[1] M. A. Biot, Thermoelasticity and irreversible thermodynamics, Journal of applied physics, Vol. 27, No. 3, pp. 240-253, 1956.
[2] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, pp. 299-309, 1967.
[3] A. E. Green, K. Lindsay, Thermoelasticity, Journal of elasticity, Vol. 2, No. 1, pp. 1-7, 1972.
[4] A. E. Green, P. Naghdi, A re-examination of the basic postulates of thermomechanics, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, Vol. 432, No. 1885, pp. 171-194, 1991.
[5] A. E. Green, P. M. Naghdi, ON UNDAMPED HEAT WAVES IN AN ELASTIC SOLID, Journal of Thermal Stresses, Vol. 15, No. 2, pp. 253-264, 1992/04/01, 1992.
[6] A. Green, P. Naghdi, Thermoelasticity without energy dissipation, Journal of elasticity, Vol. 31, No. 3, pp. 189-208, 1993.
[7] R. Quintanilla, Moore–Gibson–Thompson thermoelasticity, Mathematics and Mechanics of Solids, Vol. 24, pp. 108128651986200, 07/21, 2019.
[8] N. Bazarra, J. R. Fernández, R. Quintanilla, Analysis of a Moore–Gibson–Thompson thermoelastic problem, Journal of Computational and Applied Mathematics, Vol. 382, pp. 113058, 2021/01/15/, 2021.
[9] K. Jangid, S. Mukhopadhyay, A domain of influence theorem under MGT thermoelasticity theory, Mathematics and Mechanics of Solids, Vol. 26, No. 2, pp. 285-295, 2021.
[10] K. Jangid, M. Gupta, S. Mukhopadhyay, On propagation of harmonic plane waves under the Moore–Gibson–Thompson thermoelasticity theory, Waves in Random and Complex Media, Vol. 34, No. 3, pp. 1976-1999, 2024/05/03, 2024.
[11] A. E. Abouelregal, H. M. Sedighi, A new insight into the interaction of thermoelasticity with mass diffusion for a half-space in the context of Moore–Gibson–Thompson thermodiffusion theory, Applied Physics A, Vol. 127, No. 8, pp. 582, 2021/07/06, 2021.
[12] S. Gupta, R. Dutta, S. Das, Memory response in a nonlocal micropolar double porous thermoelastic medium with variable conductivity under Moore-Gibson-Thompson thermoelasticity theory, Journal of Ocean Engineering and Science, Vol. 8, No. 3, pp. 263-277, 2023/06/01/, 2023.
[13] V. Gupta, M. S. Barak, S. Das, Vibrational analysis of size-dependent thermo-piezo-photo-electric semiconductor medium under memory-dependent Moore–Gibson–Thompson photo-thermoelasticity theory, Mechanics of Advanced Materials and Structures, Vol. 31, No. 28, pp. 10543-10559, 2024/12/16, 2024.
[14] B. Singh, H. Kumar, S. Mukhopadhyay, Thermoelastic damping analysis in micro-beam resonators in the frame of modified couple stress and Moore–Gibson–Thompson (MGT) thermoelasticity theories, Waves in Random and Complex Media, Vol. 34, No. 5, pp. 4960-4977, 2024/09/02, 2024.
[15] R. Quintanilla, Moore-Gibson-Thompson thermoelasticity with two temperatures, Applications in Engineering Science, Vol. 1, pp. 100006, 2020/03/01/, 2020.
[16] K. Jangid, S. Mukhopadhyay, A domain of influence theorem for a natural stress–heat-flux problem in the Moore–Gibson–Thompson thermoelasticity theory, Acta Mechanica, Vol. 232, No. 1, pp. 177-187, 2021/01/01, 2021.
[17] R. Chteoui, K. Lotfy, M. A. Seddeek, A. El-Dali, W. S. Hassanin, Moore–Gibson–Thompson Stability Model in a Two-Temperature Photonic Semiconductor Excited Medium Affected by Rotation and Initial Stress, Crystals, Vol. 12, No. 12, pp. 1720, 2022.
[18] M. Adel, A. El-Dali, M. A. Seddeek, A. S. Yahya, A. A. El-Bary, K. Lotfy, The Fractional Derivative and Moisture Diffusivity for Moore-Gibson-Thompson Model of Rotating Magneto-Semiconducting Material, Journal of Vibration Engineering & Technologies, Vol. 12, No. 1, pp. 233-249, 2024/12/01, 2024.
