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Abstract

This paper presents a theoretical study on the reflection of plane waves in a
homogeneous, isotropic bio-thermoelastic diffusion half-space incorporating
hyperbolic two-temperature (HTT) effects within the framework of Moore-
Gibson-Thompson (MGT) heat conduction. The analysis is performed in two
dimensions using dimensionless variables and potential function techniques
to simplify the governing equations. Employing normal mode analysis, the
study identifies the existence of four distinct longitudinal wave types and a
single shear vertical (SV) wave, each propagating with different phase
velocities. Analytical expressions for the amplitude ratios corresponding to
longitudinal (P), thermal (T), chemical potential (Po), and shear vertical
(SV) waves are derived and explored as functions of the incident angle, wave
frequency, and relevant material parameters. The effects of the HTT
parameter, blood perfusion rate, and various thermoelastic theories on the
reflection coefficients are investigated through graphical illustrations.
Several special cases are also discussed. The findings are relevant to
applications in geomechanics, ocean engineering, and biomedical diagnostics,
offering valuable insights into wave behavior in bio-thermoelastic diffusion
media under the influence of HTT and MGT models. This work contributes
a multiscale framework for studying wave propagation in such complex
environments.

Keywords: Bio-thermoelastcity; Diffusion; HTT, MGT heat equation, Impedance boundaries,
Amplitude ratios.

1. Introduction

Modelling heat transfer in biological tissues poses significant challenges due to the intricate interaction of
thermal and physiological phenomena. These include thermal conduction through various tissue layers, convective
effects due to blood circulation, metabolic heat generation, the vascular network's complexity, and the dependency
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of thermal and mechanical properties on the tissue's physiological state. Developing accurate mathematical models
is crucial for capturing these dynamics, especially in soft tissues, as such models play a vital role in understanding
injury mechanisms, enhancing medical diagnostics, and optimizing therapeutic interventions. Additionally, they
offer insights into how localized variations impact the overall response of both healthy and pathological tissues.

The foundation of generalized thermoelasticity was laid by Lord and Shulman [1], who introduced a theory
incorporating thermal relaxation time by modifying Fourier’s law through the Maxwell-Cattaneo approach. This was
followed by the model of Green and Lindsay [2], which introduced two distinct relaxation times associated with
entropy and stress. Abouelregal and Marin [3] applied the State-Space Method together with the modified couple
stress theory to examine the influence of TDP on nanobeam behavior. Sharma et al. [4] investigated fundamental
theorems and plane wave propagation in thermoelastic diffusion with a multiphase-lag model that includes
temperature dependence. Numerous researchers have employed these advanced heat conduction and diffusion
theories to investigate various physical phenomena. For instance, Sharma and Marin [5] studied the impact of
different temperature definitions in micropolar thermoelastic systems. Marin et al. [6] employed Lagrange-type
identities to establish the uniqueness and instability of solutions within the MGT thermoelastic theory. More
recently, Sharma, Marin, and Altenbach [7] considered non-local and phase-lag effects in thermoelastic diffusion,
while Marin et al. [8] analyzed fundamental solutions and Green’s functions in photothermoelastic media,
incorporating temperature-dependent material properties under the MGT model. Hobiny et al. [9] explored the role
of hyperbolic two-temperature (HTT) effects on wave propagation in semiconductor materials featuring spherical
cavities. The works of Kumar, Ghangas, and Vashishth [10, 11] focused on wave dynamics at the boundary between
elastic and bio-thermoelastic media. Impedance boundary conditions have gained considerable attention in
theoretical and applied physics, especially in areas such as acoustics and electromagnetism. These boundaries act as
transitional zones between perfectly free and rigid interfaces, significantly affecting how waves are transmitted or
reflected. Acoustic impedance, in particular, quantifies a material's resistance to wave motion. Numerous studies [12-
17] have explored wave reflection and transmission under various impedance conditions. Kumar et al. [17] studied
wave propagation in porous thermoelastic media with dual-phase behavior.

This study aims to analyze the reflection of plane waves in a bio-thermoelastic diffusion half-space under the
MGT heat conduction model, considering an impedance boundary. Amplitude ratios for various wave types are
derived and analyzed based on wave frequency and material properties. The role of blood perfusion is also
examined, and several limiting cases are presented to highlight the model’s versatility.

2. Governing equations

The mathematical formulation of wave propagation in a bio-thermoelastic diffusion medium is based on the
constitutive and field equations that incorporate the effects of thermal and mass diffusion, along with the Moore-
Gibson-Thompson (MGT) heat conduction model. In this analysis, the governing equations are simplified by
neglecting body forces, internal heat sources, and mass diffusion sources, in accordance with the formulations
provided in previous work (see Kumar et al. [11]):

constitutive relation

tU’ = 2,ueI-J,- + 5:‘}' m'oekk _Ylﬁ —TzP)- (1)

equation of motion

8%u;
(Ao + g5 +puy j; —v160; —y2Pi = p PYel )
heat conduction equation
(K5 + K )0y = (1+705) (ol + 1T + AT, P + py Cpw0), 3)
equation of mass diffusion
(D54 D) Py =(1+715) (0P + yaéiu + df) (4)
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2.1. Definitions and Parameters

Let the temperature increment be denoted by T=0-Tj, where @ is the actual temperature within the biological
tissue and 7o is a constant reference temperature. This increment is assumed to be small, such that the relative

change || (0-Ty) /Ty, Il.

The relevant physical parameters are listed below:

p: Mass density of the biological tissue

ce: Specific heat capacity at constant strain

p: Rate of blood perfusion

pb: Blood density

cv: Specific heat capacity of blood

o, T1: Phase lag parameters corresponding to heat flux and temperature gradient, respectively
P: Chemical potential per unit mass

K: Thermal conductivity

K*: Modified or effective thermal conductivity

D: Thermoelastic diffusion coefficient

D*: Coefficient representing diffusion rate

a: Thermoelastic diffusion coupling coefficient

b: Parameter indicating intensity of diffusion-related effects
p*: Heat-thermal transfer (HTT) parameter

tij: Components of the stress tensor

u;: Components of the displacement vector

The coupling effects due to thermal and diffusion processes are given by:

Bi=(3A+2p) oy, where o, is the thermal expansion coefficient
B2=(3A+2p) ac, where o, is the diffusion expansion coefficient

Here, A and p denote the Lame parameters. Partial derivatives with respect to spatial coordinates are indicated by
a subscript comma followed by the coordinate index, while time derivatives are represented using an overdot.

