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Abstract 

The present investigation deals with the effect of variable thermal 

conductivity in an isotropic, unbounded and homogeneous thermoelastic 

medium under Moore Gibson Thompson (MGT) thermoelasticity theory. 

The normal mode analysis technique is applied for obtaining the 

displacement, stress, and temperature field. The values of these components 

are obtained by simulation technique using MATLAB and are shown 

graphically. The results also depict the variations for different theories of 

thermoelasticity. 
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1. Introduction 

The classical Fourier’s law is widely employed by researchers to solve the conventional thermoelastic problems. 

But this law predicts infinite velocity of heat wave propagation which is practically impossible. The classical 

coupled thermoelasticity(CTE) theory was first introduced by Biot [1]. The first generalization was given by Lord 

and Shulman [2] by replacing the classical Fourier’s law with the heat conduction equation 

 

Green and Lindsay [3] derived the second generalization by developing the thermoelastic theory of temperature 

rate dependent. Namely, Green and Naghdi [4-6] introduced three versions of thermoelasticity theory termed as GN-

I, GN-II and GN-III. In context of GN-III model, the modified Fourier’s law was defined as: 

 

But instantaneous propagation of heat waves still exists in this model. Consequently, a modification of this heat 

conduction equation was done by introducing a relaxation parameter as: 
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Above equation together with the equation of energy constitutes Moore Gibson Thompson (MGT) equation. A 

lot of work has been done in the past based on MGT theory. Authors have solved problems on MGT theory in the 

field of thermoelasticity [7-10], thermoelasticity with diffusion [11], non-local micropolar double porous 

thermoelastic medium [12], thermos-piezo-electric semiconducting solid [13] and microbeams resonators [14]. Some 

more contributors [15-18] in MGT theory of thermoelasticity are acknowledged in the section. 

Thermoelastic medium under different theories has been explored by researchers during the last century. Huge 

number of problems has been solved and interesting results have been developed [19-22]. 

        The thermal conductivity of an elastic material varies with temperature under exposure to high temperature. 

Therefore, the thermal conductivity cannot be treated as constant. So, it is necessary to take variable thermal 

conductivity into consideration. Various researchers are continuously working on this concept. The concept of 

variable thermal conductivity has attracted the attention of many researchers [23-35] in recent years. 

        The present paper deals with the effect of variable thermal conductivity in thermoelastic medium subjected 

to MGT theory. The authors have obtained the analytical expressions of various thermoelastic parameters using 

normal mode analysis. The results are depicted graphically in two and three dimensions to show the effect of 

varying thermal conductivity on all considered physical quantities for different theories of thermoelasticity. 

2. Basic Equations 

The equations governing isotropic and homogenous thermoelastic medium under Moore-Gibson-Thompson 

thermoelasticity theory in the absence of body forces and heat sources are given by [10]: 

 

 

From the above set of equations (6) and (7), we can extract the four different theories of thermoelasticity as follows: 

(1) For Biot classical model , 

 (2) For LS model , 

 (3) For Green-Naghdi (Type III) model , 

 (4) For MGT model . 

 

3. Formulation of the problem Structure 

 

We consider that medium to be parallel to  plane with  axis pointing vertically downwards, so the 

displacement vector has two components for the plane strain problem i.e  where both  and  are 

functions of , and . Therefore, for two-dimensional problem above equations (4) to (7) can be expressed as: 
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It is assumed that the thermal and mechanical properties vary with temperature. Therefore, thermal conductivity 

 may be treated as a function dependent on temperature [15] and is written as: 

 

We consider the following mapping [15]: 

 

The dimensionless quantities defined below are introduced to felicitate the convenience of numerical 

calculations: 

 

where, . 

Now using equations (11) to (13) in equations (8) to (10), the following equations in dimensionless form are 

obtained (on removing the primes): 

 

where values of arbitrary constants are given in appendix. 

4. Solution Methodology 

Since we have considered the propagation of waves parallel to  - plane therefore the solution of the variables 

may be considered in terms of modes and is written as: 

 

where  is the complex time constant and  is the wave number in the -direction. 

 

Using (17) in (14) to (16), we get the following equations: 
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Three coupled equations (18), (19) and (20) in terms of  and  are obtained. 

On solving these equations, we obtain a differential equation of order six given by, 

 

The solution of above equations satisfying the radiation conditions  as  can be expressed as: 

 

where  are roots of auxiliary equation of (21). 

Further, the constants are related by the following relations: 

. 

 

Also, the values of  are mentioned in Appendix. 

