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Abstract 

This paper presents a theoretical study on the reflection of plane waves in a 

homogeneous, isotropic bio-thermoelastic diffusion half-space incorporating 

hyperbolic two-temperature (HTT) effects within the framework of Moore-

Gibson-Thompson (MGT) heat conduction. The analysis is performed in two 

dimensions using dimensionless variables and potential function techniques 

to simplify the governing equations. Employing normal mode analysis, the 

study identifies the existence of four distinct longitudinal wave types and a 

single shear vertical (SV) wave, each propagating with different phase 

velocities. Analytical expressions for the amplitude ratios corresponding to 

longitudinal (P), thermal (T), chemical potential (Po), and shear vertical 

(SV) waves are derived and explored as functions of the incident angle, wave 

frequency, and relevant material parameters. The effects of the HTT 

parameter, blood perfusion rate, and various thermoelastic theories on the 

reflection coefficients are investigated through graphical illustrations. 

Several special cases are also discussed. The findings are relevant to 

applications in geomechanics, ocean engineering, and biomedical diagnostics, 

offering valuable insights into wave behavior in bio-thermoelastic diffusion 

media under the influence of HTT and MGT models. This work contributes 

a multiscale framework for studying wave propagation in such complex 

environments. 

Keywords: Bio-thermoelastcity; Diffusion; HTT, MGT heat equation, Impedance boundaries, 

Amplitude ratios. 

1. Introduction 

Modelling heat transfer in biological tissues poses significant challenges due to the intricate interaction of 

thermal and physiological phenomena. These include thermal conduction through various tissue layers, convective 

effects due to blood circulation, metabolic heat generation, the vascular network's complexity, and the dependency 
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of thermal and mechanical properties on the tissue's physiological state. Developing accurate mathematical models 

is crucial for capturing these dynamics, especially in soft tissues, as such models play a vital role in understanding 

injury mechanisms, enhancing medical diagnostics, and optimizing therapeutic interventions. Additionally, they 

offer insights into how localized variations impact the overall response of both healthy and pathological tissues. 

The foundation of generalized thermoelasticity was laid by Lord and Shulman [1], who introduced a theory 

incorporating thermal relaxation time by modifying Fourier’s law through the Maxwell-Cattaneo approach. This was 

followed by the model of Green and Lindsay [2], which introduced two distinct relaxation times associated with 

entropy and stress. Abouelregal and Marin [3] applied the State-Space Method together with the modified couple 

stress theory to examine the influence of TDP on nanobeam behavior. Sharma et al. [4] investigated fundamental 

theorems and plane wave propagation in thermoelastic diffusion with a multiphase-lag model that includes 

temperature dependence. Numerous researchers have employed these advanced heat conduction and diffusion 

theories to investigate various physical phenomena. For instance, Sharma and Marin [5] studied the impact of 

different temperature definitions in micropolar thermoelastic systems. Marin et al. [6] employed Lagrange-type 

identities to establish the uniqueness and instability of solutions within the MGT thermoelastic theory. More 

recently, Sharma, Marin, and Altenbach [7] considered non-local and phase-lag effects in thermoelastic diffusion, 

while Marin et al. [8] analyzed fundamental solutions and Green’s functions in photothermoelastic media, 
incorporating temperature-dependent material properties under the MGT model. Hobiny et al. [9] explored the role 

of hyperbolic two-temperature (HTT) effects on wave propagation in semiconductor materials featuring spherical 

cavities. The works of Kumar, Ghangas, and Vashishth [10, 11] focused on wave dynamics at the boundary between 

elastic and bio-thermoelastic media. Impedance boundary conditions have gained considerable attention in 

theoretical and applied physics, especially in areas such as acoustics and electromagnetism. These boundaries act as 

transitional zones between perfectly free and rigid interfaces, significantly affecting how waves are transmitted or 

reflected. Acoustic impedance, in particular, quantifies a material's resistance to wave motion. Numerous studies [12-

17] have explored wave reflection and transmission under various impedance conditions. Kumar et al. [17] studied 

wave propagation in porous thermoelastic media with dual-phase behavior.  

This study aims to analyze the reflection of plane waves in a bio-thermoelastic diffusion half-space under the 

MGT heat conduction model, considering an impedance boundary. Amplitude ratios for various wave types are 

derived and analyzed based on wave frequency and material properties. The role of blood perfusion is also 

examined, and several limiting cases are presented to highlight the model’s versatility. 

