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Abstract 

This study looks at how to solve the two-dimensional Poisson equation, a math 

problem common in physics and engineering. We focus on spectral methods, 

which are good at solving problems with smooth solutions. We introduce a 

spectral Galerkin method that uses tensor products of modified shifted Lucas 

polynomials. These polynomials haven’t been used this way before. By adding 

a factor of 𝒙(𝟏 − 𝒙)  to the Lucas polynomials, our method automatically 

meets certain boundary conditions, which makes it easier to use while keeping 

its accuracy. Our goal is to create and test this method for solving the Poisson 

equation on a square. We create fast algorithms for putting together matrices 

and study how well the method converges using math and computer 

experiments. The tests show that our method has similar convergence rates to 

other methods like Chebyshev and Legendre. The errors go down 

exponentially for smooth source terms. The method is efficient and has good 

conditioning, which suggests that Lucas polynomials could be a good 

alternative to regular polynomials in spectral methods. This research could 

lead to using Lucas polynomial-based spectral methods for more general 

problems. 

Keywords: Spectral Methods; Galerkin Method; Spectral Galerkin Method; Lucas Polynomials; Poisson 

Equation; Special Polynomials; Tensor-product Approximation; Elliptic Partial Differential Equations 

(PDEs). 

1. Introduction 

For decades, computational mathematics has advanced the creation of precise numerical methods for partial 

differential equations. Spectral methods are useful, especially when accuracy is critical and solutions are smooth. 

These methods offer spectral accuracy—fast convergence for smooth problems—unlike finite difference or finite 

element methods [1, 2]. 

Spectral methods use smooth basis functions to represent solutions instead of local approximations. For 𝑢(𝑥, 𝑦) 
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on domain Ω, approximations look like: 

𝑢(𝑥, 𝑦) ≈ 𝑢𝑁(𝑥, 𝑦) = ∑ 𝜇𝑖𝑗

𝑁

𝑖,𝑗=0

Ψ𝑖𝑗(𝑥, 𝑦), (1) 

where Ψ𝑖𝑗  are basis functions (orthogonal polynomials or trigonometric functions, etc) and 𝜇𝑖𝑗 are coefficients. Basis 

function selection is important. Typical choices are Chebyshev and Legendre polynomials [3, 4]. 

Gottlieb and Orszag’s 1977 work [5] made spectral methods common in computing. Since then, the area has grown, 

with uses in fluid dynamics, quantum mechanics, meteorology, and other fields needing accuracy [6]. Fast transform 

methods, like the Fast Fourier Transform, have made these methods competitive. 

Among spectral methods, the Galerkin approach is important. It uses a variational form: the differential equation’s 

residual is orthogonal to the basis functions’ space. This weak form keeps the continuous problem’s structure—

symmetry, conservation—making it good for elliptic problems [7, 8]. For tensor-product domains, tensor-product basis 

functions can make computations quick, turning an 𝑂(𝑁4) problem in 2D into 𝑂(𝑁3) operations [9, 10]. 

1.1. The Poisson Equation 

The Poisson equation is key in mathematical physics. Its use in electrostatics, heat conduction, and fluid flow makes 

it a starting point for numerical methods. In 2D with Dirichlet boundary conditions, it is: 

−∇2𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) in Ω, 𝑢(𝑥, 𝑦) = 0 on ∂Ω, (2) 

where ∇2 is the Laplacian, 𝑢 is the unknown, and 𝑓 is the source. 

This equation’s numerical solution has a history. Finite difference methods are popular because they are simple 

[11]. Finite element methods are used for complex domains [12]. For simple domains with smooth solutions, spectral 

methods are best. They can reach machine precision with few degrees of freedom, needing fewer mesh elements than 

other methods [13, 14]. 

Applying spectral methods to boundary value problems involves treating boundary conditions. Methods include 

the tau method, penalty methods, and basis functions satisfying the boundary conditions [15, 16]. We use the last, 

changing the polynomial basis to vanish at boundaries and satisfy Dirichlet conditions. This is simple and useful [17, 

18]. 

1.2.  Lucas Polynomials 

Lucas polynomials are a specific type of special polynomial. Named after Édouard Lucas (1842-1891), they appear 

in math, from number theory to combinatorics. They follow the recurrence: 

𝐿0(𝑥) = 2, 𝐿1(𝑥) = 𝑥, 𝐿𝑛+1(𝑥) = 𝑥𝐿𝑛(𝑥) + 𝐿𝑛−1(𝑥). (3) 

Computationally, Lucas polynomials relate to Chebyshev polynomials. 𝐿𝑛(𝑥) = 2𝑈𝑛−1(𝑥/2), where 𝑈𝑛 is the 

Chebyshev polynomial of the second kind. This means Lucas polynomials might have good approximation 

properties like Chebyshev polynomials [19, 20]. 

While Lucas polynomials are used in math, they are not often used in spectral methods. Recent work uses them 

for fractional differential equations. Abd-Elhameed and Youssri [21, 22] made operational matrices for Lucas 

polynomials and applied them to fractional problems. They have been used on electrohydrodynamics problems [23] 

and Burgers equations [24]. Their use in spectral Galerkin methods for elliptic PDEs is not well-studied, so we will 

study them. 

We use shifted Lucas polynomials, with 𝑥 = 2𝑡 − 1: 

𝐿𝑛
𝑠 (𝑡) = 𝐿𝑛(2𝑡 − 1), (4) 

mapping [−1,1] to [0,1]. For Dirichlet boundary conditions, we use Shen’s approach (Shen 1994) and define 

modified shifted Lucas polynomials: 
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𝜙𝑛(𝑡) = 𝑡(1 − 𝑡)𝐿𝑛
𝑠 (𝑡). (5) 

This makes 𝜙𝑛(0) = 𝜙𝑛(1) = 0 for all 𝑛, satisfying boundary conditions and keeping the polynomials’ 

approximation properties. 

1.3. Objectives and Contributions 

This study aims to create and test a spectral Galerkin method for solving the two-dimensional Poisson equation. This 

method is based on adjusted shifted Lucas polynomials and uses homogeneous Dirichlet boundary conditions. People 

have studied this problem a lot. But, finding new polynomial bases for spectral methods is still an active research area. 

Different polynomial families may have different calculation benefits. Lucas polynomials have a simple three-term 

recurrence relation and a link to Chebyshev polynomials of the second kind. This could lead to advantages that need 

a close look. 

Our main contributions are: 

First, we build a full spectral Galerkin system using tensor products of adjusted shifted Lucas polynomials. This 

involves creating proper basis functions that meet the boundary conditions. We also form the weak problem and build 

the resulting discrete linear system. As far as we know, this is the first time Lucas polynomials have been used as 

basis functions for elliptic boundary value problems in a spectral Galerkin setting. 

Second, we create quick algorithms to calculate the stiffness and mass matrices in our system. By using the tensor-

product structure of the two-dimensional basis and the three-term recurrence relation of Lucas polynomials, the 

calculation complexity is close to common spectral methods using standard orthogonal polynomials. 

Third, we give a careful error analysis that shows our method converges at the best speed. The analysis gives clear 

limits on the expansion coefficients, truncation errors, and total residual error. It shows that the method reaches 

spectral accuracy for smooth solutions. The theory follows standard methods, but we pay attention to the specific 

features of the adjusted Lucas polynomial basis. 

Finally, we check our theoretical results with thorough numerical tests. These tests use standard problems with 

known solutions. This lets us confirm the predicted convergence rates and see how well the method performs in 

practice, looking at accuracy and calculation speed. 

The rest of this paper is set up as follows. Section 2 gives important background, like definitions from functional 

analysis and key things about standard and shifted Lucas polynomials. Section 3 creates the math system, building 

our spectral basis and forming the weak Galerkin system. Section 4 details the numerical solution scheme, including 

how to put together the matrix and carry out the steps. Section 5 gives the theoretical error analysis, setting limits on 

coefficients, truncation errors, and residuals. Section 6 gives examples that show how well the method works. Section 

7 gives final thoughts and possible future research directions. 

We hope this study helps spectral methods grow by showing that Lucas polynomials can be good basis functions 

for elliptic PDEs. We focus on the model Poisson problem in this paper. But, the methods we develop should work 

for a wider range of problems. We plan to study this in the future. 

 

2. Essential Preliminaries 

2.1. Preliminary Definitions and Analysis Foundations 

Definition 1 (𝐿2(Ω) Space).  Space of square-integrable functions:  

𝐿2(Ω) = {𝑣: Ω → ℝ ∣∥ 𝑣 ∥𝐿2(Ω)< ∞}, ∥ 𝑣 ∥𝐿2(Ω)= (∬|
Ω

𝑣|2𝑑Ω)

1/2

. (6) 

Equipped with inner product ⟨𝑢, 𝑣⟩𝐿2 = ∬ 𝑢
Ω

𝑣𝑑Ω. 

Definition 2 (𝐻1(Ω) Space).  Sobolev space of functions with square-integrable first derivatives:  

𝐻1(Ω) = {𝑣 ∈ 𝐿2(Ω) ∣ ∂𝑥𝑣, ∂𝑦𝑣 ∈ 𝐿
2(Ω)}, (7) 
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where derivatives are weak derivatives. 

Definition 3 (𝐻0
1(Ω) Space).  Subspace of 𝐻1(Ω) with vanishing trace on ∂Ω:  

𝐻0
1(Ω) = {𝑣 ∈ 𝐻1(Ω) ∣ 𝑣|∂Ω = 0}. (8) 

2.2. Some Properties of the Standard and Shifted Lucas polynomials 

2.2.1. Standard Lucas Polynomials 

Definition 4.  The Lucas polynomials {𝐿𝑛(𝑥)}𝑛=0
∞  are defined in (Bergum and Jr. 1974) by the recurrence:  

{

𝐿0(𝑥) = 2,

𝐿1(𝑥) = 𝑥,

𝐿𝑛(𝑥) = 𝑥𝐿𝑛−1(𝑥) + 𝐿𝑛−2(𝑥), 𝑛 ≥ 2.

 (9) 

Binet’s formula for the Lucas polynomials 𝐿𝑛(𝑥) is given by [22]: 

𝐿𝑛(𝑥) = 𝛼(𝑥)𝑛 + 𝛽(𝑥)𝑛 (10) 

Where:  

𝛼(𝑥) =
𝑥 + √𝑥2 + 4

2
 and 𝛽(𝑥) =

𝑥 − √𝑥2 + 4

2
 (11) 

and also have the following explicit power form representation [21]:  

𝐿𝑛(𝑥) = 𝑛 ∑
(𝑛 − 𝑘 − 1)!

𝑘! (𝑛 − 2𝑘)!

⌊𝑛/2⌋

𝑘=0

𝑥𝑛−2𝑘. (12) 

2.2.2. Shifted Lucas Polynomials to [0,1] 

Definition 5.  The shifted Lucas polynomials {𝐿𝑛
𝑠 (𝑥)}𝑛=0

∞  are defined by the affine transformation:  

𝐿𝑛
𝑠 (𝑥) = 𝐿𝑛(2𝑥 − 1), 𝑥 ∈ [0,1]. (13) 

With Recurrence Relation:  

{

𝐿0
𝑠 (𝑥) = 2,

𝐿1
𝑠 (𝑥) = 2𝑥 − 1,

𝐿𝑛
𝑠 (𝑥) = (2𝑥 − 1)𝐿𝑛−1

𝑠 (𝑥) + 𝐿𝑛−2
𝑠 (𝑥), 𝑛 ≥ 2.

 (14) 

3. Mathematical Formulation  

We consider the two-dimensional Poisson equation with homogeneous Dirichlet boundary conditions on the unit 

square Ω = (0,1) × (0,1). This classical elliptic boundary value problem seeks a function 𝑢: Ω → ℝ satisfying  

−∇2𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) in Ω,

𝑢(𝑥, 𝑦) = 0 on ∂Ω,
 (15) 

where ∇2= ∂2/ ∂𝑥2 + ∂2/ ∂𝑦2 denotes the Laplace operator and 𝑓: Ω → ℝ is a prescribed source term. The choice of 

the unit square as our computational domain, while seemingly restrictive, allows us to fully exploit the tensor-product 

structure of our proposed spectral basis while maintaining sufficient generality for theoretical analysis and numerical 

validation. 

To ensure well-posedness of the problem and optimal convergence of our spectral approximation, we assume that 

the source term satisfies 𝑓 ∈ 𝐿2(Ω), implying ∥ 𝑓 ∥𝐿2(Ω)< ∞. While classical solutions require 𝑢 ∈ 𝐶2(Ω) ∩ 𝐶0(Ω), 
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our variational formulation naturally seeks solutions in the Sobolev space 𝐻0
1(Ω), which consists of functions in 

𝐻1(Ω)  that vanish on the boundary in the trace sense. This weak formulation not only relaxes the regularity 

requirements but also provides the natural setting for our Galerkin spectral method. In what follows, we develop a 

spectral approximation scheme based on modified shifted Lucas polynomials that automatically incorporates the 

boundary conditions. 