To examine the influence of temperature dependent material properties we consider
Ao = Aor f(T). 0 = pof (T) . K = Kof (T). K" = K5 f(T), D = Dof (T), D" = Dof (T),
Y1 =Y1of(T) Y2 = V2o f (T) . f(T) = (1 — &’ T,,),

where Ay, Mg, Ky, Ky, Dy, Dy, V10 and Y2, considered constants and @” is an empirical

material constant. f (T) =1 for temperature independent material properties.
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Fig.1. bio-thermoelastic solid half-space

3. Solution procedure

The analysis considers a homogeneous and isotropic bio-thermoelastic diffusion half-space governed by the Moore-
Gibson-Thompson (MGT) heat conduction model, incorporating hyperbolic two-temperature (HTT) effects. The
medium is defined in a Cartesian coordinate system (xi, X2, X3), where the boundary surface is situated at xs = 0, and
the half-space extends indefinitely in the positive xs direction.

To simplify the problem, wave motion is restricted to the xi—xs plane, assuming that the wavefronts are aligned
parallel to the x»-axis. As a result, all field variables such as the displacement components, temperature increment,

and chemical potential are assumed to be functions of the spatial coordinates xi, X3, and time t only. This assumption
reduces the problem to a two-dimensional framework, facilitating analytical treatment.

u = (uy(xq,%3,1),0,us (x4, x3,t)), (xq,x5,t), P(xy,x35,t). (6)

By substituting (6) in equations (1)-(5), we obtain the modified system

de ae ar 1 8%u

(Ro1 + o) G+ HoVP U — V105 -~ V20 50 = P oy 52 ™
de a8 ar 1 8%u

('101 +ﬁo)a+ﬂo”3 _T‘;loa_}ﬁoa = pf{T} atzaa (3
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9 P
.f(T)( ‘I‘D )vZP: (l‘l‘fla)( atz ‘I‘}’zOf(T)atz atz)' (10)
0= ﬁ Vi, .
f33 = f(T)(m + 200)uz 3 + AoUsy — V108 —72P), (12)
ta1 = Hof (T) (er%) (13)
where
L i

z z -
dxq dxq’ dxy dxg
D1mens10nless quantltles are taken as

() = 2 (xl.ul) (¢t 7) = Wit 7), @, ¢)=T2(6.¢), P'= P,

Yzol
c ti
(Z31.23) = (ZI-ZE) Z3 *Zs, Zy=—17,, t; = —=,
& Dy 1 Y10 To
Ao1 42
where: @] = pf;:’ , c% =OIT%. (14)
Utilizing equations (14) into equations (7) - (13), the following expressions are obtained
de 5 a8 P Lazul
}clla_xl‘|‘J‘c12v iﬂl_a_ﬂsa—f{n PYCR (15)
de 5 ae 9P iazug

flla_;%—l_flzv iis_a_flaa—f{n 3e2° (16)

] ] 828 8%e a%p a0
F) (5+ fa) Vo = (14 705) (s 3z + fisf (T 55 + frr 33 + Fra 2p): (a7

a 5 a a%p 8%e a0
F) (5+ fio) V2P = (1+ 115) (o 5z + fur (D) 55 + fan 23, (18)
6=¢— BV, (19)

61{3 aul
t33 = fu fza — f250 — f26P, (20)
au du

31 —f2?( - ax: , 21

where f; (i=1 1-27) are given in Appendix-1.

Using the Helmholtz decomposition, the displacement components 11 and iz can be expressed as follows.

% _ow 09 0w

ILl = E - aX3 ! 3~ ax‘3 axl. (22)
By substituting equation (22) into equations (15)-(18) and (20)—(21), we obtain:
2 _

(W——Li35¢=0 (24)

};{T}flz " a2v%¢ a2 a8
P

FT) (2+ fia) Po = (1+102) (Fis 2s o+ ol (D54 frrge + fiss), @5
) a2v%¢ a2

F (2+ flg) VP = (147 aJ (oo 2t o + faf (M S22+ f2 57, 26)

taz =(f24 — fzs) P Y +f2=t ax2 ‘|‘f23 — f258 — f26P, (27

2
t3; = 2f37 2%, 05 fz?(ax E) Y, (28)
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4. Wave Propagation Analysis

We examine the propagation of plane waves in a bio-thermoelastic solid half-space that incorporates the hyperbolic
two-temperature (HTT) model and is governed by the Moore—Gibson-Thompson (MGT) heat conduction equation.
This half-space is bounded at a surface, and when a wave is incident upon it, several reflected wave components are
generated. These include a longitudinal wave (P-wave), a thermal wave (T-wave), a chemical potential wave (Po-
wave), and a vertically polarized shear wave (SV-wave), as depicted schematically in Figure 1.

Assuming harmonic plane wave propagation, where the wave normal lies in the x; — x5 plane and forms an angle
6, with the positive x3-axis (which is perpendicular to the boundary surface), the solution to equations (23)—(26) is
assumed to take the following form:

(¢' IP. @, 9' P) — (¢°, wo' (Do.'go. po )gik{xlsineg—x360590+ﬂt} (29)
Here, ¢, 1%, %, 82, P? are arbitrary constants representing the amplitudes of the respective wave components.

The parameter k denotes the wave number, and 9 is the phase velocity of the propagating wave.