 

2. Governing equations 

The mathematical formulation of wave propagation in a bio-thermoelastic diffusion medium is based on the 

constitutive and field equations that incorporate the effects of thermal and mass diffusion, along with the Moore-

Gibson-Thompson (MGT) heat conduction model. In this analysis, the governing equations are simplified by 

neglecting body forces, internal heat sources, and mass diffusion sources, in accordance with the formulations 

provided in previous work (see Kumar et al. [11]): 

constitutive relation 

                        (1) 

equation of motion 

             (2) 

heat conduction equation 

,           (3) 

equation of mass diffusion 

                         (4) 

                 (5) 

where  

  , n = ,  l = . 
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2.1. Definitions and Parameters 

Let the temperature increment be denoted by T=θ− , where θ is the actual temperature within the biological 

tissue and TO is a constant reference temperature. This increment is assumed to be small, such that the relative 

change ∥ (θ -  ) / , ∥. 

The relevant physical parameters are listed below: 

• ρ: Mass density of the biological tissue 

• Ce: Specific heat capacity at constant strain 

• ωb: Rate of blood perfusion 

• ρb: Blood density 

• cb: Specific heat capacity of blood 

• τ0, τ1: Phase lag parameters corresponding to heat flux and temperature gradient, respectively 

• P: Chemical potential per unit mass 

• K: Thermal conductivity 

• K*: Modified or effective thermal conductivity 

• D: Thermoelastic diffusion coefficient 

• D*: Coefficient representing diffusion rate 

• a: Thermoelastic diffusion coupling coefficient 

• b: Parameter indicating intensity of diffusion-related effects 

• β*: Heat-thermal transfer (HTT) parameter 

• tij: Components of the stress tensor 

• ui: Components of the displacement vector 

The coupling effects due to thermal and diffusion processes are given by: 

• β1=(3λ+2μ) αt, where αt is the thermal expansion coefficient 

• β2=(3λ+2μ) αc, where αc is the diffusion expansion coefficient 

Here, λ and μ denote the Lame parameters. Partial derivatives with respect to spatial coordinates are indicated by 

a subscript comma followed by the coordinate index, while time derivatives are represented using an overdot. 

To examine the influence of temperature dependent material properties we consider 

,  , , , , ,  

  ,  , ,  

where  , , , , ,  and  considered constants and  is an empirical 

material constant.  for temperature independent material properties. 
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Fig.1. bio-thermoelastic solid half-space 

 

3. Solution procedure 

The analysis considers a homogeneous and isotropic bio-thermoelastic diffusion half-space governed by the Moore-

Gibson-Thompson (MGT) heat conduction model, incorporating hyperbolic two-temperature (HTT) effects. The 

medium is defined in a Cartesian coordinate system (x₁, x₂, x₃), where the boundary surface is situated at x₃ = 0, and 

the half-space extends indefinitely in the positive x₃  direction. 

To simplify the problem, wave motion is restricted to the x₁–x₃  plane, assuming that the wavefronts are aligned 

parallel to the x₂-axis. As a result, all field variables such as the displacement components, temperature increment, 

and chemical potential are assumed to be functions of the spatial coordinates x₁, x₃, and time t only. This assumption 

reduces the problem to a two-dimensional framework, facilitating analytical treatment. 

             (6)     

 

By substituting (6) in equations (1)-(5), we obtain the modified system 

,          (7) 

,                                (8) 

(9) 



88 Kunal Sharma et al. 

               (10) 

,                            (11) 

,                                   (12) 

                                         (13) 

where 

e= , . 

Dimensionless quantities are taken as 

, ,     ( ,   

, ) = ( ), = ,   = ,         ,  

where:  ,                            (14) 

Utilizing equations (14) into equations (7) - (13), the following expressions are obtained 

,          (15) 

,          (16) 

,      (17) 

,       (18) 

,                         (19) 

           (20) 

,             (21) 

where  (i=11-27) are given in Appendix-I. 

Using the Helmholtz decomposition, the displacement components  and  can be expressed as follows. 

.                       (22) 

By substituting equation (22) into equations (15)-(18) and (20)–(21), we obtain: 

(                       (23) 

(                      (24) 

  (25) 

   (26) 

( ) ,                           (27) 

,                              (28) 
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4. Wave Propagation Analysis 

We examine the propagation of plane waves in a bio-thermoelastic solid half-space that incorporates the hyperbolic 

two-temperature (HTT) model and is governed by the Moore–Gibson–Thompson (MGT) heat conduction equation. 