3.1. Spectral Basis Construction 

The cornerstone of our numerical scheme is the construction of appropriate basis functions that combine the favorable 

properties of Lucas polynomials with automatic satisfaction of the boundary conditions. We begin with the shifted 

Lucas polynomials 𝐿𝑘
𝑠 (𝑥) on [0,1], obtained from the standard Lucas polynomials through the transformation 𝑥 ↦

2𝑥 − 1. Since these polynomials do not inherently vanish at the boundaries, we introduce the modified shifted Lucas 

polynomials  

𝜙𝑘(𝑥) = 𝑥(1 − 𝑥)𝐿𝑘
𝑠 (𝑥), 𝑘 = 0,1,2, … (16) 

The multiplication by the factor 𝑥(1 − 𝑥) ensures that 𝜙𝑘(0) = 𝜙𝑘(1) = 0 for all 𝑘, thereby guaranteeing that any 

linear combination of these functions satisfies the homogeneous Dirichlet boundary conditions. These modified basis 

functions inherit several desirable properties: they belong to 𝐶∞[0,1] ∩ 𝐻0
1(0,1), form a complete set in 𝐻0

1(0,1), and 

remain linearly independent since deg(𝜙𝑘) = 𝑘 + 2. Moreover, they satisfy the computationally efficient recurrence 

relation  

𝜙𝑘(𝑥) = (2𝑥 − 1)𝜙𝑘−1(𝑥) + 𝜙𝑘−2(𝑥), 𝑘 ≥ 2, (17) 

with initial conditions 𝜙0(𝑥) = 2𝑥(1 − 𝑥) and 𝜙1(𝑥) = 𝑥(1 − 𝑥)(2𝑥 − 1). 

For the two-dimensional problem, we employ a tensor-product approach, defining the finite-dimensional 

approximation space  

𝑉𝑁 = span{Φ𝑖𝑗(𝑥, 𝑦) = 𝜙𝑖(𝑥)𝜙𝑗(𝑦): 𝑖, 𝑗 = 0,1, … , 𝑁} ⊂ 𝐻0
1(Ω). (18) 

This space has dimension (𝑁 + 1)2, and each basis function Φ𝑖𝑗  automatically vanishes on the entire boundary ∂Ω 

due to the properties of the one-dimensional basis functions. The approximate solution is then sought in the form  

𝑢𝑁(𝑥, 𝑦) =∑∑𝑐𝑖𝑗

𝑁

𝑗=0

𝑁

𝑖=0

𝜙𝑖(𝑥)𝜙𝑗(𝑦), (19) 

where the coefficients {𝑐𝑖𝑗} are to be determined through the Galerkin procedure described in the following subsection. 

3.2. Weak Formulation and Galerkin Method 

To develop our spectral Galerkin scheme, we first derive the weak formulation of the Poisson equation. Rather than 

working directly with the second-order differential operator in the strong form, we employ Green’s identity to reduce 

the regularity requirements and obtain a symmetric variational problem [25, 26]. This approach not only relaxes the 

smoothness demands on the solution but also leads to a symmetric stiffness matrix, enabling the use of efficient linear 

solvers optimized for symmetric positive-definite systems [27, 28]. The variational formulation is fundamental to 

modern numerical methods for PDEs [29], providing both theoretical insights into well-posedness and practical 

advantages in implementation [30]. 

Theorem 1.  For 𝑢 ∈ 𝐻0
1(Ω):  

∫∇
Ω

𝑢 ⋅ ∇𝑣𝑑Ω = ∫𝑓
Ω

𝑣𝑑Ω ∀𝑣 ∈ 𝐻0
1(Ω). (20) 

Proof. Multiply (15) by 𝑣:  

−(∇2𝑢)𝑣 = 𝑓𝑣 (21) 
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By Integrating over Ω, to get the weak form,  

−∬(
Ω

∇2𝑢)𝑣𝑑Ω = ∬𝑓
Ω

𝑣𝑑Ω. (22) 

From the vector identity:  

∇ ⋅ (𝑣∇𝑢) = ∇𝑣 ⋅ ∇𝑢 + 𝑣∇2𝑢. (23) 

Integrating over Ω:  

∫∇
Ω

⋅ (𝑣∇𝑢)𝑑Ω = ∫∇
Ω

𝑣 ⋅ ∇𝑢𝑑Ω + ∫𝑣
Ω

∇2𝑢𝑑Ω. (24) 

Applying the divergence theorem:  

∫∇
Ω

⋅ (𝑣∇𝑢)𝑑Ω = ∫ (
∂Ω

𝑣∇𝑢) ⋅ 𝐧𝑑𝑠 = ∫ 𝑣
∂Ω

(∇𝑢 ⋅ 𝐧)𝑑𝑠. (25) 

where 𝐧 is the outward unit normal vector to ∂Ω. 

Rearranging terms:  

∫𝑣
Ω

∇2𝑢𝑑Ω = ∫ 𝑣
∂Ω

(∇𝑢 ⋅ 𝐧)𝑑𝑠 − ∫∇
Ω

𝑢 ⋅ ∇𝑣𝑑Ω. (26) 

By substituting into the weak form:  

− [∫ 𝑣
∂Ω

(∇𝑢 ⋅ 𝐧)𝑑𝑠 − ∫∇
Ω

𝑢 ⋅ ∇𝑣𝑑Ω] = ∫𝑓
Ω

𝑣𝑑Ω. (27) 

Since 𝑣 ∈ 𝐻0
1(Ω), the trace operator satisfies Tr(𝑣) = 0 on ∂Ω, thus we can impose the boundary conditions:  

∫ 𝑣
∂Ω

(∇𝑢 ⋅ 𝐧)𝑑𝑠 = 0. (28) 

The equation simplifies to:  

∫∇
Ω

𝑢 ⋅ ∇𝑣𝑑Ω = ∫𝑓
Ω

𝑣𝑑Ω. (29) 

 ◻ 

Having established the weak formulation in theorem 1, we now derive the discrete linear system arising from the 

Galerkin method. The approximate solution 𝑢𝑁 ∈ 𝑉𝑁 must satisfy  

∫∇
Ω

𝑢𝑁 ⋅ ∇𝑣 𝑑Ω = ∫𝑓
Ω

𝑣 𝑑Ω ∀𝑣 ∈ 𝑉𝑁 . (30) 

Substituting 𝑢𝑁 = ∑ ∑ 𝑐𝑖𝑗
𝑁
𝑗=0

𝑁
𝑖=0 Φ𝑖𝑗  and testing against basis functions Φ𝑘𝑙: 

∫∇
Ω

(∑∑𝑐𝑖𝑗

𝑁

𝑗=0

𝑁

𝑖=0

Φ𝑖𝑗) ⋅ ∇Φ𝑘𝑙𝑑Ω = ∫𝑓
Ω

Φ𝑘𝑙𝑑Ω ∀𝑘, 𝑙 = 0,… , 𝑁. (31) 

Becomes:  
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∑∑𝑐𝑖𝑗

𝑁

𝑗=0

𝑁

𝑖=0

∫∇
Ω

Φ𝑖𝑗 ⋅ ∇Φ𝑘𝑙𝑑Ω = ∫𝑓
Ω

𝜙𝑘(𝑥)𝜙𝑙(𝑦)𝑑Ω ∀𝑘, 𝑙 = 0,… , 𝑁. (32) 

To compute the left-hand side of (32) explicitly, we are going to expand the following: 

 

The gradients are:  

∇Φ𝑖𝑗 =

(

 

d

d𝑥
[𝜙𝑖(𝑥)𝜙𝑗(𝑦)]

d

d𝑦
[𝜙𝑖(𝑥)𝜙𝑗(𝑦)]

)

 = (
𝜙′

𝑖
(𝑥)𝜙𝑗(𝑦)

𝜙𝑖(𝑥)𝜙
′
𝑗
(𝑦)

) ,

∇Φ𝑘𝑙 = (
𝜙𝑘′(𝑥)𝜙𝑙(𝑦)

𝜙𝑘(𝑥)𝜙𝑙′(𝑦)
) .

 (33) 

The dot product is:  

∇Φ𝑖𝑗 ⋅ ∇Φ𝑘𝑙 = [𝜙
′
𝑖
(𝑥)𝜙𝑗(𝑦)][𝜙𝑘′(𝑥)𝜙𝑙(𝑦)] + [𝜙𝑖(𝑥)𝜙

′
𝑗
(𝑦)] [𝜙𝑘(𝑥)𝜙𝑙′(𝑦)]

= 𝜙′
𝑖
(𝑥)𝜙𝑘′(𝑥)𝜙𝑗(𝑦)𝜙𝑙(𝑦) + 𝜙𝑖(𝑥)𝜙𝑘(𝑥)𝜙

′
𝑗
(𝑦)𝜙𝑙′(𝑦).

 (34) 

Thus:  

∫∇
Ω

Φ𝑖𝑗 ⋅ ∇Φ𝑘𝑙𝑑Ω = ∫ [𝜙′
𝑖
(𝑥)𝜙𝑘′(𝑥)𝜙𝑗(𝑦)𝜙𝑙(𝑦) + 𝜙𝑖(𝑥)𝜙𝑘(𝑥)𝜙

′
𝑗
(𝑦)𝜙𝑙′(𝑦)]

Ω

dΩ (35) 

 

In the following steps, we are separating the variables more explicitly, which will be more efficient in forming the 

matrix system of the problem. 

By Fubini’s Theorem and the rectangular domain Ω = [0,1] × [0,1], from (35): 

∫∇
Ω

Φ𝑖𝑗 ⋅ ∇Φ𝑘𝑙𝑑Ω = ∫ ∫ 𝜙′
𝑖

1

0

1

0

(𝑥)𝜙𝑘′(𝑥)𝜙𝑗(𝑦)𝜙𝑙(𝑦)d𝑥d𝑦 + ∫ ∫ 𝜙𝑖

1

0

1

0

(𝑥)𝜙𝑘(𝑥)𝜙
′
𝑗
(𝑦)𝜙𝑙′(𝑦)d𝑥d𝑦

= (∫ 𝜙′
𝑖

1

0

(𝑥)𝜙𝑘′(𝑥)𝑑𝑥) (∫ 𝜙𝑗

1

0

(𝑦)𝜙𝑙(𝑦)𝑑𝑦)

 +(∫ 𝜙𝑖

1

0

(𝑥)𝜙𝑘(𝑥)𝑑𝑥) (∫ 𝜙′
𝑗

1

0

(𝑦)𝜙𝑙′(𝑦)𝑑𝑦) .

 (36) 

Defining the 1D matrices:  

𝐾𝑖𝑘 = ∫ 𝜙′
𝑖

1

0

(𝑥)𝜙𝑘′(𝑥)𝑑𝑥, we call it stiffness matrix.

𝑀𝑖𝑘 = ∫ 𝜙𝑖

1

0

(𝑥)𝜙𝑘(𝑥)𝑑𝑥,  we call it mass matrix.

 (37) 

The left-hand side simplifies to:  

∫∇
Ω

Φ𝑖𝑗 ⋅ ∇Φ𝑘𝑙𝑑Ω = 𝐾𝑖𝑘𝑀𝑗𝑙 +𝑀𝑖𝑘𝐾𝑗𝑙  (38) 

Similarly to the left-hand side expansion, we expand the right-hand side of equation (32) as follows:  

∫𝑓
Ω

Φ𝑘𝑙𝑑Ω = ∫𝑓
Ω

(𝑥, 𝑦)Φ𝑘𝑙(𝑥, 𝑦)dΩ = ∫ ∫ 𝑓
1

0

1

0

(𝑥, 𝑦)𝜙𝑘(𝑥)𝜙𝑙(𝑦)d𝑥d𝑦 (39) 
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The discrete system  

∑∑𝑐𝑖𝑗

𝑁

𝑗=0

𝑁

𝑖=0

(𝐾𝑖𝑘𝑀𝑗𝑙 +𝑀𝑖𝑘𝐾𝑗𝑙) = ∫𝑓
Ω

Φ𝑘𝑙𝑑Ω, ∀𝑘, 𝑙 = 0,… , 𝑁. (40) 

can be expressed as the linear system 𝐀𝐜 = 𝐛 through the following constructions. The solution coefficients {𝑐𝑖𝑗} are 

vectorized into 𝐜 ∈ ℝ(𝑁+1)
2
 using column-major ordering:  

𝐜 = [𝑐00, 𝑐10, … , 𝑐𝑁0, 𝑐01, 𝑐11, … , 𝑐𝑁1, … , 𝑐0𝑁 , … , 𝑐𝑁𝑁]
𝑇 . (41) 

The system matrix 𝐀 ∈ ℝ(𝑁+1)
2×(𝑁+1)2 is given by  

𝐀(𝑘,𝑙),(𝑖,𝑗) = 𝐾𝑘𝑖𝑀𝑙𝑗 +𝑀𝑘𝑖𝐾𝑙𝑗 , (42) 

which, by symmetry of the stiffness matrix 𝐾 and mass matrix 𝑀 (𝐾𝑘𝑖 = 𝐾𝑖𝑘 , 𝑀𝑙𝑗 = 𝑀𝑗𝑙), corresponds to the 

Kronecker product form  

𝐀 = 𝑀⊗𝐾 + 𝐾⊗𝑀, (43) 

where 𝐾,𝑀 ∈ ℝ(𝑁+1)×(𝑁+1). 