By substituting equation (29) into equations (23)—26), and utilizing equation (19), we arrive at the following
algebraic system

(C119% + C129* + C1307 + C14)(¢°, 9°, P%) = 0, (30)
@ = f(T)f12)° =0 (1)

The roots ¥; (i=1, 2, 3) of the characteristic equation
(Cllﬁé + C12ﬁ4 + 613192 + CM)=0,

14 95,105 correspond to the phase velocities of the longitudinal (P-wave), thermal (T-wave), and chemical

potential (Po-wave), respectively. The fourth root 94 =,/ f(T)f12  represents the phase velocity of the shear

vertical (SV-wave). The coefficients C; (i=11-14) are defined explicitly in Appendix IL

5. Impedance Boundary Conditions

Impedance boundary conditions represent a linear relationship between unknown field variables and their spatial
derivatives on a boundary surface. These conditions are widely utilized in various domains of physics, including
thermoelasticity, acoustics, and electromagnetics. In the context of seismic wave propagation, it is typically assumed
that interfaces exhibit ideally welded contact, implying continuity in both displacement and stress components.
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However, for thin interfacial layers or imperfect bonding, this assumption may not hold, and a more appropriate
representation involves impedance-type boundary conditions.

The impedance boundary conditions at the surface x5 = 0 can be expressed as:

() tzz +wZjuz =0, (ii) t3; + wZu; =0,
(i) K, 22 + wZzp = 0, (iv) Dyt + wZ,P = 0, (32)
dxg dxg

Where Z;, Z5 are impedance parameters with dimension N sec m >, Z3 and Z; are impedance parameters
with dimension N m~ 2K ~1 and Ns*m™ respectively. Taking Z; = Z, = Z3 = Z; = 0 yields stress free
boundary conditions.

6. Reflection Phenomenon of Waves

We consider an incident P-wave or T-wave or Po-wave or SV-wave, striking the boundary surface at an angle
6, with respect to the normal (x3-axis), as shown in Fig. 1. When this incident wave interacts with the boundary, it
generates four reflected waves corresponding to the same possible modes (P, T, Po, SV). These reflected waves

propagate into the medium at angles @ , @5, @3 and 84 respectively, measured from the positive X3-axis. Hence,
the total wave field in the medium is expressed as the superposition of the incident wave and all reflected
counterparts, each characterized by its own amplitude, direction of propagation, and polarization and is given by

¢ — ES= 1{60_}' eikj{xl sin @y —x3 cos B ) +iwt 1 Gj eikj{xl sin@j+x3 cos !53;-]+1'c.(.-t}I (33)
= E?: \m {Gojgm‘j (x4 sinBg—x3 cos By ) +iwt 1 Gj gik_,- (xy sin@+x3 cos 6 ]+1’wt}' (34)
P = 23= 1y {Goj eikj{xl sin @y —x3 cos B ) +iwt 1 Gj eikj{xl sin @ +x3 cos @) Hwt } (35)
w — Goieikf{xl sinf,—xz cos B, ) tiwt + 6431'.!{4{1"1 sinfy+x5 cos 94]+imt’ (36)

In these expressions:

o G, 70=1, 2, 3) represent the amplitudes of the incident longitudinal (P), thermal (T), and chemical potential
(B, ) waves, respectively.
e (7,4 denotes the amplitude of the incident shear vertical (SV) wave.

e ((j=1, 2, 3) correspond to the amplitudes of the reflected P, T, and Po waves.

e Gy is the amplitude of the reflected SV wave.
e m;and f} (j=1,2,3) are coupling constants, whose explicit forms are provided in Appendix III.

* 7Ny denote the wave numbers associated with the respective wave types, and o is the angular frequency of
wave propagation.

These components collectively characterize the total field resulting from the superposition of incident and reflected

waves within the bio-thermoelastic solid, modelled using the hyperbolic two-temperature (HTT) framework in

conjunction with the Moore—Gibson—-Thompson (MGT) heat conduction equation.

Snell's Law is given by
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sinfy  sinég;

>

Ug vj

where

kjv; = w,atx3 =0 (=1,2,3,4),
vy, forincident P — wave,
Vs, forincident T — wave ,

Yo =y, forincident B, — wave, (37)
Va, for incident SV — wave.

By substituting the expressions for the potential functions from equations (33) - (36), along with equation (19),

into the boundary conditions given in equation (32), and employing the relations from equations (27) and (28), we
derive the following system of equations:

XF ij _} (1,=1,2,3,4). (3%)
where Fj; .R and ¥} are given in Appendix-1V
7. Particular Cases

i. In absence of blood perfusion

By setting cwp = 0 in equation (38), the model simplifies to the case of thermoelastic diffusion with TDP in the

absence of blood perfusion. This reduction yields the governing equations for a bio-thermoelastic medium

incorporating hyperbolic two-temperature (HTT) and TDP effects within the framework of the Moore—Gibson—
Thompson (MGT) heat conduction model.

ii. Absence of temperature dependent parameters

Taking @“=0 in equation (38), yield the corresponding results for bio- thermoelasic diffusion with HTT and
MGT model.

iii. Absence of diffusion.

Iffl; =a =D = D" =n= 0ineq. (30), gives.

(P120* + (Pyy — Pya — P13)09% 4 P13)(9, @) = 0, (39)
where _

Pyy = —Pyof (T)f1e P12 = Py (fls _ifls) (1-{K?),

P = (iw + f)f(T), Pip = (1 +iwt,).

In this scenario, the boundary conditions specified in equation (32) take the following form:
s a
() taz + wZjuz =0, (ii) tz; + wZuy = 0, (iii) % + wZz;p = 0. (40)
3

By applying the same procedure, the system of equations presented in equation (38) simplifies to the following
form:

¥ FSRJ? =Y?, (i =1, 2, 3), @1
where F: iz R ? and Y; - 9 are given in Appendix-V.

In the case Where dlffusmn effects are neglected, the relevant terms associated with chemical potential and mass
transport are omitted. The resulting model then describes wave propagation in a thermoelastic medium governed
temperature dependent properties under the HTT and MGT formulations
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iv. Absence of thermal effect.