5. Boundary Conditions 

For obtaining the values of constants , the following boundary conditions are used: 

1. A mechanical force  is applied at the free surface  along the normal direction. 

 

2. Further the free surface  is free from tangential stress. 

 

3. The insulated free surface is considered. 

 

Using (17), (22)-(24) in the above boundary conditions, we get a non-homogenous system of three equations. 

This system is solved by simulation technique using MATLAB software to find the values of unknown parameters.  

6. Numerical Computation and Discussion 

For proving the effect of thermal conductivity on various physical quantities, we take the example of copper [10]. 

The physical constants involved in this problem can be taken as follows: 

 

, 
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All calculations are performed for , where  at the surface . The 

variations in considered physical quantities are studied for the above numerical values against horizontal distance  

under Biot model, LS model, GN-III model and MGT Model depicted graphically in two and three dimensions. 

Figure 1 shows variation of tangential displacement with horizontal distance. The values of tangential 

displacement coincide for all models discussed above subjected to constant thermal conductivity . But when 

thermal conductivity is varied to , the variation of tangential displacement coincides for MGT and LS 

model and attains its maximum value near the interface . Also, the value of tangential displacement for both 

the models decreases as horizontal distance increases. But reverse pattern is observed in case of Biot model. Further 

in case of GN-III theory, the value of tangential displacement does not vary with horizontal distance. 

Figure 2 shows variation of normal displacement with horizontal distance. The values of normal displacement 

increase exponentially for all models subjected to constant thermal conductivity . But when thermal 

conductivity is varied to , the normal displacement for MGT and LS model first decreases in range 

 and then becomes constant. The value of normal displacement does not vary with horizontal distance 

for Biot model and GN-III model for . 

Figure 3 shows variation of tangential stress with horizontal distance. The values of tangential stress coincide for 

all models in case of constant thermal conductivity  and GN-III model in case . But the tangential 

stress follows a bell shape variation in case  for MGT and LS model.Further in case of Biot model, the 

value of tangential stress first decreases when horizontal distance lies in range  and then increases 

sharply as horizontal distance increases. 

Figure 4 shows variation of normal stress with horizontal distance. The values of normal stress first decrease in 

range  for all models and then became constant in case of constant thermal conductivity . In case 

of variable thermal conductivity, the behaviour of normal stress coincides for MGT and LS model. There is no 

variation in normal stress with horizontal distance in case of Biot model and GN-III model. 

Figure 5 shows variation of temperature with horizontal distance. The values of temperature increase 

exponentially for Biot and LS model for . Also, the values of temperature increase with horizontal distance 

for MGT and GN-III model. But when thermal conductivity is varied to , the variation in temperature 

coincides for all model and is constant with horizontal distance for . 

Figures 6 to 10 gives the three-dimensional views of all field quantities for . These figures are helpful 

in finding the exact values of all quantities for different values of  and  coordinates. 

 
Figure 1:  vs  
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Figure 2:  vs  

 

Figure 3:  vs  

 

Figure 4:  vs  
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Figure 5:  vs  

 

 
Figure 6:  for  
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Figure 7:  for  

 

 
Figure 8:  for  

 

 
Figure 9:  for  
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Figure 10:  for  

 

7. Conclusions 

On the basis of the above numerical discussion, the following conclusions can be drawn: 

1. There is an appreciable effect of varying thermal conductivity on all field quantities. 

2. For constant thermal conductivity, tangential displacement is identical across all models. For variable 

thermal conductivity, MGT and LS models show coinciding tangential displacement, peaking near the 

interface, and decreasing with horizontal distance. 

3.  The variation of all considered physical quantities coincides for MGT and LS model in constant as 

well as variable therrmal conductivity. 

4. Normal displacement increases exponentially for all models in case of constant thermal conductivity. 

5. Normal force stress shows identical behavior for MGT and LS models whereas there is no variation for 

Biot and GN-III models in case of variable conductivity. 

 

Appendix 

, 

, 

, 

, 

 
, 

, 

 
 

Acknowledgment  

The authors are thankful to the authorities of Chandigarh University, Mohali for their support in preparing the 

article. 



800 Praveen Ailawalia et al. 

References 

 

[1] M. A. Biot, Thermoelasticity and irreversible thermodynamics, Journal of applied physics, Vol. 27, No. 3, 

pp. 240-253, 1956.  

[2] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics 

and Physics of Solids, Vol. 15, No. 5, pp. 299-309, 1967.  

[3] A. E. Green, K. Lindsay, Thermoelasticity, Journal of elasticity, Vol. 2, No. 1, pp. 1-7, 1972.  