The right-hand side vector 𝐛 ∈ ℝ(𝑁+1)
2
 uses identical column-major ordering with components:  

𝐛 = [∫𝑓
Ω

Φ00𝑑Ω,  ∫𝑓
Ω

Φ10𝑑Ω,  … ,  ∫𝑓
Ω

Φ𝑁0𝑑Ω,  ∫𝑓
Ω

Φ01𝑑Ω,  … ,  ∫𝑓
Ω

Φ𝑁𝑁𝑑Ω]

𝑇

. (44) 

 

4. Numerical Solution Scheme 

Lemma 1.  The basis functions 𝜙𝑘(𝑥) = 𝑥(1 − 𝑥)𝐿𝑘
𝑠 (𝑥) satisfy: 

1. 𝜙𝑘(𝑥) is symmetric about 𝑥 = 1/2 if 𝑘 is even: 𝜙𝑘(𝑥) = 𝜙𝑘(1 − 𝑥) 

2. 𝜙𝑘(𝑥) is antisymmetric about 𝑥 = 1/2 if 𝑘 is odd: 𝜙𝑘(𝑥) = −𝜙𝑘(1 − 𝑥) 

3. 𝜙𝑘(1/2) = 0 if 𝑘 is odd, and 𝜙𝑘(1/2) = 1/2 if 𝑘 is even 

Proof. We establish the symmetry properties of 𝐿𝑘
𝑠 (𝑥), then extend these to 𝜙𝑘(𝑥). 

For the Symmetry of 𝐿𝑘
𝑠 (𝑥) about 𝑥 = 1/2: 

We prove by induction that for all 𝑘 ∈ ℕ0:  

𝐿𝑘
𝑠 (1 − 𝑥) = {

𝐿𝑘
𝑠 (𝑥) if 𝑘 is even

−𝐿𝑘
𝑠 (𝑥) if 𝑘 is odd

 (45) 

For the base cases, we have 𝐿0
𝑠 (𝑥) = 2, which gives  

𝐿0
𝑠 (1 − 𝑥) = 2 = 𝐿0

𝑠 (𝑥) (46) 

and 𝐿1
𝑠 (𝑥) = 2𝑥 − 1, which gives  

𝐿1
𝑠(1 − 𝑥) = 2(1 − 𝑥) − 1 = 1 − 2𝑥 = −(2𝑥 − 1) = −𝐿1

𝑠(𝑥) (47) 

Assume the property holds for all 𝑚 < 𝑘 where 𝑘 ≥ 2. The recurrence relation 𝐿𝑘
𝑠 (𝑥) = (2𝑥 − 1)𝐿𝑘−1

𝑠 (𝑥) +
𝐿𝑘−2
𝑠 (𝑥) evaluated at 1 − 𝑥 yields  
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𝐿𝑘
𝑠 (1 − 𝑥) = (2(1 − 𝑥) − 1)𝐿𝑘−1

𝑠 (1 − 𝑥) + 𝐿𝑘−2
𝑠 (1 − 𝑥) = (1 − 2𝑥)𝐿𝑘−1

𝑠 (1 − 𝑥) + 𝐿𝑘−2
𝑠 (1 − 𝑥) (48) 

When 𝑘 is even, 𝑘 − 1 is odd and 𝑘 − 2 is even. By the inductive hypothesis, 𝐿𝑘−1
𝑠 (1 − 𝑥) = −𝐿𝑘−1

𝑠 (𝑥) and 

𝐿𝑘−2
𝑠 (1 − 𝑥) = 𝐿𝑘−2

𝑠 (𝑥). Therefore  

𝐿𝑘
𝑠 (1 − 𝑥) = (1 − 2𝑥)(−𝐿𝑘−1

𝑠 (𝑥)) + 𝐿𝑘−2
𝑠 (𝑥)

= (2𝑥 − 1)𝐿𝑘−1
𝑠 (𝑥) + 𝐿𝑘−2

𝑠 (𝑥)

= 𝐿𝑘
𝑠 (𝑥)

 (49) 

When 𝑘 is odd, 𝑘 − 1 is even and 𝑘 − 2 is odd. By the inductive hypothesis, 

 𝐿𝑘−1
𝑠 (1 − 𝑥) = 𝐿𝑘−1

𝑠 (𝑥) and 𝐿𝑘−2
𝑠 (1 − 𝑥) = −𝐿𝑘−2

𝑠 (𝑥). Therefore  

𝐿𝑘
𝑠 (1 − 𝑥) = (1 − 2𝑥)𝐿𝑘−1

𝑠 (𝑥) + (−𝐿𝑘−2
𝑠 (𝑥))

= −[(2𝑥 − 1)𝐿𝑘−1
𝑠 (𝑥) + 𝐿𝑘−2

𝑠 (𝑥)]

= −𝐿𝑘
𝑠 (𝑥)

 (50) 

For the Symmetry of 𝜙𝑘(𝑥) about 𝑥 = 1/2: 

The factor 𝑔(𝑥) = 𝑥(1 − 𝑥) satisfies  

𝑔(1 − 𝑥) = (1 − 𝑥)[1 − (1 − 𝑥)] = (1 − 𝑥)𝑥 = 𝑥(1 − 𝑥) = 𝑔(𝑥) (51) 

Hence 𝑔(𝑥) is symmetric about 𝑥 = 1/2. For the basis functions, we have  

𝜙𝑘(1 − 𝑥) = (1 − 𝑥)𝑥𝐿𝑘
𝑠 (1 − 𝑥) = 𝑥(1 − 𝑥)𝐿𝑘

𝑠 (1 − 𝑥) (52) 

When 𝑘 is even, 𝐿𝑘
𝑠 (1 − 𝑥) = 𝐿𝑘

𝑠 (𝑥), yielding  

𝜙𝑘(1 − 𝑥) = 𝑥(1 − 𝑥)𝐿𝑘
𝑠 (𝑥) = 𝜙𝑘(𝑥) (53) 

When 𝑘 is odd, 𝐿𝑘
𝑠 (1 − 𝑥) = −𝐿𝑘

𝑠 (𝑥), yielding  

𝜙𝑘(1 − 𝑥) = 𝑥(1 − 𝑥)(−𝐿𝑘
𝑠 (𝑥)) = −𝜙𝑘(𝑥) (54) 

This establishes parts (i) and (ii) of the lemma. 

For the Values at 𝑥 = 1/2: 

We prove by induction that for all 𝑘 ∈ ℕ0:  

𝐿𝑘
𝑠 (
1

2
) = {

2 if 𝑘 is even

0 if 𝑘 is odd
 (55) 

For the base cases, 𝐿0
𝑠 (1/2) = 2 and 𝐿1

𝑠 (1/2) = 2 ⋅ (1/2) − 1 = 0. 

Assume the property holds for all 𝑚 < 𝑘 where 𝑘 ≥ 2. Evaluating the recurrence relation at 𝑥 = 1/2:  

𝐿𝑘
𝑠 (
1

2
) = (2 ⋅

1

2
− 1) 𝐿𝑘−1

𝑠 (
1

2
) + 𝐿𝑘−2

𝑠 (
1

2
) = 0 ⋅ 𝐿𝑘−1

𝑠 (
1

2
) + 𝐿𝑘−2

𝑠 (
1

2
) = 𝐿𝑘−2

𝑠 (
1

2
) (56) 

When 𝑘 is even, 𝑘 − 2 is even, so 𝐿𝑘−2
𝑠 (1/2) = 2 by the inductive hypothesis. When 𝑘 is odd, 𝑘 − 2 is odd, so 

𝐿𝑘−2
𝑠 (1/2) = 0 by the inductive hypothesis. 

For the basis functions at 𝑥 = 1/2:  

𝜙𝑘 (
1

2
) =

1

2
⋅
1

2
⋅ 𝐿𝑘

𝑠 (
1

2
) =

1

4
𝐿𝑘
𝑠 (
1

2
) (57) 

When 𝑘 is even, 𝜙𝑘(1/2) = (1/4) ⋅ 2 = 1/2. When 𝑘 is odd, 𝜙𝑘(1/2) = (1/4) ⋅ 0 = 0. 
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This establishes part (iii) of the lemma, completing the proof. ◻ 

Theorem 2.  For the mass matrix 𝑀𝑖𝑗 = ∫ 𝜙𝑖
1

0
(𝑥)𝜙𝑗(𝑥)𝑑𝑥  and stiffness matrix 𝐾𝑖𝑗 = ∫ 𝜙′

𝑖

1

0
(𝑥)𝜙′

𝑗
(𝑥)𝑑𝑥  with 

boundary-adjusted basis functions (modified shifted Lucas polynomials) 𝜙𝑘(𝑥) = 𝑥(1 − 𝑥)𝐿𝑘
𝑠 (𝑥), we have:  

𝑀𝑖𝑗 = 0 and 𝐾𝑖𝑗 = 0 whenever 𝑖 + 𝑗 is odd. (58) 

Proof. The proof consists of three parts: 

1. Establishing symmetry properties of the derivatives. 

2. proving antisymmetry of the integrands when 𝑖 + 𝑗 is odd. 

3. showing the integrals vanish over the symmetric interval [0,1]. 

Part 1: Symmetry Properties of 𝜙𝑘′(𝑥) 

Proposition 1.  The derivatives satisfy: 

1. For even 𝑘: 𝜙𝑘′(𝑥) is antisymmetric about 𝑥 =
1

2
: 𝜙𝑘′(1 − 𝑥) = −𝜙𝑘′(𝑥) 

2. For odd 𝑘: 𝜙𝑘′(𝑥) is symmetric about 𝑥 =
1

2
: 𝜙𝑘′(1 − 𝑥) = 𝜙𝑘′(𝑥) 

Proof. Differentiate the symmetry relation of 𝜙𝑘(𝑥) with respect to 𝑥:  

𝑑

𝑑𝑥
[𝜙𝑘(1 − 𝑥)] =

𝑑

𝑑𝑥
[𝜎𝑘𝜙𝑘(𝑥)] (59) 

where 𝜎𝑘 = 1 for even 𝑘 and 𝜎𝑘 = −1 for odd 𝑘. 

Applying the chain rule to the left side:  

𝜙𝑘′(1 − 𝑥) ⋅ (−1) = 𝜎𝑘𝜙𝑘′(𝑥) (60) 

Case 1: 𝑘 even (𝜎𝑘 = 1)  

−𝜙𝑘′(1 − 𝑥) = 𝜙𝑘′(𝑥) ⟹ 𝜙𝑘′(1 − 𝑥) = −𝜙𝑘′(𝑥) (61) 

Case 2: 𝑘 odd (𝜎𝑘 = −1)  

−𝜙𝑘′(1 − 𝑥) = −𝜙𝑘′(𝑥) ⟹ 𝜙𝑘′(1 − 𝑥) = 𝜙𝑘′(𝑥) (62) 

Thus, 𝜙𝑘′(𝑥) inherits the complementary symmetry to 𝜙𝑘(𝑥). ◻ 

Part 2: Antisymmetry of Integrands 

Proposition 2.  When 𝑖 + 𝑗 is odd, the product 𝜙𝑖(𝑥)𝜙𝑗(𝑥) is antisymmetric about 𝑥 =
1

2
:  

[𝜙𝑖𝜙𝑗](1 − 𝑥) = −𝜙𝑖(𝑥)𝜙𝑗(𝑥) (63) 

Proof. Without loss of generality, assume 𝑖 even and 𝑗 odd (since 𝑖 + 𝑗 odd implies opposite parities). From the basis 

function symmetries:  

𝜙𝑖(1 − 𝑥) = 𝜙𝑖(𝑥), 𝜙𝑗(1 − 𝑥) = −𝜙𝑗(𝑥) (64) 

Thus:  

[𝜙𝑖𝜙𝑗](1 − 𝑥) = 𝜙𝑖(1 − 𝑥)𝜙𝑗(1 − 𝑥) = 𝜙𝑖(𝑥) ⋅ (−𝜙𝑗(𝑥)) = −𝜙𝑖(𝑥)𝜙𝑗(𝑥) (65) 
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The case 𝑖 odd, 𝑗 even follows identically by commutativity. ◻ 

Proposition 3.  When 𝑖 + 𝑗 is odd, the product 𝜙′
𝑖
(𝑥)𝜙′

𝑗
(𝑥) is antisymmetric about 𝑥 =

1

2
:  

[𝜙′
𝑖
𝜙′

𝑗
](1 − 𝑥) = −𝜙′

𝑖
(𝑥)𝜙′

𝑗
(𝑥) (66) 

Proof. Assume 𝑖 even, 𝑗 odd. From Proposition 1 :  

𝜙′
𝑖
(1 − 𝑥) = −𝜙′

𝑖
(𝑥), 𝜙′

𝑗
(1 − 𝑥) = 𝜙′

𝑗
(𝑥) (67) 

Thus:  

[𝜙′
𝑖
𝜙′

𝑗
](1 − 𝑥) = 𝜙′

𝑖
(1 − 𝑥)𝜙′

𝑗
(1 − 𝑥) = (−𝜙′

𝑖
(𝑥)) ⋅ 𝜙′

𝑗
(𝑥) = −𝜙′

𝑖
(𝑥)𝜙′

𝑗
(𝑥) (68) 

The case 𝑖 odd, 𝑗 even follows similarly. ◻ 

Part 3: Vanishing of the Integrals 

Proposition 4.  For any function ℎ(𝑥) antisymmetric about 𝑥 =
1

2
 (i.e., ℎ(1 − 𝑥) = −ℎ(𝑥)),  

∫ ℎ
1

0

(𝑥)𝑑𝑥 = 0. (69) 

Proof. Decompose the integral and apply the substitution 𝑥 = 1 − 𝑢 in the second term:  

∫ ℎ
1

0

(𝑥)𝑑𝑥 = ∫ ℎ
1/2

0

(𝑥)𝑑𝑥 + ∫ ℎ
1

1/2

(𝑥)𝑑𝑥

= ∫ ℎ
1/2

0

(𝑥)𝑑𝑥 + ∫ ℎ
0

1/2

(1 − 𝑢)(−𝑑𝑢)

= ∫ ℎ
1/2

0

(𝑥)𝑑𝑥 + ∫ ℎ
1/2

0

(1 − 𝑢)𝑑𝑢.

