[1] M. Y. Hussaini, T. A. Zang, 1986, Spectral Methods in Fluid Dynamics, No. NAS 1.26: 178103,
[2] J. P. Boyd, 2001, Chebyshev and F ourier Spectral Methods, Courier Corporation,
[3] D. Funaro, 1992, Polynomial Approximation of Differential Equations, Springer,
[4] L. N. Trefethen, 2000, Spectral Methods in MATLAB, SIAM,
[5] D. Gottlieb, S. A. Orszag, 1977, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM,
[6] J. Shen, T. Tang, L.-L. Wang, 2011, Spectral Methods: Algorithms, Analysis and Applications, Springer Science & Business Media,
[7] A. Quarteroni, A. Valli, 1994, Numerical Approximation of Partial Differential Equations, Springer,
[8] C. Bernardi, Y. Maday, Spectral methods, in: Handbook of Numerical Analysis, Eds., pp. 209--485, 1997.
[9] J. Shen, Efficient spectral- G alerkin method I . D irect solvers of second- and fourth-order equations using L egendre polynomials, SIAM Journal on Scientific Computing, Vol. 15, No. 6, pp. 1489--1505, 1994.
[10] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, 2006, Spectral Methods: Fundamentals in Single Domains, Springer,
[11] R. J. LeVeque, 2007, Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM,
[12] S. C. Brenner, L. R. Scott, 2008, The Mathematical Theory of Finite Element Methods, Springer,
[13] W. Heinrichs, Improved condition number for spectral methods, Mathematics of Computation, Vol. 61, No. 204, pp. 677--694, 1993.
[14] R. Peyret, 2002, Spectral Methods for Incompressible Viscous Flow, Springer,
[15] D. Funaro, D. Gottlieb, A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations, Mathematics of Computation, Vol. 51, No. 184, pp. 599--613, 1988.
[16] J. Shen, T. Tang, 2006, Spectral and High-Order Methods with Applications, Science Press Beijing,
[17] B.-y. Guo, 1998, Spectral Methods and Their Applications, World Scientific,
[18] J. Shen, Efficient spectral- G alerkin method II . D irect solvers of second- and fourth-order equations using C hebyshev polynomials, SIAM Journal on Scientific Computing, Vol. 16, No. 1, pp. 74--87, 1995.
[19] J. C. Mason, D. C. Handscomb, 2003, Chebyshev Polynomials, Chapman and Hall/CRC,
[20] P. E. Ricci, C hebyshev polynomials, F ibonacci polynomials and L ucas polynomials, Rendiconti di Matematica, Vol. 15, pp. 23--45, 1995.
[21] W. M. Abd-Elhameed, Y. H. Youssri, Spectral solutions for fractional differential equations via a novel L ucas operational matrix of fractional derivatives, Romanian Journal of Physics, Vol. 61, No. 5-6, pp. 795--813, 2016.
[22] W. M. Abd-Elhameed, Y. H. Youssri, Generalized L ucas polynomial sequence approach for fractional differential equations, Nonlinear Dynamics, Vol. 89, No. 2, pp. 1341--1355, 2017.
[23] W. M. Abd-Elhameed, Y. H. Youssri, A. K. Amin, L ucas polynomials based spectral methods for solving the fractional order electrohydrodynamics flow model, Communications in Nonlinear Science and Numerical Simulation, Vol. 99, pp. 105850, 2021.
[24] R. K. Mahonty, G. Arora, A. Kaushik, An efficient numerical scheme based on L ucas polynomials for the study of multidimensional B urgers-type equations, Advances in Continuous and Discrete Models, Vol. 2021, No. 1, pp. 1--24, 2021.
[25] L. C. Evans, 2022, Partial Differential Equations, American mathematical society,
[26] H. Brezis, 2011, Functional Analysis, S obolev Spaces and Partial Differential Equations, Springer,
[27] G. H. Golub, C. F. Van Loan, 2013, Matrix Computations, JHU press,
[28] Y. Saad, 2003, Iterative Methods for Sparse Linear Systems, SIAM,
[29] A. Ern, J.-L. Guermond, 2004, Theory and Practice of Finite Elements, Springer,
[30] P. G. Ciarlet, 2002, The Finite Element Method for Elliptic Problems, SIAM,
[31] T. Koshy, 2019, Fibonacci and Lucas Numbers with Applications, Volume 2, John Wiley & Sons,