[4] A. E. Green, P. Naghdi, A re-examination of the basic postulates of thermomechanics, Proceedings of the 

Royal Society of London. Series A: Mathematical and Physical Sciences, Vol. 432, No. 1885, pp. 171-194, 

1991.  

[5] A. E. Green, P. M. Naghdi, ON UNDAMPED HEAT WAVES IN AN ELASTIC SOLID, Journal of 

Thermal Stresses, Vol. 15, No. 2, pp. 253-264, 1992/04/01, 1992.  

[6] A. Green, P. Naghdi, Thermoelasticity without energy dissipation, Journal of elasticity, Vol. 31, No. 3, pp. 

189-208, 1993.  

[7] R. Quintanilla, Moore–Gibson–Thompson thermoelasticity, Mathematics and Mechanics of Solids, Vol. 24, 

pp. 108128651986200, 07/21, 2019.  

[8] N. Bazarra, J. R. Fernández, R. Quintanilla, Analysis of a Moore–Gibson–Thompson thermoelastic 

problem, Journal of Computational and Applied Mathematics, Vol. 382, pp. 113058, 2021/01/15/, 2021.  

[9] K. Jangid, S. Mukhopadhyay, A domain of influence theorem under MGT thermoelasticity theory, 

Mathematics and Mechanics of Solids, Vol. 26, No. 2, pp. 285-295, 2021.  

[10] K. Jangid, M. Gupta, S. Mukhopadhyay, On propagation of harmonic plane waves under the Moore–

Gibson–Thompson thermoelasticity theory, Waves in Random and Complex Media, Vol. 34, No. 3, pp. 

1976-1999, 2024/05/03, 2024.  

[11] A. E. Abouelregal, H. M. Sedighi, A new insight into the interaction of thermoelasticity with mass 

diffusion for a half-space in the context of Moore–Gibson–Thompson thermodiffusion theory, Applied 

Physics A, Vol. 127, No. 8, pp. 582, 2021/07/06, 2021.  

[12] S. Gupta, R. Dutta, S. Das, Memory response in a nonlocal micropolar double porous thermoelastic 

medium with variable conductivity under Moore-Gibson-Thompson thermoelasticity theory, Journal of 

Ocean Engineering and Science, Vol. 8, No. 3, pp. 263-277, 2023/06/01/, 2023.  

[13] V. Gupta, M. S. Barak, S. Das, Vibrational analysis of size-dependent thermo-piezo-photo-electric 

semiconductor medium under memory-dependent Moore–Gibson–Thompson photo-thermoelasticity 

theory, Mechanics of Advanced Materials and Structures, Vol. 31, No. 28, pp. 10543-10559, 2024/12/16, 

2024.  

[14] B. Singh, H. Kumar, S. Mukhopadhyay, Thermoelastic damping analysis in micro-beam resonators in the 

frame of modified couple stress and Moore–Gibson–Thompson (MGT) thermoelasticity theories, Waves in 

Random and Complex Media, Vol. 34, No. 5, pp. 4960-4977, 2024/09/02, 2024.  

[15] R. Quintanilla, Moore-Gibson-Thompson thermoelasticity with two temperatures, Applications in 

Engineering Science, Vol. 1, pp. 100006, 2020/03/01/, 2020.  

[16] K. Jangid, S. Mukhopadhyay, A domain of influence theorem for a natural stress–heat-flux problem in the 

Moore–Gibson–Thompson thermoelasticity theory, Acta Mechanica, Vol. 232, No. 1, pp. 177-187, 

2021/01/01, 2021.  

[17] R. Chteoui, K. Lotfy, M. A. Seddeek, A. El-Dali, W. S. Hassanin, Moore–Gibson–Thompson Stability 

Model in a Two-Temperature Photonic Semiconductor Excited Medium Affected by Rotation and Initial 

Stress, Crystals, Vol. 12, No. 12, pp. 1720, 2022.  

[18] M. Adel, A. El-Dali, M. A. Seddeek, A. S. Yahya, A. A. El-Bary, K. Lotfy, The Fractional Derivative and 

Moisture Diffusivity for Moore-Gibson-Thompson Model of Rotating Magneto-Semiconducting Material, 

Journal of Vibration Engineering & Technologies, Vol. 12, No. 1, pp. 233-249, 2024/12/01, 2024.  

[19] A. Hobiny, I. Abbas, M. Marin, The Influences of the Hyperbolic Two-Temperatures Theory on Waves 

Propagation in a Semiconductor Material Containing Spherical Cavity, Mathematics, Vol. 10, No. 1, pp. 

121, 2022.  