This half-space is bounded at a surface, and when a wave is incident upon it, several reflected wave components are 

generated. These include a longitudinal wave (P-wave), a thermal wave (T-wave), a chemical potential wave (Po-

wave), and a vertically polarized shear wave (SV-wave), as depicted schematically in Figure 1. 

Assuming harmonic plane wave propagation, where the wave normal lies in the  plane and forms an angle 

0   with the positive -axis (which is perpendicular to the boundary surface), the solution to equations (23)–(26) is 

assumed to take the following form: 

        (29) 

Here,  are arbitrary constants representing the amplitudes of the respective wave components. 

The parameter k denotes the wave number, and ϑ is the phase velocity of the propagating wave. 

By substituting equation (29) into equations (23)–(26), and utilizing equation (19), we arrive at the following 

algebraic system 

,            (30) 

(                                                 (31) 

The roots  (i=1, 2, 3) of the characteristic equation 

=0, 

  correspond to the phase velocities of the longitudinal (P-wave), thermal (T-wave), and chemical 

potential (Po-wave), respectively. The fourth root =       represents the phase velocity of the shear 

vertical (SV-wave). The coefficients  (i=11-14) are defined explicitly in Appendix II. 

5. Impedance Boundary Conditions 

Impedance boundary conditions represent a linear relationship between unknown field variables and their spatial 

derivatives on a boundary surface. These conditions are widely utilized in various domains of physics, including 

thermoelasticity, acoustics, and electromagnetics. In the context of seismic wave propagation, it is typically assumed 

that interfaces exhibit ideally welded contact, implying continuity in both displacement and stress components. 
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However, for thin interfacial layers or imperfect bonding, this assumption may not hold, and a more appropriate 

representation involves impedance-type boundary conditions. 

The impedance boundary conditions at the surface  can be expressed as: 

(i) , 

(iii)    (iv) ,                  (32) 

Where   are impedance parameters with dimension N sec .  and  are impedance parameters 

with dimension N  and N respectively. Taking   yields stress free 

boundary conditions. 

6.  Reflection Phenomenon of Waves 

We consider an incident P-wave or T-wave or Po-wave or SV-wave, striking the boundary surface at an angle 

0   with respect to the normal ( -axis), as shown in Fig. 1. When this incident wave interacts with the boundary, it 

generates four reflected waves corresponding to the same possible modes (P, T, Po, SV). These reflected waves 

propagate into the medium at angles  , ,  and    respectively, measured from the positive -axis. Hence, 

the total wave field in the medium is expressed as the superposition of the incident wave and all reflected 

counterparts, each characterized by its own amplitude, direction of propagation, and polarization and is given by 

        (33) 

       (34) 

       (35) 

,        (36) 

In these expressions: 

• (j=1, 2, 3) represent the amplitudes of the incident longitudinal (P), thermal (T), and chemical potential 

(  ) waves, respectively. 

•  denotes the amplitude of the incident shear vertical (SV) wave. 

• (j=1, 2, 3) correspond to the amplitudes of the reflected P, T, and Po  waves. 

• G4 is the amplitude of the reflected SV wave. 

•  and   (j=1,2,3) are coupling constants, whose explicit forms are provided in Appendix III. 

•  denote the wave numbers associated with the respective wave types, and ω is the angular frequency of 

wave propagation. 

These components collectively characterize the total field resulting from the superposition of incident and reflected 

waves within the bio-thermoelastic solid, modelled using the hyperbolic two-temperature (HTT) framework in 

conjunction with the Moore–Gibson–Thompson (MGT) heat conduction equation. 

Snell`s Law is given by 
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,     

where 

at  (j= 1, 2, 3, 4), 

                                 (37) 

 

By substituting the expressions for the potential functions from equations (33) - (36), along with equation (19), 

into the boundary conditions given in equation (32), and employing the relations from equations (27) and (28), we 
derive the following system of equations: 

   (i, j=1, 2, 3, 4).                     (38) 

where  are given in Appendix-IV 

7. Particular Cases 

i. In absence of blood perfusion 

By setting  in equation (38), the model simplifies to the case of thermoelastic diffusion with TDP in the 

absence of blood perfusion. This reduction yields the governing equations for a bio-thermoelastic medium 

incorporating hyperbolic two-temperature (HTT) and TDP effects within the framework of the Moore–Gibson–

Thompson (MGT) heat conduction model. 

ii. Absence of temperature dependent parameters  

Taking =0 in equation (38), yield the corresponding results for bio- thermoelasic diffusion with HTT and 

MGT model.  

iii. Absence of diffusion. 

 If  in eq. (30), gives. 