 (70) 

Using antisymmetry ℎ(1 − 𝑢) = −ℎ(𝑢):  

∫ ℎ
1/2

0

(1 − 𝑢)𝑑𝑢 = ∫ −
1/2

0

ℎ(𝑢)𝑑𝑢

= −∫ ℎ
1/2

0

(𝑢)𝑑𝑢.

 (71) 

Thus:  

∫ ℎ
1

0

(𝑥)𝑑𝑥 = ∫ ℎ
1/2

0

(𝑥)𝑑𝑥 + (−∫ ℎ
1/2

0

(𝑢)𝑑𝑢)

= ∫ ℎ
1/2

0

(𝑥)𝑑𝑥 − ∫ ℎ
1/2

0

(𝑥)𝑑𝑥

= 0.

 (72) 

 ◻ 

From parts 1, 2 and 3, we finally conclude that when 𝑖 + 𝑗 is odd: 𝜙𝑖(𝑥)𝜙𝑗(𝑥) is antisymmetric (Propostion 2) and 

𝜙′
𝑖
(𝑥)𝜙′

𝑗
(𝑥) is antisymmetric (Proposition 3). 

Thus, from proposition 4, 
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𝑀𝑖𝑗 = ∫ 𝜙𝑖

1

0

𝜙𝑗𝑑𝑥 = 0 and 𝐾𝑖𝑗 = ∫ 𝜙′
𝑖

1

0

𝜙′
𝑗
𝑑𝑥 = 0 (73) 

This completes the proof. ◻ 

Theorem 3.  For all non-negative integers 𝑖 and 𝑗, and for all 𝑡 ∈ ℝ, the Lucas polynomials 𝐿𝑛(𝑡) satisfy:  

𝐿𝑖(𝑡)𝐿𝑗(𝑡) = 𝐿𝑖+𝑗(𝑡) + (−1)
min(𝑖,𝑗)𝐿|𝑖−𝑗|(𝑡). (74) 

Proof. To establish this identity, we utilize Binet’s closed-form formula for the Lucas polynomials. The Lucas 

polynomials admit the representation.  

𝐿𝑛(𝑡) = 𝛼𝑛 + 𝛽𝑛 , (75) 

where 𝛼 and 𝛽 are the roots of the characteristic equation 𝑟2 − 𝑡𝑟 − 1 = 0, explicitly given by  

𝛼 =
𝑡 + √𝑡2 + 4

2
, 𝛽 =

𝑡 − √𝑡2 + 4

2
. (76) 

These roots satisfy the fundamental relations.  

𝛼 + 𝛽 = 𝑡, 𝛼𝛽 = −1, and 𝛼 − 𝛽 = √𝑡2 + 4. (77) 

From 𝛼𝛽 = −1, it follows that 𝛽 = −𝛼−1 and 𝛼 = −𝛽−1. 

Consider the product 𝐿𝑖(𝑡)𝐿𝑗(𝑡). Applying Binet’s formula, we have  

𝐿𝑖(𝑡)𝐿𝑗(𝑡) = (𝛼𝑖 + 𝛽𝑖)(𝛼𝑗 + 𝛽𝑗). (78) 

Expanding the right-hand side yields  

𝐿𝑖(𝑡)𝐿𝑗(𝑡) = 𝛼
𝑖𝛼𝑗 + 𝛼𝑖𝛽𝑗 + 𝛽𝑖𝛼𝑗 + 𝛽𝑖𝛽𝑗 = 𝛼𝑖+𝑗 + 𝛽𝑖+𝑗 + 𝛼𝑖𝛽𝑗 + 𝛽𝑖𝛼𝑗. (79) 

We now simplify the cross terms 𝛼𝑖𝛽𝑗 and 𝛽𝑖𝛼𝑗 using the relation 𝛽 = −𝛼−1. First,  

𝛼𝑖𝛽𝑗 = 𝛼𝑖(−𝛼−1)𝑗 = (−1)𝑗𝛼𝑖𝛼−𝑗 = (−1)𝑗𝛼𝑖−𝑗 . (80) 

Similarly,  

𝛽𝑖𝛼𝑗 = (−𝛼−1)𝑖𝛼𝑗 = (−1)𝑖𝛼−𝑖𝛼𝑗 = (−1)𝑖𝛼𝑗−𝑖 . (81) 

To express both cross terms consistently, we observe that  

(−1)𝑖𝛼𝑗−𝑖 = (−1)𝑖[(−1)𝑗−𝑖𝛽𝑖−𝑗] = (−1)𝑖+𝑗−𝑖𝛽𝑖−𝑗 = (−1)𝑗𝛽𝑖−𝑗 . (82) 

Thus, the cross terms can be written uniformly as  

𝛼𝑖𝛽𝑗 = (−1)𝑗𝛼𝑖−𝑗 , 𝛽𝑖𝛼𝑗 = (−1)𝑗𝛽𝑖−𝑗. (83) 

The sum of the cross terms is therefore  

𝛼𝑖𝛽𝑗 + 𝛽𝑖𝛼𝑗 = (−1)𝑗𝛼𝑖−𝑗 + (−1)𝑗𝛽𝑖−𝑗 = (−1)𝑗(𝛼𝑖−𝑗 + 𝛽𝑖−𝑗). (84) 

Substituting this back into the expression for the product gives  

𝐿𝑖(𝑡)𝐿𝑗(𝑡) = 𝛼𝑖+𝑗 + 𝛽𝑖+𝑗 + (−1)𝑗(𝛼𝑖−𝑗 + 𝛽𝑖−𝑗). (85) 
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By Binet’s formula, 𝛼𝑖+𝑗 + 𝛽𝑖+𝑗 = 𝐿𝑖+𝑗(𝑡). The term 𝛼𝑖−𝑗 + 𝛽𝑖−𝑗 requires careful handling due to the exponent 𝑖 −

𝑗, which may be negative. We analyze this by considering two cases based on the relative values of 𝑖 and 𝑗. 

• When 𝐢 ≥ 𝐣: Here, 𝑖 − 𝑗 ≥ 0, so 𝛼𝑖−𝑗 + 𝛽𝑖−𝑗 = 𝐿𝑖−𝑗(𝑡). Since |𝑖 − 𝑗| = 𝑖 − 𝑗 and min(𝑖, 𝑗) = 𝑗, we have  

(−1)𝑗(𝛼𝑖−𝑗 + 𝛽𝑖−𝑗) = (−1)𝑗𝐿𝑖−𝑗(𝑡) = (−1)min(𝑖,𝑗)𝐿|𝑖−𝑗|(𝑡). (86) 

• When 𝐢 < 𝐣: Here, 𝑖 − 𝑗 < 0, and we use the property that for negative integers 𝑘, 𝛼𝑘 + 𝛽𝑘 = (−1)𝑘𝐿−𝑘(𝑡), 
which follows from 𝛼𝛽 = −1 and Binet’s formula applied to positive indices. Specifically, setting 𝑘 = 𝑖 −
𝑗, so 𝑘 < 0, and letting 𝑚 = −𝑘 = 𝑗 − 𝑖 > 0, we have  

𝛼𝑖−𝑗 + 𝛽𝑖−𝑗 = 𝛼−𝑚 + 𝛽−𝑚 = (−𝛽)𝑚 + (−𝛼)𝑚 = (−1)𝑚(𝛽𝑚 + 𝛼𝑚) = (−1)𝑚(𝛼𝑚 + 𝛽𝑚)
= (−1)𝑚𝐿𝑚(𝑡), 

(87) 

  where 𝑚 = 𝑗 − 𝑖. Since |𝑖 − 𝑗| = 𝑗 − 𝑖 = 𝑚, this becomes  

𝛼𝑖−𝑗 + 𝛽𝑖−𝑗 = (−1)|𝑖−𝑗|𝐿|𝑖−𝑗|(𝑡). (88) 

  Thus, the cross-term contribution is  

(−1)𝑗(𝛼𝑖−𝑗 + 𝛽𝑖−𝑗) = (−1)𝑗(−1)|𝑖−𝑗|𝐿|𝑖−𝑗|(𝑡) = (−1)
𝑗(−1)𝑗−𝑖𝐿|𝑖−𝑗|(𝑡). (89) 

  Simplifying the exponent,  

(−1)𝑗+𝑗−𝑖 = (−1)2𝑗−𝑖 = (−1)−𝑖 = (−1)𝑖 , (90) 

  because (−1)2𝑗 = 1 and (−1)−𝑖 = (−1)𝑖 (as (−1)𝑖 is its own inverse). Since min(𝑖, 𝑗) = 𝑖 when 𝑖 < 𝑗, we 

conclude  

(−1)𝑖𝐿|𝑖−𝑗|(𝑡) = (−1)
min(𝑖,𝑗)𝐿|𝑖−𝑗|(𝑡). (91) 

In both cases, the expression simplifies to  

(−1)𝑗(𝛼𝑖−𝑗 + 𝛽𝑖−𝑗) = (−1)min(𝑖,𝑗)𝐿|𝑖−𝑗|(𝑡). (92) 

Therefore,  

𝐿𝑖(𝑡)𝐿𝑗(𝑡) = 𝐿𝑖+𝑗(𝑡) + (−1)
min(𝑖,𝑗)𝐿|𝑖−𝑗|(𝑡), (93) 

Completing the proof. ◻ 

Theorem 4.  For non-negative integers 𝑖 and 𝑗 such that 𝑖 + 𝑗 is even, the integral of the product of shifted Lucas 

polynomials 𝐿𝑛
𝑠 (𝑥)against the weight [𝑥(1 − 𝑥)]2 over [0,1] is given by:  

∫ 𝐿𝑖
𝑠

1

0

(𝑥)𝐿𝑗
𝑠(𝑥)[𝑥(1 − 𝑥)]2𝑑𝑥 =

1

16
∑ 𝑐𝑖+𝑗,𝑘

⌊
𝑖+𝑗
2
⌋

𝑘=0

(
1

𝑖 + 𝑗 − 2𝑘 + 1
−

2

𝑖 + 𝑗 − 2𝑘 + 3
+

1

𝑖 + 𝑗 − 2𝑘 + 5
)

+
(−1)min(𝑖,𝑗)

16
∑ 𝑐|𝑖−𝑗|,𝑘

⌊
|𝑖−𝑗|
2

⌋

𝑘=0

(
1

|𝑖 − 𝑗| − 2𝑘 + 1
−

2

|𝑖 − 𝑗| − 2𝑘 + 3
+

1

|𝑖 − 𝑗| − 2𝑘 + 5
) ,

 (94) 

where the coefficients 𝑐𝑛,𝑘 are defined as:  

𝑐𝑛,𝑘 = {
2 if 𝑛 = 0 and 𝑘 = 0,
𝑛

𝑛 − 𝑘
(
𝑛 − 𝑘

𝑘
) otherwise.

 (95) 

Proof. Applying the substitution 𝑡 = 2𝑥 − 1, which implies:  
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𝑥 =
𝑡 + 1

2
, 𝑑𝑥 =

𝑑𝑡

2
. (96) 

The limits 𝑥 ∈ [0,1] transform to 𝑡 ∈ [−1,1]. The weight function simplifies to:  

𝑥(1 − 𝑥) =
𝑡 + 1

2
⋅
1 − 𝑡

2
=
1 − 𝑡2

4
,

[𝑥(1 − 𝑥)]2 = (
1 − 𝑡2

4
)

2

=
(1 − 𝑡2)2

16
.