[20] A. E. Abouelregal, S. S. Askar, M. Marin, B. Mohamed, The theory of thermoelasticity with a memory-

dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod, Scientific Reports, 

Vol. 13, No. 1, pp. 9052, 2023/06/03, 2023.  

[21] A. Zeeshan, M. I. Khan, R. Ellahi, M. Marin, Computational Intelligence Approach for Optimising MHD 

Casson Ternary Hybrid Nanofluid over the Shrinking Sheet with the Effects of Radiation, Applied 

Sciences, Vol. 13, No. 17, pp. 9510, 2023.  



Journal of Computational Applied Mechanics 2025, 56(4): 791-801 801 

[22] M. Marin, Weak Solutions in Elasticity of Dipolar Porous Materials, Mathematical Problems in 

Engineering, Vol. 2008, No. 1, pp. 158908, 2008.  

[23] !!! INVALID CITATION !!! [23-35].  

[24] K. Lotfy, I. S. Elshazly, B. Halouani, S. Sharma, A. A. El-Bary, W. S. Hassanin, Nonlocal photoacoustic 

waves in hydro-Poroelastic semiconductors with variable thermal conductivity subjected to mass diffusion, 

International Communications in Heat and Mass Transfer, Vol. 163, pp. 108692, 2025/04/01/, 2025.  

[25] M. A. Ezzat, H. M. Youssef, State Space Approach for Conducting Magneto-Thermoelastic Medium with 

Variable Electrical and Thermal Conductivity Subjected to Ramp-Type Heating, Journal of Thermal 

Stresses, Vol. 32, No. 4, pp. 414-427, 2009/03/19, 2009.  

[26] K. Lotfy, A novel model for photothermal excitation of variable thermal conductivity semiconductor elastic 

medium subjected to mechanical ramp type with two-temperature theory and magnetic field, Scientific 

Reports, Vol. 9, No. 1, pp. 3319, 2019/03/01, 2019.  

[27] A. M. Alharbi, S. M. Said, E. M. Abd-Elaziz, M. I. A. Othman, Influence of Initial Stress and Variable 

Thermal Conductivity on a Fiber-Reinforced Magneto-Thermoelastic Solid with Micro-Temperatures by 

Multi-Phase-Lags Model, International Journal of Structural Stability and Dynamics, Vol. 22, No. 01, pp. 

2250007, 2022.  

[28] A. Hobiny, I. Abbas, Generalized Thermoelastic Interaction in Orthotropic Media under Variable Thermal 

Conductivity Using the Finite Element Method, Mathematics, Vol. 11, No. 4, pp. 955, 2023.  

[29] A. D. Hobiny, I. A. Abbas, The influences of thermal relaxation time and varying thermal conductivity in 

thermoelastic media, Case Studies in Thermal Engineering, Vol. 56, pp. 104263, 2024/04/01/, 2024.  

[30] P. K. Sharma, A. Bajpai, R. Kumar, Analysis of two temperature thermoelastic diffusion plate with variable 

thermal conductivity and diffusivity, Waves in Random and Complex Media, Vol. 34, No. 5, pp. 3670-

3688, 2024/09/02, 2024.  

[31] R. Tiwari, Magneto-thermoelastic interactions in generalized thermoelastic half-space for varying thermal 

and electrical conductivity, Waves in Random and Complex Media, Vol. 34, No. 3, pp. 1795-1811, 

2024/05/03, 2024.  

[32] S. Deswal, A. Jangra, B. S. Punia, Reflection of plane waves at the free surface of a magneto-thermoelastic 

medium with variable thermal conductivity and variable mass diffusivity, Waves in Random and Complex 

Media, Vol. 35, No. 1, pp. 1750-1772, 2025/01/02, 2025.  

[33] T. E. I. Nassar, A. M. S. Mahdy, K. Lotfy, Photoacoustic dynamics in microtemperature semiconductor 

media with variable thermal conductivity and nonlocal effects, The European Physical Journal B, Vol. 98, 

No. 2, pp. 26, 2025/02/14, 2025.  

[34] P. Ailawalia, Priyanka, M. Marin, H. Altenbach, Variable thermal conductivity in context of Green-Naghdi 

theory of thermo-microstretch solids, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift 

für Angewandte Mathematik und Mechanik, Vol. 104, No. 4, pp. e202400010, 2024.  

[35] E. Ibrahim, S. El-Sapa, A. A. El-Bary, K. Lotfy, Effects of variable thermal conductivity and magnetic 

field on the photo-thermoelastic wave propagation in hydro-microelongated semiconductor, Acta 

Mechanica, Vol. 236, No. 4, pp. 2509-2527, 2025/04/01, 2025.  

 