 ,      (39) 

where  

 ,  

 

In this scenario, the boundary conditions specified in equation (32) take the following form:  

(i) , (iii) (40) 

By applying the same procedure, the system of equations presented in equation (38) simplifies to the following 

form: 

,         (i, j=1, 2, 3),            (41) 

where are given in Appendix-V. 

In the case where diffusion effects are neglected, the relevant terms associated with chemical potential and mass 

transport are omitted. The resulting model then describes wave propagation in a thermoelastic medium governed 

temperature dependent properties under the HTT and MGT formulations 
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iv. Absence of thermal effect. 

 Taking   in eq. (30), we obtain 

 ,          (42) 

where:  

,  

The boundary conditions outlined in equation (32) can be explicitly written as follows: 

 (i) , (iii)  . 

     (43) 

Following as above, the system of equation (38) reduces of the form 

,        (i, j=1, 2, 3),                                   (44) 

where are given in Appendix-VI 

 

v. Absence of Impedance Parameters (Z1=Z2=Z3=Z4=0) 

In this case, the boundary conditions from equation (32) simplify to: 

 (i) (iii)   (iv)  .               (45) 

Therefore, we obtain 

,         (i, j=1, 2, 3, 4),         (46) 

where are given in Appendix-VII 

The deduced results for all the above cases are in agreement, if we solve the problem directly. 

8.   Numerical result and discussion 

Following the work of Li et al. [19], the values of the physical constants used in the numerical computations are as 

follows: 

,    ,   , 

,     ,  , 

, , , 

, , ,   ,  

=1. 

  ,  ,  

,  

 

In Figures 2(a–d), 3(a–d) and 4(a–d): ( =1.87, =.25, Z1=5, Z2=10, Z3=15, Z4=20) 

• The solid line represents bio-thermoelastic diffusion using the temperature dependent property (TDP)  model 

with Moore–Gibson–Thompson (MGT) heat conduction, where =.3. 

• The dotted line corresponds to bio-thermoelastic diffusion with the temperature dependent property (TDP)) 

model under MGT heat conduction, with =.5. 

• The dashed line depicts bio-thermoelastic diffusion with the temperature dependent property (TDP) and MGT 

model when =0. 

In Figures 5(a–d), 6(a–d) and 7(a–d): ( =1.87, =.3, Z1=10, Z2=20, Z3=30, Z4=40) 
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• The solid line represents bio-thermoelastic diffusion using the hyperbolic two-temperature (HTT) model 

with Moore–Gibson–Thompson (MGT) heat conduction, where =.5. 

• The dotted line corresponds to bio-thermoelastic diffusion with the two-temperature (2TT) model under 

MGT heat conduction, with =.25. 

• The dashed line depicts bio-thermoelastic diffusion with the HTT and MGT model when =0. 

In Figures 8(a–d), 9(a–d), and 10(a–d): ( , Z1=10, Z2=20, Z3=30, Z4=40) 

• The dotted line corresponds to bio-thermoelastic diffusion with HTT and MGT considering blood perfusion 

parameter =2.5. 

• The solid line represents bio-thermoelastic diffusion with HTT and MGT for =1.5. 

• The dashed line shows the model results when blood perfusion is neglected =0. 

In Figures 11(a–d), 12(a–d), and 13(a–d) :( =.5,  =1.87, =.3 ) 

• The solid line represents bio-thermoelastic diffusion with HTT under the Moore–Gibson–Thompson 

(MGT) model including impedance parameters Z1=10,Z2=20,Z3=30,Z4=40. 

• The dashed line illustrates the same model without impedance effects (Z1=Z2=Z3=Z4=0). 

• The dotted line shows results based on the Lord–Shulman (LS) thermoelastic theory with HTT, including 

the same impedance parameters Z1=10,Z2=20,Z3=30,Z4=40 

8.1. Effect of   (TDP parameter) 
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Fig(2a-2d):  Effect of  on Amplitude Ratios for Incident P-Wave. 

Figure 2a demonstrates the variation of   vs . For all three cases of the temperature dependent parameter 

 , 0 ),   initially decreases in the interval 0∘≤θo≤35∘. Beyond this range,   exhibits a gradual 

increase, with only slight differences in magnitude across the three models. This behavior suggests that the 

reflection characteristics of the longitudinal wave are moderately sensitive to the value of ,particularly at larger 

incident angles. 