Taking §; = €, = € = K = K" = 0 ineq. (30), we obtain

(Py29* + (P2 — Py3)9% + Py3) (¢, P) =0, 42)

where: Pyy = —Pyofo1 f(T)
Pz = Prof1(1 —{"K?), Py3 = (iw + fi5), Pag = (1 + iwt)f(T),

The boundary conditions outlined in equation (32) can be explicitly written as follows:

.. apP
(1) t33 + (AJZ]_ H.3 = 0 , (H,) t31 + (L}Zz H’l = 0, (111) a + CUZ;@P = 0
3
(43)
Following as above, the system of equation (38) reduces of the form
LEPRP=Y7°, Q1,23 (44)

where FSO. R J,OO and Y}-OO are given in Appendix-VI

v. Absence of Impedance Parameters (Z1=22=73=74=0)

In this case, the boundary conditions from equation (32) simplify to:

.. a ap
()tzz = 0, (ii) t3; = 0, (iii) 5o = 0, (iv) 5— = 0. (45)
Xz 65:3
Therefore, we obtain
LEFRP =Y 1,239, (46)

where Fgl. R J,Ol and Y}Ol are given in Appendix-VII

The deduced results for all the above cases are in agreement, if we solve the problem directly.

8. Numerical result and discussion

Following the work of Li et al. [19], the values of the physical constants used in the numerical computations are as
follows:

Ag =2.696 X 101°Kgm™1s72 u=1639%x 10%Kgm™, p=174x10°Kgm™3,
Ty = 0.293K | c, = 1.04x 103]Kg~t | ar =.0178 x 107 °K~1 |
ac =.0198 x 107*Kg~im? a=102x10*m?K"1s72 | b =9x10°Kg 'm®s2

> >

K=17x10*Wm K1 D* = 1.4W /mks, D = 0.85 X 107 8Kgm™3s, D* =0.65Kgsm™3w
=1.

pp = 1.060Kgm™23, ¢, =3600/Kg 'K ! w, =187 x 1073571

T, = 0.25ec, 1y = 0.4sec

In Figures 2(a—d), 3(a—d) and 4(a—d): (w,=1.87,0"=.25, Z,=5, Z,=10, Z5=15, Z4=20)

e The solid line represents bio-thermoelastic diffusion using the temperature dependent property (TDP) model
with Moore-Gibson—-Thompson (MGT) heat conduction, where &*=.3.

e The dotted line corresponds to bio-thermoelastic diffusion with the temperature dependent property (TDP))
model under MGT heat conduction, with a”*=.5.

e  The dashed line depicts bio-thermoelastic diffusion with the temperature dependent property (TDP) and MGT
model when & =0.

In Figures 5(a—d), 6(a—d) and 7(a—d): ( w,=1.87, @*=.3, Z;=10, Z,=20, Z;=30, Z4=40)
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e The solid line represents bio-thermoelastic diffusion using the hyperbolic two-temperature (HTT) model
with Moore-Gibson-Thompson (MGT) heat conduction, where { =.5.
e The dotted line corresponds to bio-thermoelastic diffusion with the two-temperature (2TT) model under

MGT heat conduction, with {"=.25.
e The dashed line depicts bio-thermoelastic diffusion with the HTT and MGT model when *=0.

In Figures 8(a—d), 9(a—d), and 10(a—d): ((* =.5, a” =.3,Z,=10, Z,=20, Z5=30, Z,~40)

e The dotted line corresponds to bio-thermoelastic diffusion with HTT and MGT considering blood perfusion
parameter wp=2.5.
e The solid line represents bio-thermoelastic diffusion with HTT and MGT for wj=1.5.

e The dashed line shows the model results when blood perfusion is neglected w3 =0.

In Figures 11(a—d), 12(a—d), and 13(a—d) :({=.5, @w»=1.87, =.3)

e The solid line represents bio-thermoelastic diffusion with HTT under the Moore—Gibson—Thompson
(MGT) model including impedance parameters Z1=10,22=20,73=30,Z4=40.

e  The dashed line illustrates the same model without impedance effects (Z1=22=73=74=0).

e The dotted line shows results based on the Lord—Shulman (LS) thermoelastic theory with HTT, including
the same impedance parameters Z1=10,22=20,23=30,Z4=40

8.1. Effect of @” (TDP parameter)

0 10 20 30 40 50 60 70 80 90
o 0

. . . . . " ! " . . . . . . . .
('] 10 20 30 40 50 60 70 80 90 [ 10 20 30 40 50 60 70 80 90
© O @ 0

Fig(2a-2d): Effect of a’ on Amplitude Ratios for Incident P-Wave.

Figure 2a demonstrates the variation of |Ry| vs @,. For all three cases of the temperature dependent parameter
(a® =.3,.5,0),|Ry| initially decreases in the interval 0o<00<35c. Beyond this range, |R;| exhibits a gradual
increase, with only slight differences in magnitude across the three models. This behavior suggests that the

reflection characteristics of the longitudinal wave are moderately sensitive to the value of & ,particularly at larger
incident angles.

Figure 2b illustrates the response of |Rz| vs 8,. In this case, |R5| decreases monotonically within the range
0= 0, = 32. After this point, |R| begins to increase slightly as the angle of incidence grows. The trend is

consistent for all values of @”, but the rate of variation differs subtly, indicating that thermal coupling influences the
reflected thermal wave more prominently at higher angles of incidence.
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Figure 2(c) shows the variation of |R3| vs 8,. . Unlike the previous cases, the amplitude ratio decreases
monotonically across the entire angular range for all three models. The magnitude of |R3| differs significantly

depending on the choice of @, highlighting a distinct sensitivity of the chemical potential wave reflection to the
temperature dependent parameter.

Figure 2(d) illustrates the variation of |[R4| vs 8,. |R4| increases within the angular interval 0= 6, = 22,
after which it decreases until 0~630. Beyond this point, |[R4| again exhibits an increasing trend. Among the three
cases, the model with @ = .5 a attains the highest peak amplitude compared to @” = .3, and 0

50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
@ 0 o )

0.032 T T T T T T T T 0.015

-1 0.005 -

c r . c c r . . c c c r c c c
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
©): (O @: 0y

Fig(3a-3d): Effect of a on Amplitude Ratios for Incident T-Wave.

Figure 3a shows the behavior of |R{| vs 8,. For all three values of the TDP parameter (¢~ = .3,.5 and 0), the

amplitude ratio decreases within the interval0= @, = 40 . Beyond this range, |R{ | begins to rise monotonically,
eventually attaining a nearly uniform peak at larger angles.

