[1] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, pp. 299-309, 1967.
[2] A. E. Green, K. Lindsay, Thermoelasticity, Journal of elasticity, Vol. 2, No. 1, pp. 1-7, 1972.
[3] A. E. Abouelregal, S. S. Askar, M. Marin, B. Mohamed, The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod, Scientific Reports, Vol. 13, No. 1, pp. 9052, 2023/06/03, 2023.
[4] S. Sharma, S. Devi, R. Kumar, M. Marin, Examining basic theorems and plane waves in the context of thermoelastic diffusion using a multi-phase-lag model with temperature dependence, Mechanics of Advanced Materials and Structures, Vol. 32, pp. 1-18, 07/15, 2024.
[5] K. Sharma, M. Marin, Effect Of Distinct Conductive And Thermodynamic Temperatures On The Reflection Of Plane Waves In Micropolar Elastic Half-Space, Scientific Bulletin. Series A: Applied Mathematics and Physics. Politehnica University of Bucharest, Vol. 75, 01/01, 2013.
[6] A. Zeeshan, M. I. Khan, R. Ellahi, M. Marin, Computational Intelligence Approach for Optimising MHD Casson Ternary Hybrid Nanofluid over the Shrinking Sheet with the Effects of Radiation, Applied Sciences, Vol. 13, No. 17, pp. 9510, 2023.
[7] S. Sharma, M. Marin, H. Altenbach, Elastodynamic interactions in thermoelastic diffusion including non-local and phase lags, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 105, No. 1, pp. e202401059, 2025.
[8] M. Marin, S. Sharma, R. Kumar, S. Vlase, Fundamental solution and Green's function in orthotropic photothermoelastic media with temperature-dependent properties under the Moore–Gibson–Thompson model, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 105, No. 6, pp. e70124, 2025.
[9] A. Hobiny, I. Abbas, M. Marin, The Influences of the Hyperbolic Two-Temperatures Theory on Waves Propagation in a Semiconductor Material Containing Spherical Cavity, Mathematics, Vol. 10, No. 1, pp. 121, 2022.
[10] R. Kumar, S. Ghangas, A. Vashishth, Wave behavior at the interface of inviscid fluid and NL bio-thermoelastic diffusive media, Vol. 6, pp. 11-27, 12/16, 2022.
[11] R. Kumar, S. Ghangas, A. Vashishth, Waves at the imperfect boundary of elastic and bio-thermoelastic diffusive media, Indian Journal of Physics, Vol. 96, pp. 1-14, 04/01, 2021.
[12] A. K. Yadav, Effect of impedance on the reflection of plane waves in a rotating magneto-thermoelastic solid half-space with diffusion, AIP Advances, Vol. 10, No. 7, 2020.
[13] M. Marin, O. Florea, On Temporal Behaviour of Solutions in Thermoelasticity of Porous Micropolar Bodies, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, Vol. 22, 01/10, 2014.
[14] K. Sachin, K. Rajneesh, B. Indu, S. Gulshan, Wave propagation at free surface in thermoelastic medium under modified Green-Lindsay model with non-local and two temperature, Structural engineering and mechanics : An international journal, Vol. 90, No. 2, pp. 209-218, 2024. English
[15] R. Kumar, S. Kaushal, A. Kochar, Analysis of Wave Motion in Micropolar Thermoelastic Medium Based on Moore–Gibson–Thompson Heat Equation Under Non-local and Hyperbolic Two-Temperature, International Journal of Applied and Computational Mathematics, Vol. 10, 03/01, 2024.
[16] R. Kumar, D. Batra, S. Sharma, Thermoelastic medium with swelling porous structure and impedance boundary under dual-phase lag, Engineering Solid Mechanics, Vol. 13, pp. 81-92, 01/01, 2025.
[17] X. Li, C. Li, Z. Xue, X. Tian, Analytical study of transient thermo-mechanical responses of dual-layer skin tissue with variable thermal material properties, International Journal of Thermal Sciences, Vol. 124, pp. 459-466, 2018/02/01/, 2018.