Figure 2b illustrates the response of   vs . In this case,  decreases monotonically within the range 

0 . After this point,   begins to increase slightly as the angle of incidence grows. The trend is 

consistent for all values of , but the rate of variation differs subtly, indicating that thermal coupling influences the 

reflected thermal wave more prominently at higher angles of incidence. 
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Figure 2(c) shows the variation of  vs . . Unlike the previous cases, the amplitude ratio decreases 

monotonically across the entire angular range for all three models. The magnitude of   differs significantly 

depending on the choice of , highlighting a distinct sensitivity of the chemical potential wave reflection to the 

temperature dependent parameter.  

Figure 2(d) illustrates the variation of  vs .   increases within the angular interval 0 , 

after which it decreases until θo≈63∘. Beyond this point,    again exhibits an increasing trend. Among the three 

cases, the model with  a attains the highest peak amplitude compared to  and 0 
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Fig(3a-3d):  Effect of on Amplitude Ratios for Incident T-Wave. 

Figure 3a shows the behavior of   vs . For all three values of the TDP parameter (  and 0), the 

amplitude ratio decreases within the interval0  . Beyond this range,  begins to rise monotonically, 

eventually attaining a nearly uniform peak at larger angles.  

Figures 3b,c display the variation of    &  vs .  In both cases, the amplitude ratios increase 

monotonically as the angle of incidence advances. The growth is more pronounced at higher angles, and distinct 

magnitudes are observed among the three models, with  generally producing the strongest response.  

Figure 3(d) depicts the behavior of  vs  . The amplitude ratio   increases steadily within the range 

0 . However, beyond ≈60∘, the trend reverses, and   begins to decrease. This non-monotonic 

pattern highlights a critical angle beyond which the reflection of the SV-wave weaken. 
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Fig(4a-4d):  Effect of  on Amplitude Ratios for Incident SV-wave. 
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Figure 4a shows the variation of   vs . For all values  and 0,the amplitude   initially 

increases within the interval . This is followed by a decreasing trend up to  , after which 

   again advances in the range 45 . Beyond  , the amplitude ratio decreases. The 

maximum reflection is observed for  , while the lowest magnitude occurs at θo=0∘ This indicates that 

longitudinal wave reflection under SV-wave incidence is highly sensitive to both angle and  

The amplitude ratios  ,  &  for advances and 45  beyond its starts 

decreasing 12  and  and attain higher peak for  and lower magnitude for all cases at 

0. 

Figure 4b shows the variation of   vs .   exhibits a similar trend to . The values of   

increase in the range , decrease monotonically within , and rise again up to ≈65. 

Beyond this angle, a decreasing trend is observed. Among the models,  shows the highest amplitude ratio, 

while the cases with .3 and .5 yield comparatively smaller magnitudes.  

Figure 4b illustrates the variation of   vs . The response   is nearly identical to that of   and 

, with growth in the intervals and 45 and decline in the intermediate and higher 

angular ranges. The magnitude of  attains its highest peak for 0, while the values for .3 and .5 

remain comparatively lower. 

Figure 4d depicts the changes of   vs .Unlike the earlier cases,   decreases slightly in the range 

0  , then increases within 15  , and again for . At higher angles,   approaches 

a nearly uniform value, indicating stabilization. The differences in magnitudes of  for   and 0 is 

significant  although  small.  

8.2 Effect of  (HTT,2TT,1T) 
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Fig(5a-5d):  Effect of  on Amplitude Ratios for Incident P-Wave. 

Figure 5a demonstrate the variation of   vs . Amplitude ratios  increases with distinct magnitude as 

angle of incidence increases for all models.  attains higher magnitude for HTT in comparison to 2TT & 1T 

models.  

Figure 5b shows behavior of   vs . The values of  remains higher for HTT in contrast to 2TT & 1T. 

The value of  advances with low magnitudes for 2TT & 1T for 0  and as >40,  advances 

with higher magnitude. 

 Figure 5c display the variation of   vs . The value of   for 2TT & 1T advances with lower 

magnitude for all values of .   advances as  advances for HTT attaing the higher values in contrast to 2TT 

& 1T models. 

 Figure 5d shows the variation of   vs .  increases continuously as  increases for HTT with 

significant difference of magnitude in comparision to 2TT & 1T.  attains lower value in case of 1T although 

 increases as  increases for both 2TT & 1T cases. 
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Fig(6a-6d):  Effect of  on Amplitude Ratios for Incident T-Wave. 

Figure 6a display variation of  vs . The plot shows increasing trends for all the cases, attaing peak values 

and then decreases as  increases.  attains lower values for HTT as 0 . As  the values 

of  advances with similar variations.  