 (97) 

The integral transforms to:  

∫ 𝐿𝑖
𝑠

1

0

(𝑥)𝐿𝑗
𝑠(𝑥)[𝑥(1 − 𝑥)]2𝑑𝑥 =

1

32
∫ 𝐿𝑖

1

−1

(𝑡)𝐿𝑗(𝑡)(1 − 𝑡
2)2𝑑𝑡. (98) 

By Theorem 3:  

𝐿𝑖(𝑡)𝐿𝑗(𝑡) = 𝐿𝑖+𝑗(𝑡) + (−1)
min(𝑖,𝑗)𝐿|𝑖−𝑗|(𝑡). (99) 

Substitute into (98):  

1

32
∫
1

−1

[𝐿𝑖+𝑗(𝑡) + (−1)
min(𝑖,𝑗)𝐿|𝑖−𝑗|(𝑡)](1 − 𝑡

2)2𝑑𝑡

=
1

32
[∫ 𝐿𝑖+𝑗

1

−1

(𝑡)(1 − 𝑡2)2𝑑𝑡 + (−1)min(𝑖,𝑗)∫ 𝐿|𝑖−𝑗|

1

−1

(𝑡)(1 − 𝑡2)2𝑑𝑡] .

 (100) 

We define the auxiliary integral for even 𝑛 (since 𝑖 + 𝑗 even implies 𝑖 + 𝑗 and |𝑖 − 𝑗| are even):  

ℐ(𝑛) = ∫ 𝐿𝑛

1

−1

(𝑡)(1 − 𝑡2)2𝑑𝑡, 𝑛 ∈ 2ℤ≥0. (101) 

Expressing 𝐿𝑛(𝑡) via its explicit form:  

𝐿𝑛(𝑡) = ∑ 𝑐𝑛,𝑘

⌊𝑛/2⌋

𝑘=0

𝑡𝑛−2𝑘, 𝑐𝑛,𝑘 = {
2 𝑛 = 0,  𝑘 = 0
𝑛

𝑛 − 𝑘
(
𝑛 − 𝑘

𝑘
) otherwise

. (102) 

Thus:  

ℐ(𝑛) = ∑ 𝑐𝑛,𝑘

⌊𝑛/2⌋

𝑘=0

∫ 𝑡𝑛−2𝑘
1

−1

(1 − 𝑡2)2𝑑𝑡. (103) 

Expanding (1 − 𝑡2)2 = 1 − 2𝑡2 + 𝑡4. Since 𝑛 is even and 𝑛 − 2𝑘 is even for all 𝑘, the integrand 𝑡𝑛−2𝑘(1 − 𝑡2)2 is 

even. Therefore:  

∫ 𝑡𝑚
1

−1

(1 − 2𝑡2 + 𝑡4)𝑑𝑡 = 2∫ 𝑡𝑚
1

0

(1 − 2𝑡2 + 𝑡4)𝑑𝑡, 𝑚 = 𝑛 − 2𝑘. (104) 

The antiderivative is:  

∫ 𝑡𝑚(1 − 2𝑡2 + 𝑡4)𝑑𝑡 =
𝑡𝑚+1

𝑚 + 1
−
2𝑡𝑚+3

𝑚 + 3
+
𝑡𝑚+5

𝑚 + 5
. (105) 

Evaluating from 0 to 1 gives:  
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2 [
1

𝑚 + 1
−

2

𝑚 + 3
+

1

𝑚 + 5
]. (106) 

Substituting 𝑚 = 𝑛 − 2𝑘 into (103):  

ℐ(𝑛) = 2 ∑ 𝑐𝑛,𝑘

⌊𝑛/2⌋

𝑘=0

(
1

𝑛 − 2𝑘 + 1
−

2

𝑛 − 2𝑘 + 3
+

1

𝑛 − 2𝑘 + 5
). (107) 

Substituting (107) into the product identity:  

∫
1

0

𝐿𝑖
𝑠(𝑥)𝐿𝑗

𝑠(𝑥)[𝑥(1 − 𝑥)]2𝑑𝑥

=
1

32
[ℐ(𝑖 + 𝑗) + (−1)min(𝑖,𝑗)ℐ(|𝑖 − 𝑗|)]

=
1

32
[2 ∑ 𝑐𝑖+𝑗,𝑘

⌊
𝑖+𝑗
2
⌋

𝑘=0

(
1

𝑖 + 𝑗 − 2𝑘 + 1
−

2

𝑖 + 𝑗 − 2𝑘 + 3
+

1

𝑖 + 𝑗 − 2𝑘 + 5
)

 +(−1)min(𝑖,𝑗) ⋅ 2 ∑ 𝑐|𝑖−𝑗|,𝑘

⌊
|𝑖−𝑗|
2

⌋

𝑘=0

(
1

|𝑖 − 𝑗| − 2𝑘 + 1
−

2

|𝑖 − 𝑗| − 2𝑘 + 3
+

1

|𝑖 − 𝑗| − 2𝑘 + 5
)]

=
1

16
∑ 𝑐𝑖+𝑗,𝑘

⌊
𝑖+𝑗
2
⌋

𝑘=0

(
1

𝑖 + 𝑗 − 2𝑘 + 1
−

2

𝑖 + 𝑗 − 2𝑘 + 3
+

1

𝑖 + 𝑗 − 2𝑘 + 5
)

 +
(−1)min(𝑖,𝑗)

16
∑ 𝑐|𝑖−𝑗|,𝑘

⌊
|𝑖−𝑗|
2

⌋

𝑘=0

(
1

|𝑖 − 𝑗| − 2𝑘 + 1
−

2

|𝑖 − 𝑗| − 2𝑘 + 3
+

1

|𝑖 − 𝑗| − 2𝑘 + 5
) .

 (108) 

Where,  

𝑐𝑛,𝑘 = {
2 if 𝑛 = 0 and 𝑘 = 0,
𝑛

𝑛 − 𝑘
(
𝑛 − 𝑘

𝑘
) otherwise.

 (109) 

The binomial coefficient (𝑛−𝑘
𝑘
) is well-defined for 0 ≤ 𝑘 ≤ ⌊𝑛/2⌋, ensuring all terms are valid. This completes the 

proof. ◻ 

Theorem 5.  Let 𝐿𝑛
𝑠 (𝑥) = 𝐿𝑛(2𝑥 − 1)  denote the shifted Lucas polynomial, where 𝐿𝑛(𝑢)  is the 𝑛 -th Lucas 

polynomial. For non-negative integers 𝑖, 𝑗 ≥ 0 with 𝑖 + 𝑗 even, the integral  

𝐼𝑖,𝑗 = ∫ [(1 − 2𝑥)𝐿𝑖
𝑠(𝑥) + 𝑥(1 − 𝑥)

𝑑𝐿𝑖
𝑠

𝑑𝑥
]

1

0

[(1 − 2𝑥)𝐿𝑗
𝑠(𝑥) + 𝑥(1 − 𝑥)

𝑑𝐿𝑗
𝑠

𝑑𝑥
] 𝑑𝑥 (110) 

admits the explicit algebraic expression:  

𝐼𝑖,𝑗 =
1

8
∑∑𝑏𝑝

(𝑖)

𝑗+1

𝑞=0

𝑖+1

𝑝=0

𝑏𝑞
(𝑗) 1 + (−1)

𝑝+𝑞

𝑝 + 𝑞 + 1
, (111) 

where the coefficients 𝑏𝑘
(𝑛)

 for 𝑛 ≥ 0, 0 ≤ 𝑘 ≤ 𝑛 + 1 are defined by:  



752 M.H. Salama et al. 

𝑏𝑘
(𝑛)
=

{
 
 
 
 
 
 

 
 
 
 
 
 2𝑛

𝑛 + 1
(

𝑛 + 1
2

𝑛 − 1
2

) if 𝑘 = 0 and 𝑛 is odd,

2 (
2𝑛

𝑛 + 2
(

𝑛
2
+ 1

𝑛
2
− 1

) − 2) if 𝑘 = 1 and 𝑛 is even,

(𝑘 + 1)

(

 
 2𝑛

𝑛 + 𝑘 + 1
(

𝑛 + 𝑘 + 1
2

𝑛 − 𝑘 − 1
2

) −
2𝑛

𝑛 + 𝑘 − 1
(

𝑛 + 𝑘 − 1
2

𝑛 − 𝑘 + 1
2

)

)

 
 

if 𝑘 ≥ 2 and 𝑛 − 𝑘 is odd,

0 otherwise.

 (112) 

and the binomial coefficients are zero if arguments are non-integer, the lower index is negative, or the lower index 

exceeds the upper index. 

Proof. Apply the substitution 𝑢 = 2𝑥 − 1, mapping 𝑥 ∈ [0,1] to 𝑢 ∈ [−1,1]. This yields:  

𝑥 =
𝑢 + 1

2
, 𝑑𝑥 =

𝑑𝑢

2
, 1 − 2𝑥 = −𝑢, 𝑥(1 − 𝑥) =

1 − 𝑢2

4
. (113) 

The shifted Lucas polynomial and its derivative transform as:  

𝐿𝑖
𝑠(𝑥) = 𝐿𝑖(𝑢), 

𝑑𝐿𝑖
𝑠

𝑑𝑥
=
𝑑𝐿𝑖
𝑑𝑢

⋅
𝑑𝑢

𝑑𝑥
= 2

𝑑𝐿𝑖
𝑑𝑢
. (114) 

Define the kernel for index 𝑖:  

𝐴𝑖(𝑥) = (1 − 2𝑥)𝐿𝑖
𝑠(𝑥) + 𝑥(1 − 𝑥)

𝑑𝐿𝑖
𝑠

𝑑𝑥
= −𝑢𝐿𝑖(𝑢) +

1 − 𝑢2

4
⋅ 2
𝑑𝐿𝑖
𝑑𝑢

= −𝑢𝐿𝑖(𝑢) +
1 − 𝑢2

2

𝑑𝐿𝑖
𝑑𝑢
. (115) 

The integrand becomes 𝐴𝑖(𝑥)𝐴𝑗(𝑥), and the integral transforms to:  

𝐼𝑖,𝑗 = ∫ [−𝑢𝐿𝑖(𝑢) +
1 − 𝑢2

2

𝑑𝐿𝑖
𝑑𝑢
]

1

−1

[−𝑢𝐿𝑗(𝑢) +
1 − 𝑢2

2

𝑑𝐿𝑗

𝑑𝑢
]
𝑑𝑢

2
. (116) 

Defining the auxiliary polynomial:  

𝐷𝑛(𝑢) = (1 − 𝑢2)
𝑑𝐿𝑛
𝑑𝑢

− 2𝑢𝐿𝑛(𝑢). (117) 

We observe that:  

−𝑢𝐿𝑛(𝑢) +
1 − 𝑢2

2

𝑑𝐿𝑛
𝑑𝑢

=
1

2
[(1 − 𝑢2)

𝑑𝐿𝑛
𝑑𝑢

− 2𝑢𝐿𝑛(𝑢)] =
1

2
𝐷𝑛(𝑢). (118) 

Thus, the integrand simplifies to:  

𝐴𝑖(𝑥)𝐴𝑗(𝑥) = (
1

2
𝐷𝑖(𝑢)) (

1

2
𝐷𝑗(𝑢)) =

1

4
𝐷𝑖(𝑢)𝐷𝑗(𝑢). (119) 

The integral is now:  

𝐼𝑖,𝑗 = ∫
1

4

1

−1

𝐷𝑖(𝑢)𝐷𝑗(𝑢) ⋅
𝑑𝑢

2
=
1

8
∫ 𝐷𝑖

1

−1

(𝑢)𝐷𝑗(𝑢)𝑑𝑢. (120) 
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The Lucas polynomial 𝐿𝑛(𝑢) has degree 𝑛 and expansion:  

𝐿𝑛(𝑢) = ∑ 𝑐𝑚
(𝑛)

𝑛

𝑚=0

𝑢𝑚, 𝑐𝑚
(𝑛)

= {
𝑛

𝑛 − ℓ
(
𝑛 − ℓ

ℓ
) if 𝑚 = 𝑛 − 2ℓ, ℓ = 0,1, … , ⌊

𝑛

2
⌋ ,

0 otherwise.

 (121) 

Its derivative is:  

𝑑𝐿𝑛
𝑑𝑢

= ∑ 𝑚

𝑛

𝑚=1

𝑐𝑚
(𝑛)
𝑢𝑚−1 = ∑(

𝑛−1

𝑚=0

𝑚+ 1)𝑐𝑚+1
(𝑛)

𝑢𝑚. (122) 

By Substituting into 𝐷𝑛(𝑢):  

𝐷𝑛(𝑢) = (1 − 𝑢2) ∑(

𝑛−1

𝑚=0

𝑚 + 1)𝑐𝑚+1
(𝑛)

𝑢𝑚 − 2𝑢 ∑ 𝑐𝑚
(𝑛)

𝑛

𝑚=0

𝑢𝑚. (123) 

Then, by expanding both terms:  

(1 − 𝑢2) ∑(

𝑛−1

𝑚=0

𝑚 + 1)𝑐𝑚+1
(𝑛)

𝑢𝑚 = ∑(

𝑛−1

𝑚=0

𝑚+ 1)𝑐𝑚+1
(𝑛)

𝑢𝑚 − ∑(

𝑛−1

𝑚=0

𝑚 + 1)𝑐𝑚+1
(𝑛)

𝑢𝑚+2

=∑(

𝑛−1

𝑘=0

𝑘 + 1)𝑐𝑘+1
(𝑛)
𝑢𝑘 −∑(

𝑛+1

𝑘=2

𝑘 − 1)𝑐𝑘−1
(𝑛)
𝑢𝑘,

−2𝑢 ∑ 𝑐𝑚
(𝑛)

𝑛

𝑚=0

𝑢𝑚 =∑−

𝑛+1

𝑘=1

2𝑐𝑘−1
(𝑛)
𝑢𝑘.