Figures 3b,c display the variation of |R5| & |R3| vs 8,. In both cases, the amplitude ratios increase
monotonically as the angle of incidence advances. The growth is more pronounced at higher angles, and distinct

magnitudes are observed among the three models, with & = .5 generally producing the strongest response.

Figure 3(d) depicts the behavior of |[R4| vs @, . The amplitude ratio|R4| increases steadily within the range

0= 0, = 60. However, beyond 8,~600, the trend reverses, and|R4| begins to decrease. This non-monotonic
pattern highlights a critical angle beyond which the reflection of the SV-wave weaken.

S o w
s
>

S o w

. . T . . . r 7 c . T
50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
@ 0) ®: 0)

[ 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
© 0 @ 0

Fig(4a-4d): Effect of a” on Amplitude Ratios for Incident SV-wave.
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Figure 4a shows the variation of |R;| vs 8,. For all values&” = .3,.5 and 0,the amplitude|R ;| initially
increases within the interval 0 = @, = 12. This is followed by a decreasing trend up to 8, = 45 , after which
|Ri|] again advances in the range 45= 0, =< 65. Beyond, = 65 , the amplitude ratio decreases. The
maximum reflection is observed for @ = 0, while the lowest magnitude occurs at Bo=0c This indicates that
longitudinal wave reflection under SV-wave incidence is highly sensitive to both angle and a*

The amplitude ratios|R;| , |R2| & |R3| for advances 0 = 8, = 12 and 45= 0, = 65 beyond its starts
decreasing 12= 0, = 45 and 8, = 65 and attain higher peak for @ = 0 and lower magnitude for all cases at
g, =0.

Figure 4b shows the variation of |R5| vs @,.|R5| exhibits a similar trend to |R4|. The values of |R5]|
increase in the range 0 = @, = 12, decrease monotonically within 12 = &, = 45, and rise again up to &,~65.
Beyond this angle, a decreasing trend is observed. Among the models, &@* = 0 shows the highest amplitude ratio,
while the cases with @ =.3 and @” =.5 yield comparatively smaller magnitudes.

Figure 4b illustrates the variation of |R3| vs 8,. The response |R3| is nearly identical to that of |[Ry| and
|R;|, with growth in the intervals 0 = @, = 12 and 45= 8, = 65,and decline in the intermediate and higher
angular ranges. The magnitude of |R3| attains its highest peak for @ =0, while the values fora™ =3 anda™ =5
remain comparatively lower.

Figure 4d depicts the changes of |Ry| vs @, .Unlike the earlier cases, |R4| decreases slightly in the range
0= @, = 15, then increases within 15= @, = 30, and again for @, = 35. At higher angles, |R4| approaches
a nearly uniform value, indicating stabilization. The differences in magnitudes of |R4| for @® = .3,.5 and 0 is

significant although small.
8.2 Effect of ¢"(HTT,2TT,1T)
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Fig(5a-5d): Effect of ( “ on Amplitude Ratios for Incident P-Wave.
Figure 5a demonstrate the variation of |R| vs 8,. Amplitude ratios R increases with distinct magnitude as

angle of incidence increases for all models. |Rq | attains higher magnitude for HTT in comparison to 2TT & 1T
models.

Figure 5b shows behavior of |R5| vs 8,. The values of |R5 | remains higher for HTT in contrast to 2TT & IT.
The value of |R5| advances with low magnitudes for 2TT & 1T for 0= &, = 40 and as 8,>40, |R5| advances
with higher magnitude.

Figure 5c display the variation of |R3| vs 8,. The value of |[R3| for 2TT & IT advances with lower

magnitude for all values of @,. |R3| advances as 8, advances for HTT attaing the higher values in contrast to 2TT
& 1T models.

Figure 5d shows the variation of |Rg4| vs &,.|R4| increases continuously as &, increases for HTT with
significant difference of magnitude in comparision to 2TT & 1T. |R 4| attains lower value in case of 1T although
|R 4| increases as 8, increases for both 2TT & 1T cases.
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Fig(6a-6d): Effect of ( * on Amplitude Ratios for Incident T-Wave.

Figure 6a display variation of |R | vs 8,. The plot shows increasing trends for all the cases, attaing peak values
and then decreases as 0, increases. |R | attains lower values for HTT as 0= 8, = 32. As 0, = 45, the values
of |R| advances with similar variations.

Figure 6b shows variation of |R5| vs 8,. |R3| increases with small variation attains peak values and decreases
as 8, advances for all the models. Magnitude of |[R5| remains higher for HTT in compare to other models 2TT &
1T models as 8, = 30.

Figure 6¢ display variation of | R3] vs 8,. | R3| for HTT increases monotonically, attaing higher magnitude
and then decreases as angle increases. The curves for | R3] in 2TT & 1T models attain lower peak in contrast to
HTT models. As @, = 32, the value of | R3| for 2TT & 1T curves closed to each other.

Fig.6d display variation of |R4|vs 8,. |R4| attains higher magnitude for HTT in contrast to other models.
|R 4| remains higher for 2TT in comparison to 1T as 0= &, = 20 and then advances with small difference of
magnitude as 0, increases further. Under T-wave incidence, thermal effects (HTT and 2TT) introduce slight

variations mainly at low frequencies, with HTT ({* = 5) showing marginally elevated and oscillatory amplitudes.
As frequency increases, differences between HTT, 2TT, and 1T models diminish, indicating weaker thermal
sensitivity for SV wave compared to P- and T-wave cases.
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Fig(7a-7d): Effect of ( “ on Amplitude Ratios for Incident SV-Wave

Figure 7a shows variation of |[R ;| vs 8,. For lower values of 8,, |R | attains maximum for all the models. |R{ |
goes on decreases attaining minima and again increases with slight variation for HTT, 2TT, 1T. The magnitude of

IR 1 | remains lower for HTT in comparison to others models for 0= 8, = 30.

Fig.7b depicts variation of [R5 | vs 8,. The value of |R5| for 2TT lies between HTT & 1T for 4= 8, = 40. As
0, = 40, |R;| attains higher magnitude for 2TT in comparison to HTT & IT.