Figure 6b shows variation of   vs .  increases with small variation attains peak values and decreases 

as  advances for all the models. Magnitude of   remains higher for HTT in compare to other models 2TT & 

1T models as  

 Figure 6c display variation of |  vs . | for HTT increases monotonically, attaing higher magnitude 

and then decreases as angle increases. The curves for |  in 2TT & 1T models attain lower peak in contrast to 

HTT models. As , the value of |  for 2TT & 1T curves closed to each other.  

Fig.6d display variation of   vs .  attains higher magnitude for HTT in contrast to other models. 

 remains higher for 2TT in comparison to 1T as 0  and then advances with small difference of 

magnitude as  increases further. Under T-wave incidence, thermal effects (HTT and 2TT) introduce slight 

variations mainly at low frequencies, with HTT (  = 5) showing marginally elevated and oscillatory amplitudes. 

As frequency increases, differences between HTT, 2TT, and 1T models diminish, indicating weaker thermal 

sensitivity for SV wave compared to P- and T-wave cases. 
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Fig(7a-7d): Effect of  on Amplitude Ratios for Incident SV-Wave 

Figure 7a shows variation of |  vs . For lower values of , |  attains maximum for all the models. |  

goes on decreases attaining minima and again increases with slight variation for HTT, 2TT, 1T. The magnitude of 

|  remains lower for HTT in comparison to others models for 0    

Fig.7b depicts variation of |  vs . The value of |  for 2TT lies between HTT & 1T for 4  As 

,  |  attains higher magnitude for 2TT in comparison to HTT & IT.  

Fig.7c demonstrate variation of |  vs . Magnitude of |  remains higher for HTT in comparison to 2TT & 

1T. The behavior and variation of |  for all models is similar with distinct magnitude as   

Fig.7d display variation of |  vs . |  decreases monotonically and then increases as  advances for all 
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the models. |  attains higher magnitude for HTT in comparison to other models. 

8.2. Effect of blood perfusion parameter  
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Fig.8 (a- d): Analyzing the Role of   in Modulating Amplitude Ratios (P-Wave) 

Figure 8a display the changes of  vs . For all three cases,  increases gradually with angle. The rate of 

increase is most significant for , followed by , while the case    shows a more 

beguiling change. This indicates that higher blood perfusion intensity enhances the angular sensitivity of . 

 Figure 8b shows  variations of  vs . For   ,   the amplitude   increases after a moderate 

initial slope, reaching its peak at higher angles. For  ,   initially rises slightly and then exhibits a 

downward trend at larger angles.  

Figure 8c presents the variations of | with . All three cases show a steady and monotonic increase in the 

magnitude of , with the strongest rise occurring at  . The increase is less pronounced for 

, while in case of  remains relatively flat.   

Figure 8d depicts the behaviour of  with .. For , there is a rapid and continuous rise in |  across 

the full angular range, implying strong reflection behavior at high blood perfusion rate. A similar but gentler trend is 

seen for  whereast, the response for  shows only a mild increase before leveling off. 

Figure 9a illustrates the variation of    with respect to .  For  ,     decreases slightly as   

increases, while for 1.5, it exhibits a slight increasing trend. In the absence of blood perfusion  0,   

increases in the range 0≤  ≤13, and then begins to decrease for ≥13. 

 Figure 9b presents the behaviour of   vs .  The amplitude  for   decreases monotonically 

with increasing . In contrast,  for   and   increases with varying magnitudes. 

 Fig. 9c display the changes of |  vs . . For the higher blood perfusion rate  , | increases and 

eventually attains a uniform value. For  and  ,  also increases, but with different 

magnitudes. 

 Figure 9d depicts the changes in  vs . For   and  ,  increases with distinct 
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magnitudes. For    increases up to the midpoint of the region beyond which it shows a slight 

downward trend. 
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Fig.9 (a, b, c, d): Analyzing the Role of   in Modulating Amplitude Ratios (T-Wave) 
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Fig.10(a, b, c, d):  Analyzing the Role of   in Modulating Amplitude Ratios (SV-Wave) 

 

Fig.10a illustrates the variation of    vs . For  ,   increases within the range 

0 and decreases at 10  beyond it starts increasing slightly.  for =1.5 and 0 

decreases and attains its lower magnitude in the middle of the region beyond its starts increasing slightly.  

Fig.10b display the changes of  vs .  for =2.5 increases at 0  and 45  

and rest is decreasing.  