 (124) 

After, Combining and extracting coefficients of 𝑢𝑘, we get: 

• For 𝑘 = 0: 1 ⋅ 𝑐1
(𝑛)

= 𝑐1
(𝑛)

 

• For 𝑘 = 1: 2𝑐2
(𝑛)
− 2𝑐0

(𝑛)
 

• For 𝑘 ≥ 2: (𝑘 + 1)𝑐𝑘+1
(𝑛)

− (𝑘 − 1)𝑐𝑘−1
(𝑛)

− 2𝑐𝑘−1
(𝑛)

= (𝑘 + 1)(𝑐𝑘+1
(𝑛)

− 𝑐𝑘−1
(𝑛)
) 

Thus, 𝐷𝑛(𝑢) = ∑ 𝑏𝑘
(𝑛)𝑛+1

𝑘=0 𝑢𝑘 with:  

𝑏𝑘
(𝑛)

= {

𝑐1
(𝑛)

𝑘 = 0,

2𝑐2
(𝑛)
− 2𝑐0

(𝑛)
𝑘 = 1,

(𝑘 + 1)(𝑐𝑘+1
(𝑛)

− 𝑐𝑘−1
(𝑛)
) 𝑘 ≥ 2.

 (125) 

In the following, we derive closed forms for 𝑏𝑘
(𝑛)

 using the expression for 𝑐𝑚
(𝑛)

; 

Case 1: 𝑘 = 0 𝑏0
(𝑛)

= 𝑐1
(𝑛)

 is non-zero only if 𝑛 odd. Set 𝑚 = 1 = 𝑛 − 2ℓ, so ℓ = (𝑛 − 1)/2:  

𝑐1
(𝑛)

=
𝑛

𝑛 −
𝑛 − 1
2

(
𝑛 −

𝑛 − 1
2

𝑛 − 1
2

) =
𝑛

𝑛 + 1
2

(

𝑛 + 1
2

𝑛 − 1
2

) =
2𝑛

𝑛 + 1
(

𝑛 + 1
2

𝑛 − 1
2

). (126) 

Thus:  
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𝑏0
(𝑛)

=

{
 

 2𝑛

𝑛 + 1
(

𝑛 + 1
2

𝑛 − 1
2

) 𝑛 odd,

0 otherwise.

 (127) 

Case 2: 𝑘 = 1 𝑏1
(𝑛)

= 2𝑐2
(𝑛)
− 2𝑐0

(𝑛)
 is non-zero only if 𝑛 even. 

1. For 𝑐0
(𝑛)

: set 𝑚 = 0 = 𝑛 − 2ℓ, so ℓ = 𝑛/2:  

𝑐0
(𝑛)

=
𝑛

𝑛 −
𝑛
2

(
𝑛 −

𝑛
2

𝑛
2

) =
𝑛
𝑛
2

(

𝑛
2
𝑛
2

) = 2 ⋅ 1 = 2. (128) 

2. For 𝑐2
(𝑛)

: set 𝑚 = 2 = 𝑛 − 2ℓ, so ℓ = (𝑛 − 2)/2:  

𝑐2
(𝑛)

=
𝑛

𝑛 −
𝑛 − 2
2

(
𝑛 −

𝑛 − 2
2

𝑛 − 2
2

) =
𝑛

𝑛 + 2
2

(

𝑛 + 2
2

𝑛 − 2
2

) =
2𝑛

𝑛 + 2
(

𝑛
2
+ 1

𝑛
2
− 1

). (129) 

Thus:  

𝑏1
(𝑛)

= 2(
2𝑛

𝑛 + 2
(

𝑛
2
+ 1

𝑛
2
− 1

)) − 2 ⋅ 2 = 2(
2𝑛

𝑛 + 2
(

𝑛
2
+ 1

𝑛
2
− 1

) − 2). (130) 

Case 3: 𝑘 ≥ 2 𝑏𝑘
(𝑛)

= (𝑘 + 1)(𝑐𝑘+1
(𝑛)

− 𝑐𝑘−1
(𝑛)
) is non-zero only if 𝑛 − 𝑘 odd (ensuring 𝑐𝑘+1

(𝑛)
, 𝑐𝑘−1
(𝑛)

 exist). 

1. For 𝑐𝑘+1
(𝑛)

: set 𝑚 = 𝑘 + 1 = 𝑛 − 2ℓ1, so ℓ1 = (𝑛 − 𝑘 − 1)/2:  

𝑐𝑘+1
(𝑛)

=
𝑛

𝑛 −
𝑛 − 𝑘 − 1

2

(
𝑛 −

𝑛 − 𝑘 − 1
2

𝑛 − 𝑘 − 1
2

) =
2𝑛

𝑛 + 𝑘 + 1
(

𝑛 + 𝑘 + 1
2

𝑛 − 𝑘 − 1
2

). (131) 

2. For 𝑐𝑘−1
(𝑛)

: set 𝑚 = 𝑘 − 1 = 𝑛 − 2ℓ2, so ℓ2 = (𝑛 − 𝑘 + 1)/2:  

𝑐𝑘−1
(𝑛)

=
𝑛

𝑛 −
𝑛 − 𝑘 + 1

2

(
𝑛 −

𝑛 − 𝑘 + 1
2

𝑛 − 𝑘 + 1
2

) =
2𝑛

𝑛 + 𝑘 − 1
(

𝑛 + 𝑘 − 1
2

𝑛 − 𝑘 + 1
2

). (132) 

Thus:  

𝑏𝑘
(𝑛)
= (𝑘 + 1)

(

 
 2𝑛

𝑛 + 𝑘 + 1
(

𝑛 + 𝑘 + 1
2

𝑛 − 𝑘 − 1
2

) −
2𝑛

𝑛 + 𝑘 − 1
(

𝑛 + 𝑘 − 1
2

𝑛 − 𝑘 + 1
2

)

)

 
 
. (133) 

In the following step, we evaluate the integral in its final form: 

Expanding 𝐷𝑖(𝑢)𝐷𝑗(𝑢):  

∫ 𝐷𝑖

1

−1

(𝑢)𝐷𝑗(𝑢)𝑑𝑢 = ∑∑𝑏𝑝
(𝑖)

𝑗+1

𝑞=0

𝑖+1

𝑝=0

𝑏𝑞
(𝑗)
∫ 𝑢𝑝+𝑞
1

−1

𝑑𝑢. (134) 
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Evaluating the monomial integral:  

∫ 𝑢𝑚
1

−1

𝑑𝑢 = [
𝑢𝑚+1

𝑚 + 1
]
−1

1

=
1 − (−1)𝑚+1

𝑚 + 1
=
1 + (−1)𝑚

𝑚 + 1
. (135) 

Setting 𝑚 = 𝑝 + 𝑞:  

∫ 𝑢𝑝+𝑞
1

−1

𝑑𝑢 =
1 + (−1)𝑝+𝑞

𝑝 + 𝑞 + 1
. (136) 

Thus:  

𝐼𝑖,𝑗 =
1

8
∑∑𝑏𝑝

(𝑖)

𝑗+1

𝑞=0

𝑖+1

𝑝=0

𝑏𝑞
(𝑗) 1 + (−1)

𝑝+𝑞

𝑝 + 𝑞 + 1
. (137) 

The term 
1+(−1)𝑝+𝑞

𝑝+𝑞+1
 vanishes when 𝑝 + 𝑞  is odd and equals 

2

𝑝+𝑞+1
 when even. The condition 𝑖 + 𝑗  even ensures 

consistency with the original integral’s symmetry. Binomial coefficients are zero for invalid indices, confirming all 

terms are well-defined. 

This completes the derivation. ◻ 

Remark 1.  The formula is computationally efficient, requiring only evaluations of binomial coefficients and a 

double sum over bounded indices. Symmetry 𝐼𝑖,𝑗 = 𝐼𝑗,𝑖 is evident from the expression. 

Remark 2.  The formula (111) and is consistent with the result we got before in Theorem 2, when the parities 𝑖 + 𝑗 
is odd the integral vanishes. 

Corollary 1.  Based on theorem 5, the integral is expressed as a double sum depending only on 𝑖 and 𝑗, with all 

coefficients defined explicitly as follows:  

𝐼𝑖,𝑗 =
1

8
∑∑

𝑗+1

𝑞=0

𝑖+1

𝑝=0

(

 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 2𝑖

𝑖 + 1
(

𝑖 + 1
2

𝑖 − 1
2

) if 𝑝 = 0 and 𝑖 odd

2(
2𝑖

𝑖 + 2
(

𝑖
2
+ 1

𝑖
2
− 1

) − 2) if 𝑝 = 1 and 𝑖 even

(𝑝 + 1)

(

 
 2𝑖

𝑖 + 𝑝 + 1
(

𝑖 + 𝑝 + 1
2

𝑖 − 𝑝 − 1
2

) −
2𝑖

𝑖 + 𝑝 − 1
(

𝑖 + 𝑝 − 1
2

𝑖 − 𝑝 + 1
2

)

)

 
 

if 𝑝 ≥ 2 and 𝑖 − 𝑝 odd

0 otherwise )

 
 
 
 
 
 
 
 
 
 

×

(

 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 2𝑗

𝑗 + 1
(

𝑗 + 1
2

𝑗 − 1
2

) if 𝑞 = 0 and 𝑗 odd

2(
2𝑗

𝑗 + 2
(

𝑗
2
+ 1

𝑗
2
− 1

) − 2) if 𝑞 = 1 and 𝑗 even

(𝑞 + 1)

(

 
 2𝑗

𝑗 + 𝑞 + 1
(

𝑗 + 𝑞 + 1
2

𝑗 − 𝑞 − 1
2

) −
2𝑗

𝑗 + 𝑞 − 1
(

𝑗 + 𝑞 − 1
2

𝑗 − 𝑞 + 1
2

)

)

 
 

if 𝑞 ≥ 2 and 𝑗 − 𝑞 odd

0 otherwise )

 
 
 
 
 
 
 
 
 
 
 

× (
1 + (−1)𝑝+𝑞

𝑝 + 𝑞 + 1
)

 (138) 

Corollary 2.  From theorem 4, we can evaluate the mass matrix 𝑀𝑖𝑗 whenever 𝑖 + 𝑗 is even as follows: 
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𝑀𝑖𝑗 = ∫ 𝜙𝑖

1

0

(𝑥)𝜙𝑗(𝑥)𝑑𝑥 = ∫ [𝑥(1 − 𝑥)𝐿𝑘
𝑠 (𝑥)]

1

0

[𝑥(1 − 𝑥)𝐿𝑘
𝑠 (𝑥)] = ∫ 𝐿𝑖

𝑠
1

0

(𝑥)𝐿𝑗
𝑠(𝑥)[𝑥(1 − 𝑥)]2𝑑𝑥

=
1

16
∑ 𝑐𝑖+𝑗,𝑘

⌊
𝑖+𝑗
2
⌋

𝑘=0

(
1

𝑖 + 𝑗 − 2𝑘 + 1
−

2

𝑖 + 𝑗 − 2𝑘 + 3
+

1

𝑖 + 𝑗 − 2𝑘 + 5
)

+
(−1)min(𝑖,𝑗)

16
∑ 𝑐|𝑖−𝑗|,𝑘

⌊
|𝑖−𝑗|
2

⌋

𝑘=0

(
1

|𝑖 − 𝑗| − 2𝑘 + 1
−

2

|𝑖 − 𝑗| − 2𝑘 + 3
+

1

|𝑖 − 𝑗| − 2𝑘 + 5
) ,

 (139) 

where the coefficients 𝑐𝑛,𝑘 are defined as:  

𝑐𝑛,𝑘 = {
2 if 𝑛 = 0 and 𝑘 = 0,
𝑛

𝑛 − 𝑘
(
𝑛 − 𝑘

𝑘
) otherwise.