[19] A. Hobiny, I. Abbas, M. Marin, The Influences of the Hyperbolic Two-Temperatures Theory on Waves Propagation in a Semiconductor Material Containing Spherical Cavity, Mathematics, Vol. 10, No. 1, pp. 121, 2022.
[20] A. E. Abouelregal, S. S. Askar, M. Marin, B. Mohamed, The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod, Scientific Reports, Vol. 13, No. 1, pp. 9052, 2023/06/03, 2023.
[21] A. Zeeshan, M. I. Khan, R. Ellahi, M. Marin, Computational Intelligence Approach for Optimising MHD Casson Ternary Hybrid Nanofluid over the Shrinking Sheet with the Effects of Radiation, Applied Sciences, Vol. 13, No. 17, pp. 9510, 2023.
[22] M. Marin, Weak Solutions in Elasticity of Dipolar Porous Materials, Mathematical Problems in Engineering, Vol. 2008, No. 1, pp. 158908, 2008.
[23] !!! INVALID CITATION !!! [23-35].
[24] K. Lotfy, I. S. Elshazly, B. Halouani, S. Sharma, A. A. El-Bary, W. S. Hassanin, Nonlocal photoacoustic waves in hydro-Poroelastic semiconductors with variable thermal conductivity subjected to mass diffusion, International Communications in Heat and Mass Transfer, Vol. 163, pp. 108692, 2025/04/01/, 2025.
[25] M. A. Ezzat, H. M. Youssef, State Space Approach for Conducting Magneto-Thermoelastic Medium with Variable Electrical and Thermal Conductivity Subjected to Ramp-Type Heating, Journal of Thermal Stresses, Vol. 32, No. 4, pp. 414-427, 2009/03/19, 2009.
[26] K. Lotfy, A novel model for photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechanical ramp type with two-temperature theory and magnetic field, Scientific Reports, Vol. 9, No. 1, pp. 3319, 2019/03/01, 2019.
[27] A. M. Alharbi, S. M. Said, E. M. Abd-Elaziz, M. I. A. Othman, Influence of Initial Stress and Variable Thermal Conductivity on a Fiber-Reinforced Magneto-Thermoelastic Solid with Micro-Temperatures by Multi-Phase-Lags Model, International Journal of Structural Stability and Dynamics, Vol. 22, No. 01, pp. 2250007, 2022.
[28] A. Hobiny, I. Abbas, Generalized Thermoelastic Interaction in Orthotropic Media under Variable Thermal Conductivity Using the Finite Element Method, Mathematics, Vol. 11, No. 4, pp. 955, 2023.
[29] A. D. Hobiny, I. A. Abbas, The influences of thermal relaxation time and varying thermal conductivity in thermoelastic media, Case Studies in Thermal Engineering, Vol. 56, pp. 104263, 2024/04/01/, 2024.
[30] P. K. Sharma, A. Bajpai, R. Kumar, Analysis of two temperature thermoelastic diffusion plate with variable thermal conductivity and diffusivity, Waves in Random and Complex Media, Vol. 34, No. 5, pp. 3670-3688, 2024/09/02, 2024.
[31] R. Tiwari, Magneto-thermoelastic interactions in generalized thermoelastic half-space for varying thermal and electrical conductivity, Waves in Random and Complex Media, Vol. 34, No. 3, pp. 1795-1811, 2024/05/03, 2024.
[32] S. Deswal, A. Jangra, B. S. Punia, Reflection of plane waves at the free surface of a magneto-thermoelastic medium with variable thermal conductivity and variable mass diffusivity, Waves in Random and Complex Media, Vol. 35, No. 1, pp. 1750-1772, 2025/01/02, 2025.
[33] T. E. I. Nassar, A. M. S. Mahdy, K. Lotfy, Photoacoustic dynamics in microtemperature semiconductor media with variable thermal conductivity and nonlocal effects, The European Physical Journal B, Vol. 98, No. 2, pp. 26, 2025/02/14, 2025.
[34] P. Ailawalia, Priyanka, M. Marin, H. Altenbach, Variable thermal conductivity in context of Green-Naghdi theory of thermo-microstretch solids, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 104, No. 4, pp. e202400010, 2024.
[35] E. Ibrahim, S. El-Sapa, A. A. El-Bary, K. Lotfy, Effects of variable thermal conductivity and magnetic field on the photo-thermoelastic wave propagation in hydro-microelongated semiconductor, Acta Mechanica, Vol. 236, No. 4, pp. 2509-2527, 2025/04/01, 2025.