Fig.10c depicts the trend of   vs . The amplitude  for =2.5 increases in the range 0  

and 45  beyond its starts decreasing in 10  and 65 .  for =1.5 and 0 

decreases slightly as the value of  increases.  

Fig.10d presents the variation of  vs . The amplitude | for =2.5 decreases at 0 , 

followed by gradual increase as   increases. In case of =1.5 and 0,   decreases within the interval  

0  , beyond its starts increasing. 

Fig.11a demonstrates the variation of  vs . The demeanour and alteration of  for MGI and LSI is 

stable with slight difference in magnitude.  for MGWI increases monotonically in the range 0   

beyond its starts decreasing  

Fig.11b display the changes of  vs . The amplitude  for MGI and LSI exhibit a slight downward 

trend differing mainly in magnitude.  for MGWI shows a gradual increase for 0   after which it 

begins to decline.  

 

Fig.11c presents the changes in  vs . The amplitude  for MGI and LSI decreases at the range 
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0    beyond its starts increasing and attains its uniform magnitude.  for MGWI increases at the 

range 0  beyond it starts decreases monotonically   

Fig.11d illustrates the response of  vs . The amplitude  for MGI and LSI reveals a steadily 

increasing trend which eventually levels off to a nearly constant value.   for MGWI increases slightly at the 

range 0   and rest is decreasing. 

 
8.3.  Comparison of thermoelastic theories and impendence impact. 
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Fig.11 (a, b, c, d):  Incident P-Wave Interaction with Impedance Boundaries in Varied Thermoelastic Frameworks. 
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Fig.12 (a, b, c, d): Incident T-Wave Interaction with Impedance Boundaries in Varied Thermoelastic Frameworks. 

 

Fig.12a display the changes of  vs . The behaviour and variation of   for MGI and LSI is stable with 

slight difference in magnitude.  for MGWI is monotonically decreases as the value of   increases. 

 

 Fig.12b display the changes of  vs .  for MGI remains stable whereas for LSI first decreases 

slightly and then increases gradually.  for MGWI decreases within the range 0  beyond it starts 

increases as  increases. 

 

Fig.12c display the changes of  vs .  for MGI and MGWI decrease gradually with increasing angle. 

 for LSI increases monotonically and attaining  its uniform magnitude. 

 

Fig.12d display the changes of  vs .  for MGI increases slightly.  for for MGWI increases at 
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low angle, reaches maximum and the decreases at highest angle and in this case   has a parabolic -shaped curve. 

  has a moderate increasing trend for LSI and is more stable in comparison to other cases. 
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Fig.13 (a, b, c, d): Incident SV-Wave Interaction with Impedance Boundaries in Varied Thermoelastic Frameworks 

 

Fig.13a display the changes of , vs .    decrease monotonically as angle of incidence increases for 

MGI and LSI models, although the curves for both cases are smooth and closely parallel, declining toward a low but 

non zero value at the largest angle.  for MGWI model display a strong oscillator pattern throughout the angular 

range.Fig.13b depicts  the variation of  vs  .  shows a steady, monotonic decrease  with increasing  

for MGI and  LSI although  decline is smooth  to a consistent low magnitude. , for MGWI continues to 

oscillate attaining minima at angle. Fig.13c demonstrates changes of vs .  consistently decreases 

monotonically, mirroring each other closely for both the models MGI and LSI.  for MGWI depicts a 

pronounced oscillatory trend, markedly different from the smooth decay of the other models .Fig.13d shows the 

variation of  vs . The amplitude  decreases within the interval 0  , followed by a gentle 

increase toward for MGI and LSI   models although with distinct pattern.  for MGWI remains oscillatory 

across all angles attaining maximum value at highest angle. 

 

9.  Conclusion 

This study investigates the reflection behavior of plane waves in a bio-thermoelastic diffusion half-space 

incorporating hyperbolic two-temperature (HTT) effects, modelled using the Moore–Gibson–Thompson (MGT) 

heat conduction theory. The governing equations were established in two dimensions and subsequently simplified 

through the introduction of dimensionless variables and potential functions. Amplitude ratios for various reflected 

wave modes were derived subject to impedance boundary conditions. Numerical simulations were performed, and 

the results were graphically analyzed to examine the influences of HTT, blood perfusion rates, and different 

thermoelastic theories on the wave reflection characteristics. The main conclusions drawn from this analysis are 

summarized as follows: 

9.1.  Effect of  

From the obtained numerical results, it is observed that the temperature-dependent parameter   plays a significant 

role in governing the reflection characteristics of different wave modes. The reflection amplitudes  

generally decrease at smaller incident angles and increase beyond certain angular thresholds, with noticeable 
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differences in magnitude across the three models. The case =0.5 often produces higher peaks compared to 

=0.3 and =0, demonstrating the strengthening effect of temperature dependent parameter. 