Fig.7c demonstrate variation of |[R3| vs 8,. Magnitude of |R 3| remains higher for HTT in comparison to 2TT &
1T. The behavior and variation of |[R3| for all models is similar with distinct magnitude as &, > 40.

Fig.7d display variation of |[R4| vs 8,. |R 4| decreases monotonically and then increases as &, advances for all
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the models. |R 4| attains higher magnitude for HTT in comparison to other models.

8.2. Effect of blood perfusion parameter
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Fig.8 (a- d): Analyzing the Role of (W in Modulating Amplitude Ratios (P-Wave)
Figure 8a display the changes of [R4| vs . For all three cases, |R4| increases gradually with angle. The rate of

increase is most significant for ew, = 2.5, followed by w;, = 1.5, while the case wj; = 0 shows a more
beguiling change. This indicates that higher blood perfusion intensity enhances the angular sensitivity of | R |.
Figure 8b shows variations of |R5| vs 8,. For w, = 2.5, 1.5 the amplitude |R,| increases after a moderate

initial slope, reaching its peak at higher angles. For @; = 0, | R5| initially rises slightly and then exhibits a

downward trend at larger angles.
Figure 8c presents the variations of |R5| with 8,. All three cases show a steady and monotonic increase in the

magnitude of |R3|, with the strongest rise occurring at wj, = 2.5 . The increase is less pronounced for
w; = 1.5, while in case of @}, = 0 remains relatively flat.

Figure 8d depicts the behaviour of R 4 with 8, .. For w; = 2.5, there is a rapid and continuous rise in |R 4| across

the full angular range, implying strong reflection behavior at high blood perfusion rate. A similar but gentler trend is
seen for tj, = 1.5 whereast, the response for e, = 0 shows only a mild increase before leveling off.

Figure 9a illustrates the variation of |Ry| with respect to@,. Forw; = 2.5, |Ry| decreases slightly as &,
increases, while for @}, =1.5, it exhibits a slight increasing trend. In the absence of blood perfusion e = 0, |R |
increases in the range 0<8, <13, and then begins to decrease for ,>13.

Figure 9b presents the behaviour of |R3|vs8,. The amplitude |R5| for @y = 2.5 decreases monotonically
with increasing @, . In contrast, |R5| for wp, = 1.5 and w; = 0 increases with varying magnitudes.

Fig. 9c display the changes of |[R3| vs @,. . For the higher blood perfusion rate w; = 2.5 , |R3| increases and

eventually attains a uniform value. For wj, = 1.5 and wp, = 0 , |R3| also increases, but with different
magnitudes.

Figure 9d depicts the changes in |R4| vs @,. For wp = 2.5 and w; = 1.5 | |R4| increases with distinct
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magnitudes. For @y = 0,R, increases up to the midpoint of the region beyond which it shows a slight
downward trend.
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Fig.9 (a, b, ¢, d): Analyzing the Role of ()5 in Modulating Amplitude Ratios (T-Wave)
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Fig.10(a, b, ¢, d): Analyzing the Role of @}, in Modulating Amplitude Ratios (SV-Wave)

Fig.10a illustrates the variation of |Ry| vs 8, . For wy = 2.5 , |Ry| increases within the range

0= 6, = 10 and decreases at 10= @, = 45 beyond it starts increasing slightly. |[R| for wp=1.5 and 0
decreases and attains its lower magnitude in the middle of the region beyond its starts increasing slightly.

Fig.10b display the changes of |R5| vs 8,. |R5| for w,=2.5 increases at 0= &, = 10 and 45= 0, = 65
and rest is decreasing.

Fig.10c depicts the trend of |R3| vs &,. The amplitude |R3| for w,=2.5 increases in the range 0= &, = 10
and 45= 0, = 65 beyond its starts decreasing in 10= 6, = 45 and 65= 0, = 90. |R;3| for w,=1.5 and 0
decreases slightly as the value of @, increases.

Fig.10d presents the variation of |R4| vs 8,. The amplitude |R4| for & =2.5 decreases at 0= @, = 10,
followed by gradual increase as 8, increases. In case of wy=1.5 and 0, |R4| decreases within the interval
0= @, = 6, beyond its starts increasing.

Fig.11a demonstrates the variation of |Ry| vs 8,. The demeanour and alteration of |Ry| for MGI and LSI is
stable with slight difference in magnitude. |R4| for MGWI increases monotonically in the range 0= 8, = 65
beyond its starts decreasing .

Fig.11b display the changes of |R5| vs @,. The amplitude |R 5| for MGI and LSI exhibit a slight downward

trend differing mainly in magnitude. |R5| for MGWI shows a gradual increase for 0= 8, = 65 after which it
begins to decline.

Fig.11c presents the changes in |R3| vs 8,. The amplitude |R3| for MGI and LSI decreases at the range
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0= @, = 10 beyond its starts increasing and attains its uniform magnitude. |R3| for MGWI increases at the
range 0= 0, = 65 beyond it starts decreases monotonically.

Fig.11d illustrates the response of |R4| vs 8,. The amplitude |R4| for MGI and LSI reveals a steadily
increasing trend which eventually levels off to a nearly constant value. |R4| for MGWI increases slightly at the
range 0= 8, = 60 and rest is decreasing.

8.3. Comparison of thermoelastic theories and impendence impact.
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Fig.12 (a, b, ¢, d): Incident T-Wave Interaction with Impedance Boundaries in Varied Thermoelastic Frameworks.

Fig.12a display the changes of |[Ry| vs 8,. The behaviour and variation of Ry for MGI and LSI is stable with
slight difference in magnitude. |R | for MGWI is monotonically decreases as the value of 8, increases.

Fig.12b display the changes of |R5| vs 8,. |R5| for MGI remains stable whereas for LSI first decreases
slightly and then increases gradually. |R5| for MGWI decreases within the range 0= 8, = 60 beyond it starts
increases as 0, increases.

Fig.12c display the changes of |R3| vs 8,. |R3| for MGI and MGWI decrease gradually with increasing angle.
|R3| for LSI increases monotonically and attaining  its uniform magnitude.