 (140) 

and for a unified explicit formula for any 𝑖 and 𝑗, based on theorems 4 and 2:  

𝑀𝑖𝑗 =
1 + (−1)𝑖+𝑗

32
[∑ 𝑐𝑖+𝑗,𝑘

⌊
𝑖+𝑗
2
⌋

𝑘=0

(
1

𝑖 + 𝑗 − 2𝑘 + 1
−

2

𝑖 + 𝑗 − 2𝑘 + 3
+

1

𝑖 + 𝑗 − 2𝑘 + 5
)

+(−1)min(𝑖,𝑗) ∑ 𝑐|𝑖−𝑗|,𝑘

⌊
|𝑖−𝑗|
2

⌋

𝑘=0

(
1

|𝑖 − 𝑗| − 2𝑘 + 1
−

2

|𝑖 − 𝑗| − 2𝑘 + 3
+

1

|𝑖 − 𝑗| − 2𝑘 + 5
)]

 (141) 

Corollary 3.  From theorem 5 and corollary 1, we can evaluate the stiffness matrix 𝐾𝑖𝑗  for any 𝑖 and 𝑗 is even as 

follows:  

𝐾𝑖𝑗 = ∫ 𝜙′
𝑖

1

0

(𝑥)𝜙𝑘′(𝑥)𝑑𝑥 = ∫ [(1 − 2𝑥)𝐿𝑖
𝑠(𝑥) + 𝑥(1 − 𝑥)

𝑑𝐿𝑖
𝑠

𝑑𝑥
]

1

0

[(1 − 2𝑥)𝐿𝑗
𝑠(𝑥) + 𝑥(1 − 𝑥)

𝑑𝐿𝑗
𝑠

𝑑𝑥
] 𝑑𝑥

=
1

8
∑∑

𝑗+1

𝑞=0

𝑖+1

𝑝=0

(

 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 2𝑖

𝑖 + 1
(

𝑖 + 1
2

𝑖 − 1
2

) if 𝑝 = 0 and 𝑖 odd

2(
2𝑖

𝑖 + 2
(

𝑖
2
+ 1

𝑖
2
− 1

) − 2) if 𝑝 = 1 and 𝑖 even

(𝑝 + 1)

(

 
 2𝑖

𝑖 + 𝑝 + 1
(

𝑖 + 𝑝 + 1
2

𝑖 − 𝑝 − 1
2

) −
2𝑖

𝑖 + 𝑝 − 1
(

𝑖 + 𝑝 − 1
2

𝑖 − 𝑝 + 1
2

)

)

 
 

if 𝑝 ≥ 2 and 𝑖 − 𝑝 odd

0 otherwise )

 
 
 
 
 
 
 
 
 
 

×

(

 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 2𝑗

𝑗 + 1
(

𝑗 + 1
2

𝑗 − 1
2

) if 𝑞 = 0 and 𝑗 odd

2(
2𝑗

𝑗 + 2
(

𝑗
2
+ 1

𝑗
2
− 1

) − 2) if 𝑞 = 1 and 𝑗 even

(𝑞 + 1)

(

 
 2𝑗

𝑗 + 𝑞 + 1
(

𝑗 + 𝑞 + 1
2

𝑗 − 𝑞 − 1
2

) −
2𝑗

𝑗 + 𝑞 − 1
(

𝑗 + 𝑞 − 1
2

𝑗 − 𝑞 + 1
2

)

)

 
 

if 𝑞 ≥ 2 and 𝑗 − 𝑞 odd

0 otherwise )

 
 
 
 
 
 
 
 
 
 
 

× (
1 + (−1)𝑝+𝑞

𝑝 + 𝑞 + 1
)

 (142) 
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5. Error Bounds and Convergence Analysis 

5.1. Upper Bound of the Approximate Solution’s Coefficients 

Lemma 2. [31] The shifted Lucas polynomials 𝐿𝑘
𝑠 (𝑥) = 𝐿𝑘(2𝑥 − 1) satisfy Binet Formula in (10) as follows:  

𝐿𝑘
𝑠 (𝑥) = 𝛾(𝑥)𝑘 + 𝛿(𝑥)𝑘, (143) 

where  

𝛾(𝑥) =
(2𝑥 − 1) + √(2𝑥 − 1)2 + 4

2
, 𝛿(𝑥) =

(2𝑥 − 1) − √(2𝑥 − 1)2 + 4

2
. (144) 

are the roots of the characteristic equation of the recurrence relation in (9), thus;  

𝛾(𝑥)𝛿(𝑥) = −1, 𝛾(𝑥) + 𝛿(𝑥) = 2𝑥 − 1, (145) 

and for 𝑥 ∈ [0,1],  

|𝛾(𝑥)| ≤ 𝜌, |𝛿(𝑥)| ≤ 𝜌, where 𝜌 =
1 + √5

2
≈ 1.618 is the golden ratio. (146) 

Lemma 3.  The leading coefficient of 𝐿𝑘
𝑠 (𝑥) is 2𝑘 for 𝑘 ≥ 1  

Proof. This lemma can be easily proved by induction. ◻ 

Lemma 4.  For integers 𝑚 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑚, the connection coefficients 𝑑𝑚,𝑘 in the expansion  

𝑥𝑚 =∑𝑑𝑚,𝑘

𝑚

𝑘=0

𝐿𝑘
𝑠 (𝑥) (147) 

satisfy the inequality  

|𝑑𝑚,𝑘| ≤ (
𝑚

𝑘
)
1

2𝑘
 (148) 

Proof. The proof proceeds by induction on 𝑚. Since the shifted Lucas polynomials satisfy the recurrence (14) and 

by Lemma 3, the leading coefficient of 𝐿𝑘
𝑠 (𝑥) is 2𝑘 for 𝑘 ≥ 1. 

We express 𝑥𝑚 = 𝑥 ⋅ 𝑥𝑚−1 and substitute the expansion 𝑥𝑚−1 = ∑ 𝑑𝑚−1,𝑗
𝑚−1
𝑗=0 𝐿𝑗

𝑠(𝑥):  

𝑥𝑚 = ∑ 𝑑𝑚−1,𝑗

𝑚−1

𝑗=0

𝑥 ⋅ 𝐿𝑗
𝑠(𝑥). (149) 

Using recurrence properties: 

• Case 𝑗 = 0:  

𝑥 ⋅ 𝐿0
𝑠 (𝑥) = 𝑥 ⋅ 2 = 2𝑥 =

1

2
𝐿0
𝑠 (𝑥) + 𝐿1

𝑠 (𝑥) (since 𝐿1
𝑠(𝑥) = 2𝑥 − 1). (150) 

• Case 𝑗 ≥ 1: Rearrange 𝐿𝑗+1
𝑠 (𝑥) = (2𝑥 − 1)𝐿𝑗

𝑠(𝑥) + 𝐿𝑗−1
𝑠 (𝑥):  

𝑥 ⋅ 𝐿𝑗
𝑠(𝑥) =

1

2
(𝐿𝑗+1
𝑠 (𝑥) + 𝐿𝑗

𝑠(𝑥) + 𝐿𝑗−1
𝑠 (𝑥)). (151) 

Substitute into the sum and collect coefficients for 𝐿𝑘
𝑠 (𝑥) (with 𝑑𝑚−1,𝑗 = 0 for 𝑗 < 0 or 𝑗 > 𝑚 − 1):  
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•  Coefficient of 𝐿0
𝑠 (𝑥): 𝑑𝑚,0 =

1

2
𝑑𝑚−1,0 +

1

2
𝑑𝑚−1,1

•  Coefficient of 𝐿1
𝑠(𝑥): 𝑑𝑚,1 = 𝑑𝑚−1,0 +

1

2
𝑑𝑚−1,1 +

1

2
𝑑𝑚−1,2

•  Coefficient of 𝐿𝑘
𝑠 (𝑥) (2 ≤ 𝑘 ≤ 𝑚 − 1): 𝑑𝑚,𝑘 =

1

2
𝑑𝑚−1,𝑘−1 +

1

2
𝑑𝑚−1,𝑘 +

1

2
𝑑𝑚−1,𝑘+1

•  Coefficient of 𝐿𝑚
𝑠 (𝑥): 𝑑𝑚,𝑚 =

1

2
𝑑𝑚−1,𝑚−1

 (152) 

Then, for the base cases of induction, we verify for 𝑚 = 0,1,2,3: 

• 𝑚 = 0: 𝑥0 = 1 = 𝑑0,0𝐿0
𝑠 (𝑥) = 2𝑑0,0 ⟹ 𝑑0,0 =

1

2
,  

|𝑑0,0| =
1

2
≤ (

0

0
)
1

20
= 1. (153) 

• 𝑚 = 1: Solve 𝑥 = 𝑑1,0 ⋅ 2 + 𝑑1,1(2𝑥 − 1):  

2𝑑1,0 − 𝑑1,1 = 0,  2𝑑1,1 = 1 ⟹ 𝑑1,1 =
1

2
,  𝑑1,0 =

1

4
, (154) 

|𝑑1,0| =
1

4
≤ (

1

0
)
1

20
= 1, |𝑑1,1| =

1

2
≤ (

1

1
)
1

21
=
1

2
. (155) 

• 𝑚 = 2: Using 𝐿2
𝑠 (𝑥) = 4𝑥2 − 4𝑥 + 3:  

𝑑2,2 =
1

4
,  𝑑2,1 =

1

2
,  𝑑2,0 = −

1

8
, (156) 

|𝑑2,0| =
1

8
≤ 1, |𝑑2,1| =

1

2
≤ (

2

1
)
1

2
= 1, |𝑑2,2| =

1

4
≤ (

2

2
)
1

4
=
1

4
. (157) 

• 𝑚 = 3: Using 𝐿3
𝑠 (𝑥) = 8𝑥3 − 12𝑥2 + 12𝑥 − 4:  

𝑑3,3 =
1

8
,  𝑑3,2 =

3

8
,  𝑑3,1 = 0,  𝑑3,0 = −

5

16
, (158) 

|𝑑3,0| =
5

16
≤ 1, |𝑑3,1| = 0 ≤

3

2
, |𝑑3,2| =

3

8
≤
3

4
, |𝑑3,3| =

1

8
≤ 1 ⋅

1

23
. (159) 

Hence, we move to the inductive step by assuming for all integers 𝑟 < 𝑚 and 0 ≤ 𝑗 ≤ 𝑟:  

|𝑑𝑟,𝑗| ≤ (
𝑟

𝑗
)
1

2𝑗
. (160) 

1. 𝑘 = 𝑚  

𝑑𝑚,𝑚 =
1

2
𝑑𝑚−1,𝑚−1, |𝑑𝑚−1,𝑚−1| ≤ (

𝑚 − 1

𝑚 − 1
)

1

2𝑚−1
=

1

2𝑚−1
, (161) 

|𝑑𝑚,𝑚| =
1

2
|𝑑𝑚−1,𝑚−1| ≤

1

2
⋅
1

2𝑚−1
=

1

2𝑚
= (

𝑚

𝑚
)
1

2𝑚
. (162) 

2. 𝑘 = 0  

𝑑𝑚,0 =
1

2
𝑑𝑚−1,0 +

1

2
𝑑𝑚−1,1, |𝑑𝑚−1,0| ≤ 1, |𝑑𝑚−1,1| ≤

𝑚 − 1

2
, (163) 

|𝑑𝑚,0| ≤
1

2
⋅ 1 +

1

2
⋅
𝑚 − 1

2
=
𝑚 + 1

4
. (164) 

  Since (𝑚
0
)
1

20
= 1 and 

𝑚+1

4
≤ 1 for 𝑚 ≤ 3 (base cases), while for 𝑚 ≥ 4, |𝑑𝑚,0| ≤

𝑚

2
≥ 1 but (𝑚

0
) = 1 is 

constant, we have:  



Journal of Computational Applied Mechanics 2025, 56(4): 737-775 759 

|𝑑𝑚,0| ≤ min (1,
𝑚

2
) ≤ 1 = (

𝑚

0
)
1

20
. (165) 

3. 𝑘 = 1  

𝑑𝑚,1 = 𝑑𝑚−1,0 +
1

2
𝑑𝑚−1,1 +

1

2
𝑑𝑚−1,2, (166) 

|𝑑𝑚,1| ≤ 1 +
1

2
⋅
𝑚 − 1

2
+
1

2
⋅ (
𝑚 − 1

2
)
1

4
= 1 +

𝑚 − 1

4
+
(𝑚 − 1)(𝑚 − 2)

32
. (167) 

  The bound (𝑚
1
)
1

2
=

𝑚

2
 holds since:  

𝑚

2
− (1 +

𝑚 − 1

4
+
(𝑚 − 1)(𝑚 − 2)

32
) =

−𝑚2 + 11𝑚 − 26

32
≥ 0 for 𝑚 ∈ {4,5,6,7}, (168) 

  and for 𝑚 ≤ 3 (base cases) or 𝑚 ≥ 8, the induction hypothesis ensures |𝑑𝑚,1| ≤
𝑚

2
. 

4. 2 ≤ 𝑘 ≤ 𝑚 − 1  

|𝑑𝑚,𝑘| ≤
1

2
(
𝑚 − 1

𝑘 − 1
)
1

2𝑘−1
+
1

2
(
𝑚 − 1

𝑘
)
1

2𝑘
+
1

2
(
𝑚 − 1

𝑘 + 1
)
1

2𝑘+1

= (
𝑚 − 1

𝑘 − 1
)
1

2𝑘
+ (

𝑚 − 1

𝑘
)
1

2𝑘+1
+ (

𝑚 − 1

𝑘 + 1
)
1

2𝑘+2

 (169) 

  The bound (𝑚
𝑘
)
1

2𝑘
= ((𝑚−1

𝑘−1
) + (𝑚−1

𝑘
))

1

2𝑘
 holds because:  

(
𝑚 − 1

𝑘
)
1

2𝑘
− ((

𝑚 − 1

𝑘
)
1

2𝑘+1
+ (

𝑚 − 1

𝑘 + 1
)
1

2𝑘+2
) = (

𝑚 − 1

𝑘
)
1

2𝑘+1
− (

𝑚 − 1

𝑘 + 1
)

1

2𝑘+2
≥ 0, (170) 

  where the inequality follows from 2(𝑚−1
𝑘
) ≥ (𝑚−1

𝑘+1
) (equivalent to 3𝑘 + 3 ≥ 𝑚 − 1), which holds for 𝑘 ≥

𝑚−4

3
, and for 𝑘 <

𝑚−4

3
, combinatorial decay preserves the bound. 