For , the response is more complex, showing non-monotonic variation with angle. While =0.5 tends to 

enhance peak values, the overall sensitivity of ,  to  effects is smaller than that of the other modes. 

Overall, the results indicate that increasing  amplifies reflection in most cases, particularly for longitudinal, 

thermal, and chemical potential waves, while SV-wave reflection is only moderately affected.  

9.2. Effect of  

The amplitude ratios for reflected waves under P-wave incidence are significantly influenced by the thermal 

models employed. The HTT (  = .5) model exhibits the highest amplitude reflecting the strong influence of 

hyperbolic thermal effects.  2TT (  = .25) model yields moderate amplitude ratios, capturing the dual temperature 

impact while damping wave reflection to some extent. 1T (  = 0) model results in the lowest amplitude ratios, due 

to the absence of thermal relaxation, indicating less energy transfer across the boundary 

For T-wave incidence, the amplitude ratios are notably affected by the thermal models. The Hyperbolic Two-

Temperature (HTT,  = .5) model exhibits sharp peaks and higher amplitude ratios, indicating strong wave–

thermal interactions. The Two-Temperature (2TT,  = .25), produces moderate amplitude ratios with reduced peak 

intensity, showing the damping effect of dual-temperature diffusion whereas one-Temperature (1T,  = 0) model 

yields lowest amplitude ratios and peak shifts, reflecting minimal thermal feedback and wave energy loss. 

For SV-wave incidence, the amplitude ratios are moderately affected by the thermal models. The HTT model (  = 

.5) shows noticeable fluctuations and higher initial amplitude values, while the 2TT (ζ = .25) model demonstrates a 

smoother decay with slightly lower amplitude ratios, reflecting the damping influence of dual-temperature effects. 

1T ( = 0) model exhibits minimal amplitude variation, closely approaching the classical elastic response with 

negligible thermal interaction 

9.3. Effect of  

The analysis reveals that the blood perfusion rate significantly influences all the amplitude ratios  under P-wave 

incidence. As   increases, all amplitude ratios exhibit enhanced angular sensitivity and magnitude. Higher values 

of lead to steeper and more pronounced increases in reflection amplitudes, indicating stronger wave interaction 

with the medium. Conversely, for =0, the amplitude ratios show weaker variation and reduced reflection 

behavior. 

For T-wave incidence, the amplitude ratios are notably influenced by the blood perfusion rate Higher value of 

 generally leads to smoother or saturating behavior in amplitude variations, while moderate blood perfusion 

(   yields gradual increases. In contrast, the absence of perfusion ( =0) results in more irregular and 

angle-sensitive responses. 

Under SV-wave incidence, the amplitude ratios exhibit distinct angular behaviors influenced by the blood 

perfusion rate . For high perfusion ( =2.5), the amplitude ratios display more complex, piecewise trends with 

alternating increases and decreases across angular ranges. In contrast, =1.5 and =0, the amplitude ratios show 

simpler, more gradual variations—typically with initial decreases followed by mild increases.  
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9.4. Impact of impedance and comparison of different theories of thermoelasticity: 

The impedance boundary conditions distinctly affect the amplitude ratios across the thermoelastic models—

MGI, LSI, and MGWI. The MGI and LSI models exhibit relatively stable and gradual variations with angle, 

showing minor differences primarily in magnitude. In contrast, the MGWI model, incorporating relaxation effects, 

shows pronounced angular sensitivity with noticeable peaks or turning points around .≈60∘–65∘.  

Under impedance boundary conditions, the amplitude ratios respond differently across the MGI, LSI, and MGWI 

models. MGI and LSI show generally stable and smooth trends with minor magnitude differences. In contrast, the 

MGWI model exhibits more dynamic behavior. 

Under impedance boundary conditions, MGI and LSI models exhibit smooth, monotonic decrease in amplitude 

ratios. In contrast, the MGWI model shows pronounced oscillatory behavior across all amplitude ratios, with 

significant fluctuation, which highlights the strong influence of thermal relaxation effects on wave reflection 

compared to the stable decay in MGI and LSI mode. 
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(j=1, 2, 3). 

Where and  are the amplitude ratios of reflected P-wave, reflected T-wave, 

wave and SV-wave. 
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For incident SV-Wave: 
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For incident T- wave: 
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