Fig.12d display the changes of |R4| vs O,. |R4| for MGI increases slightly. |R4| for for MGWI increases at
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low angle, reaches maximum and the decreases at highest angle and in this case |R4| has a parabolic -shaped curve.
|R4| has a moderate increasing trend for LSI and is more stable in comparison to other cases.
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Fig.13 (a, b, ¢, d): Incident SV-Wave Interaction with Impedance Boundaries in Varied Thermoelastic Frameworks

Fig.13a display the changes of |[R|, vs ,. |R;| decrease monotonically as angle of incidence increases for
MGI and LSI models, although the curves for both cases are smooth and closely parallel, declining toward a low but

non zero value at the largest angle. |R ;| for MGWI model display a strong oscillator pattern throughout the angular
range.Fig.13b depicts the variation of |[R5|vs @,.|R| shows a steady, monotonic decrease with increasing &,
for MGI and LSI although decline is smooth to a consistent low magnitude. |R5|, for MGWI continues to
oscillate attaining minima at 45%angle. Fig.13c demonstrates changes of |R3| vs 8,. |R3|consistently decreases

monotonically, mirroring each other closely for both the models MGI and LSI. |R3| for MGWI depicts a
pronounced oscillatory trend, markedly different from the smooth decay of the other models .Fig.13d shows the

variation of |[Ry| vs @,. The amplitude |R | decreases within the interval 0= 8, = 85, followed by a gentle

increase toward 90% for MGI and LSI models although with distinct pattern. | R4 | for MGWI remains oscillatory
across all angles attaining maximum value at highest angle.

9. Conclusion

This study investigates the reflection behavior of plane waves in a bio-thermoelastic diffusion half-space
incorporating hyperbolic two-temperature (HTT) effects, modelled using the Moore—Gibson—Thompson (MGT)
heat conduction theory. The governing equations were established in two dimensions and subsequently simplified
through the introduction of dimensionless variables and potential functions. Amplitude ratios for various reflected
wave modes were derived subject to impedance boundary conditions. Numerical simulations were performed, and
the results were graphically analyzed to examine the influences of HTT, blood perfusion rates, and different
thermoelastic theories on the wave reflection characteristics. The main conclusions drawn from this analysis are
summarized as follows:

9.1. Effect of &

From the obtained numerical results, it is observed that the temperature-dependent parameter ¢ plays a significant

R3]

role in governing the reflection characteristics of different wave modes. The reflection amplitudes | R |, | R

generally decrease at smaller incident angles and increase beyond certain angular thresholds, with noticeable
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differences in magnitude across the three models. The case a* =0.5 often produces higher peaks compared to

a*=0.3 and a*=0, demonstrating the strengthening effect of temperature dependent parameter.

For |R4|, the response is more complex, showing non-monotonic variation with angle. While @*=0.5 tends to

enhance peak values, the overall sensitivity of |[R 4|, to &” effects is smaller than that of the other modes.

Overall, the results indicate that increasing ¢ amplifies reflection in most cases, particularly for longitudinal,
thermal, and chemical potential waves, while SV-wave reflection is only moderately affected.

9.2. Effect of {*

The amplitude ratios for reflected waves under P-wave incidence are significantly influenced by the thermal
models employed. The HTT ({* = .5) model exhibits the highest amplitude reflecting the strong influence of
hyperbolic thermal effects. 2TT ({* = .25) model yields moderate amplitude ratios, capturing the dual temperature

impact while damping wave reflection to some extent. 1T ({* = 0) model results in the lowest amplitude ratios, due
to the absence of thermal relaxation, indicating less energy transfer across the boundary

For T-wave incidence, the amplitude ratios are notably affected by the thermal models. The Hyperbolic Two-
Temperature (HTT, {* = .5) model exhibits sharp peaks and higher amplitude ratios, indicating strong wave—
thermal interactions. The Two-Temperature (2TT, {* = .25), produces moderate amplitude ratios with reduced peak

intensity, showing the damping effect of dual-temperature diffusion whereas one-Temperature (1T, {* = 0) model
yields lowest amplitude ratios and peak shifts, reflecting minimal thermal feedback and wave energy loss.

For SV-wave incidence, the amplitude ratios are moderately affected by the thermal models. The HTT model ({* =
.5) shows noticeable fluctuations and higher initial amplitude values, while the 2TT ({ = .25) model demonstrates a
smoother decay with slightly lower amplitude ratios, reflecting the damping influence of dual-temperature effects.

IT ({*= 0) model exhibits minimal amplitude variation, closely approaching the classical elastic response with
negligible thermal interaction

9.3. Effect of @y,

The analysis reveals that the blood perfusion rate significantly influences all the amplitude ratios under P-wave
incidence. As w}p, increases, all amplitude ratios exhibit enhanced angular sensitivity and magnitude. Higher values
of wp, lead to steeper and more pronounced increases in reflection amplitudes, indicating stronger wave interaction

with the medium. Conversely, for wy=0, the amplitude ratios show weaker variation and reduced reflection
behavior.

For T-wave incidence, the amplitude ratios are notably influenced by the blood perfusion rate wpHigher value of
wp generally leads to smoother or saturating behavior in amplitude variations, while moderate blood perfusion

(@wp = 1.5) yields gradual increases. In contrast, the absence of perfusion (& =0) results in more irregular and
angle-sensitive responses.

Under SV-wave incidence, the amplitude ratios exhibit distinct angular behaviors influenced by the blood
perfusion rate wp. For high perfusion (tw,=2.5), the amplitude ratios display more complex, piecewise trends with

alternating increases and decreases across angular ranges. In contrast, (wy=1.5 and w =0, the amplitude ratios show
simpler, more gradual variations—typically with initial decreases followed by mild increases.
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9.4. Impact of impedance and comparison of different theories of thermoelasticity:

The impedance boundary conditions distinctly affect the amplitude ratios across the thermoelastic models—
MGI, LSI, and MGWI. The MGI and LSI models exhibit relatively stable and gradual variations with angle,
showing minor differences primarily in magnitude. In contrast, the MGWI model, incorporating relaxation effects,

shows pronounced angular sensitivity with noticeable peaks or turning points around &,.<600—650.

