composites, Advances in Computational Design, Vol. 10, No. 3, pp. 299-320, 07/25, 2025. Ko
[32]        E. Sobhani, A. R. Masoodi, R. Dimitri, F. Tornabene, Free vibration of porous graphene oxide powder nano-composites assembled paraboloidal-cylindrical shells, Composite Structures, Vol. 304, pp. 116431, 2023/01/15/, 2023.
[33]        M. Chwał, Free Vibrations and Flutter Analysis of Composite Plates Reinforced with Carbon Nanotubes, Applied Sciences, 15, 2025].
[34]        V. N. V. Hoang, P. Shi, L. Toledo, H. Vu, Free vibration analysis of nanocomposite plate in contact with fluid using a novel quasi-3D shear deformation theory and artificial neural network, Mechanics Based Design of Structures and Machines, Vol. 53, No. 1, pp. 641-685, 2025/01/02, 2025.
[35]        H. Yu, J. Xie, L. Yao, H. Yang, Fabrication of Microcrystalline cellulose and nano-titanium dioxide composites with broad-spectrum UV protection, Chemical Engineering Journal, Vol. 505, pp. 159134, 2025/02/01/, 2025.
[36]        C. Chu, L. Shan, M. S. H. Al-Furjan, M. S. Zarei, M. H. Hajmohammad, R. Kolahchi, Experimental study for the effect of hole notched in fracture mechanics of GLARE and GFRP composites subjected to quasi-static loading, Theoretical and Applied Fracture Mechanics, Vol. 122, pp. 103624, 2022/12/01/, 2022.
[37]        F. Rahmani, R. Barbaz-Isfahani, S. Saber-Samandari, M. Salehi, Experimental and analytical investigation on forced and free vibration of sandwich structures with reinforced composite faces in an acidic environment, Heliyon, Vol. 9, No. 10, pp. e20864, 2023/10/01/, 2023.
[38]        S. Nosrati, O. Rahmani, S. A. Hosseini, Free vibration analysis of butterfly-shaped auxetic doubly curved nano-shells with nonlocal strain gradient theory, Thin-Walled Structures, Vol. 214, pp. 113380, 2025/09/01/, 2025.
[39]        A. Noruzi, M. Mohammadimehr, F. Bargozini, Experimental and theoretical results for bending and buckling of a five-layer sandwich plate reinforced by carbon nanotubes/carbon nanorods/graphene platelets/shape memory alloy based on RFSDT, Archive of Applied Mechanics, Vol. 94, No. 8, pp. 2151-2173, 2024/08/01, 2024.
[40]        M. Al-Waily, H. Raad, E. K. Njim, Free Vibration Analysis of Sandwich Plate-Reinforced Foam Core Adopting Micro Aluminum Powder, Physics and Chemistry of Solid State, Vol. 23, No. 4, pp. 659-668, 11/30, 2022.
[41]        A. Kumar, R. G. Narayanan, N. Muthu, Manufacture of honeycomb core sandwich structures by hybrid approaches: Analysis using lab scale experiments and numerical simulation, Thin-Walled Structures, Vol. 198, pp. 111739, 2024/05/01/, 2024.
[42]        A. K. Singh, R. Jaiswal, Analysis on transverse vibration of piezo-electro-magneto-thermoelastic composite nanobeams under distinct Green–Naghdi III phase lag models, European Journal of Mechanics - A/Solids, Vol. 113, pp. 105702, 2025/09/01/, 2025.
Volume 57, Issue 2
April 2026
Pages 257-274
  • Receive Date: 22 December 2025
  • Revise Date: 24 December 2025
  • Accept Date: 24 December 2025