Under impedance boundary conditions, the amplitude ratios respond differently across the MGI, LSI, and MGWI
models. MGI and LSI show generally stable and smooth trends with minor magnitude differences. In contrast, the
MGWI model exhibits more dynamic behavior.
Under impedance boundary conditions, MGI and LSI models exhibit smooth, monotonic decrease in amplitude
ratios. In contrast, the MGWI model shows pronounced oscillatory behavior across all amplitude ratios, with
significant fluctuation, which highlights the strong influence of thermal relaxation effects on wave reflection
compared to the stable decay in MGI and LSI mode.
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Fy; = injk; cost; + wZyn;

E,, = 0.
G=1, 2, 3).

Where Ry,R;,R3 and R, are the amplitude ratios of reflected P-wave, reflected T-wave,
P, —wave and SV-wave.

—, R, =%, R, =% and R, =%.
For incident P-Wave:

G" = Goy,= Goz = Go3 =Gy =0

Yy = faskicos?0y + fozkisin?0y + fosmy + fogny + iwk,Z,cosb,
Y, = —2f,7kisinbycos8, — iwk,Z,sinf,

Y; = imykycosly — wZyzmy

Yy = inikycosly — wZyn,

For incident T- wave:

G" = Goy, Gor = Goz = Gogs = 0

Yy = faskicos?8y + fosk3sin?8y + fosmy + foen, + iwk,Z cosb
Y, = —2f,7k3sinfycos8, — iwk,Z,sinf,

Y; = imsyk; coslpy — wZzm,

Yy = insk,cosfy — wZyn,

For incident P, — Wave:

G" = Gogs, Gor = Goz = Goa = 0

Yy = foak2c0s%0y + fo3k3sin?0y + fosma + fagna + iwksZicos6,
Y, = —2f57k3sinfycos8y — iwkyZ,sinb,

Y; = imskycoslpy — wZyms

Yy = injkycosly — wZsin,

For incident SV-Wave:

G" = Goa, Gor = Goz = Goz = 0

Yy = —(fou — fo3)kZsinOycos0y — iwk,Z sind,

Y, = forkisin?0y — forkicos?0y + iwkyZocos6,

Y3 — O
Y4 — O
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For incident P-Wave:
G" = Goy, Goz = Goz = Goa = 0
Y2 = fo.k%cos?6, + fo3kisin?6, + fosm, + iwk,Z,cosb,
Y9 = —2f,,k?sinbycosl, — iwk,Z,sinf,
Y2 = im,k,cosby — wZzm,
For incident T- wave:
G" = Goz, Go1 = Goz = Goa = 0
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Y2 = fouk2c0s%0, + fo3k3sin?0, + foom, + iwk,Z cos0,
Y? = —2f,7k3sinBpcos0, — iwk,Z,sinb,

Y9 = im,k, cos By — wZzm,

For incident SV-Wave:

G" = Goa, Goy = Goz = Goz = 0

Y? = —(fo4 — fa3)kZsinB,cos0, — iwk,Z,sinf,

Y2 = f,5kZsin?0, — fo-kicos?0, + iwkyZ;cos0,

Y2 = 0.
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F-quo - _(_f24 — fgg)kf&‘in94605‘94 + i&)k42160.5'94

Fg,-o = —ZfZFkJ,-Zsinﬁjcosﬁj + iwk; Z,sinb;

F?%O = _fz?kgsinz 84 +f2? kicoszﬁ‘i — i&)k4ZzCOSB4

F:fj'-o = injk;cos 6; + wZyn;

F&° =0 j=(1,
2)

For incident P-Wave:

G" = Goy, Goz = Goz = Gogs = 0

Y29 = f,,k2c0s%0, + fo3kisin?0, + fogn + iwk,Z cos0,
Y90 = —2f,-k?sinf,cos8, — iwk,Z,sinb,

Y29 = in,k,cosf, — wZyn,

For incident P, — Wave:

G" = Gos, Gor = Goz = Goa = 0

Y29 = f,,k2c0s%0, + fo3k2sin?0, + fogn, + iZ wk,cos6,
Y90 = —2f,-k2sinf,cos8, — iwk,Z,sinf,

Y29 = in,k, cosf, — wZyn,

For incident SV-Wave:

G" = Gog, Gor = Goz = Goz = 0

Y29 = —(fo4 — fo3)kisinBpcosby — iZwkysinb,
Y90 = f,.k2sin’6, — fork2cos%0, + iwk,Z,cos6,
¥ = 0.
Appendix-VII
Fﬂ-l = —fmkfcoszﬁj — fzgkfsinz 0; — fasmy — foe1y
FO! = —(f2s — f23)kisinf,cos0,
Fg,-l = —Zfz;,-kasinﬁj cosb;
F;g{ = l—fz?kﬁsinz 6, + fo7k2cos?0,
F3; = im;k; cos®,
Fgg{ = 0
Fy;- = injk;cos 6;
Fd’al - 0 (]':1’ 2, 3)

For incident P-Wave:

G" = Goy, Goz = Goz = Gogs = 0

VP! = foukicos?Op + frskisin®0p + fosmy + freny
Y21 = —2f,-kisinf,cos0,

Y21 = im,k,cos b,
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01
Yy

= in;ky costp

For incident T- wave:
G" = Goy, Gor = Goz = Gogs = 0

01
v,
01
e
01
v
01
4

= f24k3c0s%0 + frsk3sin®0p + frsm; + foen;
= —2f,;k2sinf,cos6,

= imyk, cosf,

= in,k, cost,

For incident P, — Wave:
G = Gos, Gor = Goz = Goa = 0

Y1O 1
yo1
yot
yo!

= f24k3cos?0y + frskisin®Op + frsmz + foena
= —2f,;k2sinf,cos6,

= imzk5 cosf

= inszk; cost,

For incident SV-Wave:
G" = Gos, Go1 = Gz = Go3 =0

1"101 = —(f24 _f23)k§5'm9000590
Y;?l = fzykgginzﬁo — fzykgcoszﬁo
Y_{Jl = 0.
Yfl = 0.
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