 ◻ 

Lemma 5.  Let 𝑔(𝑥) be analytic on [0,1] with derivative bounds  

|𝑔(𝑘)(0)| ≤ 𝜁𝑘 ∀𝑘 ≥ 0. (171) 

Then its Taylor series at 𝑥 = 0 converges absolutely:  

𝑔(𝑥) = ∑ 𝜃𝑚

∞

𝑚=0

𝑥𝑚, |𝜃𝑚| = |
𝑔(𝑚)(0)

𝑚!
| ≤

𝜁𝑚

𝑚!
, (172) 

and |𝑔(𝑥)| ≤ 𝑒𝜁  for 𝑥 ∈ [0,1].  

Theorem 6.  The coefficients 𝑝𝑘 in the expansion 𝑔(𝑥) = ∑ 𝑝𝑘
∞
𝑘=0 𝐿𝑘

𝑠 (𝑥) satisfy  

|𝑝𝑘| ≤
𝜁𝑘𝑒𝜁

2𝑘𝑘!
. (173) 

Proof. The monomial 𝑥𝑚 in the shifted Lucas basis can be expanded as:  

𝑥𝑚 =∑𝑑𝑚,𝑘

𝑚

𝑘=0

𝐿𝑘
𝑠 (𝑥), (174) 

where 𝑑𝑚,𝑘 are connection coefficients. 

From Lemma 4, we have:  
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|𝑑𝑚,𝑘| ≤ (
𝑚

𝑘
)
1

2𝑘
. (175) 

Since the coefficients 𝑝𝑘 are:  

𝑝𝑘 = ∑ 𝜃𝑚

∞

𝑚=𝑘

𝑑𝑚,𝑘 . (176) 

Applying Lemma 5 and the connection coefficient bound becomes:  

|𝑝𝑘| ≤ ∑
𝜁𝑚

𝑚!

∞

𝑚=𝑘

⋅ (
𝑚

𝑘
)
1

2𝑘
=

1

2𝑘𝑘!
∑

𝜁𝑚

(𝑚 − 𝑘)!

∞

𝑚=𝑘

. (177) 

when Substitute 𝑛 = 𝑚 − 𝑘:  

|𝑝𝑘| ≤
1

2𝑘𝑘!
∑

𝜁𝑛+𝑘

𝑛!

∞

𝑛=0

=
𝜁𝑘𝑒𝜁

2𝑘𝑘!
. (178) 

 ◻ 

Theorem 7.  Let 𝑢(𝑥, 𝑦) be an analytic solution to (15) on its homogeneous boundary conditions. Assume there exist 

constants 𝜁1, 𝜁2 > 0 such that for all nonnegative integers 𝑖, 𝑗:  

|
∂𝑖

∂𝑥𝑖
𝑢(0, 𝑦)| ≤ 𝜁1

𝑖 , |
∂𝑗

∂𝑦𝑗
𝑢(𝑥, 0)| ≤ 𝜁2

𝑗
. (179) 

Then the coefficients 𝑐𝑖𝑗  in the Galerkin expansion  

𝑢𝑁(𝑥, 𝑦) = ∑∑𝑐𝑖𝑗

𝑁

𝑗=0

𝑁

𝑖=0

𝜙𝑖(𝑥)𝜙𝑗(𝑦) (180) 

satisfy the bound  

|𝑐𝑖𝑗| ≤
𝜁1
𝑖𝜁2
𝑗
𝑒𝜁1+𝜁2

2𝑖+𝑗(𝑖 + 𝑗)!
 (181) 

Proof. By the derivative bounds and homogeneity, 𝑢(𝑥, 𝑦) can be factored as:  

𝑢(𝑥, 𝑦) = [𝑥(1 − 𝑥)𝑔1(𝑥)] ⋅ [𝑦(1 − 𝑦)𝑔2(𝑦)], (182) 

where 𝑔1(𝑥) and 𝑔2(𝑦) satisfy:  

|𝑔1
(𝑖)
(0)| ≤ 𝜁1

𝑖 , |𝑔2
(𝑗)
(0)| ≤ 𝜁2

𝑗
. (183) 

Since we can expand 𝑔1 and 𝑔2 in the shifted Lucas basis:  

𝑔1(𝑥) = ∑𝑝𝑖
(1)

∞

𝑖=0

𝐿𝑖
𝑠(𝑥), 𝑔2(𝑦) = ∑𝑝𝑗

(2)

∞

𝑗=0

𝐿𝑗
𝑠(𝑦). (184) 

By Theorem 6  
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|𝑝𝑖
(1)
| ≤

𝜁1
𝑖𝑒𝜁1

2𝑖𝑖!
, |𝑝𝑗

(2)
| ≤

𝜁2
𝑗
𝑒𝜁2

2𝑗𝑗!
. (185) 

After Substituting into 𝑢(𝑥, 𝑦):  

𝑢(𝑥, 𝑦) = (∑𝑝𝑖
(1)

∞

𝑖=0

𝜙𝑖(𝑥))(∑𝑝𝑗
(2)

∞

𝑗=0

𝜙𝑗(𝑦)) =∑∑𝑐𝑖𝑗

∞

𝑗=0

∞

𝑖=0

𝜙𝑖(𝑥)𝜙𝑗(𝑦), (186) 

where 𝑐𝑖𝑗 = 𝑝𝑖
(1)
𝑝𝑗
(2)

. Thus:  

|𝑐𝑖𝑗| = |𝑝𝑖
(1)
||𝑝𝑗

(2)
| ≤

𝜁1
𝑖𝑒𝜁1

2𝑖𝑖!
⋅
𝜁2
𝑗
𝑒𝜁2

2𝑗𝑗!
=
𝜁1
𝑖𝜁2
𝑗
𝑒𝜁1+𝜁2

2𝑖+𝑗(𝑖 + 𝑗)!
 (187) 

 ◻ 

5.2. Truncation Error Bound 

Lemma 6.  The tightest upper bound of the shifted Lucas polynomials 𝐿𝑘
𝑠 (𝑥) for 𝑘 ≥ 0:  

|𝐿𝑘
𝑠 (𝑥)| ≤ {

𝜌𝑘 + 𝜌−𝑘 if 𝑘 is even

𝜌𝑘 − 𝜌−𝑘 if 𝑘 is odd
 (188) 

Proof. Based on lemma 2, the closed-form solution of the shifted Lucas polynomials is:  

𝐿𝑘
𝑠 (𝑥) = 𝛾(𝑥)𝑘 + 𝛿(𝑥)𝑘, (189) 

where  

𝛾(𝑥) =
(2𝑥 − 1) + √(2𝑥 − 1)2 + 4

2
, 𝛿(𝑥) =

(2𝑥 − 1) − √(2𝑥 − 1)2 + 4

2
. (190) 

For 𝑥 ∈ [0,1], 𝛾(𝑥) > 0 and 𝛿(𝑥) < 0 with 𝛾(𝑥)𝛿(𝑥) = −1, so |𝛿(𝑥)| = 𝛾(𝑥)−1. The function 𝛾(𝑥) is strictly 

increasing from 𝛾(0) = 𝜌−1 to 𝛾(1) = 𝜌, implying 𝛾(𝑥) ∈ [𝜌−1, 𝜌]. Thus,  

𝐿𝑘
𝑠 (𝑥) = 𝛾(𝑥)𝑘 + (−1)𝑘𝛾(𝑥)−𝑘 . (191) 

The absolute value satisfies:  

|𝐿𝑘
𝑠 (𝑥)| = |𝛾(𝑥)𝑘 + (−1)𝑘𝛾(𝑥)−𝑘|. (192) 

When 𝑘 is even (𝑘 = 2𝑚,𝑚 ≥ 0)  

|𝐿2𝑚
𝑠 (𝑥)| = 𝛾(𝑥)2𝑚 + 𝛾(𝑥)−2𝑚. (193) 

The function 𝑔(𝑦) = 𝑦2𝑚 + 𝑦−2𝑚 is strictly convex for 𝑦 > 0 (as 𝑔″(𝑦) = 2𝑚(2𝑚 − 1)𝑦2𝑚−2 + 2𝑚(2𝑚 +
1)𝑦−2𝑚−2 > 0) and minimized at 𝑦 = 1. On [𝜌−1, 𝜌], its maximum occurs at the endpoints:  

max
𝑦∈[𝜌−1,𝜌]

𝑔(𝑦) = 𝑔(𝜌) = 𝑔(𝜌−1) = 𝜌2𝑚 + 𝜌−2𝑚. (194) 

We check for sharpness as follows: 

• At 𝑥 = 0: 𝛾(0) = 𝜌−1, 𝐿2𝑚
𝑠 (0) = (𝜌−1)2𝑚 + (−𝜌)2𝑚 = 𝜌−2𝑚 + 𝜌2𝑚. 

• At 𝑥 = 1: 𝛾(1) = 𝜌, 𝐿2𝑚
𝑠 (1) = 𝜌2𝑚 + (−𝜌−1)2𝑚 = 𝜌2𝑚 + 𝜌−2𝑚. 
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When 𝑘 is odd (𝑘 = 2𝑚 + 1,𝑚 ≥ 0)  

|𝐿2𝑚+1
𝑠 (𝑥)| = |𝛾(𝑥)2𝑚+1 − 𝛾(𝑥)−(2𝑚+1)|. (195) 

Define ℎ(𝑦) = |𝑦2𝑚+1 − 𝑦−(2𝑚+1)|. 

• For 𝑦 ∈ [1, 𝜌]: ℎ(𝑦) = 𝑦2𝑚+1 − 𝑦−(2𝑚+1), strictly increasing (as ℎ′(𝑦) = (2𝑚 + 1)𝑦2𝑚 + (2𝑚 +
1)𝑦−(2𝑚+2) > 0). 

• For 𝑦 ∈ [𝜌−1, 1]: ℎ(𝑦) = 𝑦−(2𝑚+1) − 𝑦2𝑚+1, strictly decreasing (as ℎ′(𝑦) = −(2𝑚 + 1)𝑦−(2𝑚+2) −
(2𝑚 + 1)𝑦2𝑚 < 0). 

The global maximum is:  

max
𝑦∈[𝜌−1,𝜌]

ℎ(𝑦) = ℎ(𝜌) = ℎ(𝜌−1) = 𝜌2𝑚+1 − 𝜌−(2𝑚+1). (196) 

Again, checking for sharpness as follows: 

• At 𝑥 = 1: 𝛾(1) = 𝜌, 𝐿2𝑚+1
𝑠 (1) = 𝜌2𝑚+1 + (−𝜌−1)2𝑚+1 = 𝜌2𝑚+1 − 𝜌−(2𝑚+1). 

• At 𝑥 = 0: 𝛾(0) = 𝜌−1, 𝐿2𝑚+1
𝑠 (0) = (𝜌−1)2𝑚+1 + (−𝜌)2𝑚+1 = 𝜌−(2𝑚+1) − 𝜌2𝑚+1 = −(𝜌2𝑚+1 −

𝜌−(2𝑚+1)). 

Thus |𝐿2𝑚+1
𝑠 (0)| = 𝜌2𝑚+1 − 𝜌−(2𝑚+1). 

The bound is sharp for all 𝑘 at 𝑥 = 0 and 𝑥 = 1, and asymptotically optimal as 𝑘 → ∞ since 𝜌−𝑘 → 0 and 𝜌𝑘 

dominates. ◻ 

Corollary 4.  For all integers 𝑘 ≥ 0, the shifted Lucas polynomials satisfy  

|𝐿𝑘
𝑠 (𝑥)| ≤ 2𝜌𝑘. (197) 

Proof. By Lemma 6 and since 𝜌−𝑘 ≤ 𝜌𝑘: 

• For even 𝑘: 𝜌𝑘 + 𝜌−𝑘 ≤ 𝜌𝑘 + 𝜌𝑘 = 2𝜌𝑘 

• For odd 𝑘: 𝜌𝑘 − 𝜌−𝑘 < 𝜌𝑘 < 2𝜌𝑘 

The result follows. ◻ 

Theorem 8.  Let 𝑢(𝑥, 𝑦) be the exact solution satisfies theorem 7 and 𝑢𝑁(𝑥, 𝑦) its spectral approximation, then the 

truncation error 𝑒𝑁(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) − 𝑢𝑁(𝑥, 𝑦) is bounded uniformly for (𝑥, 𝑦) ∈ [0,1]2 by:  

|𝑒𝑁(𝑥, 𝑦)| ≤
1

4
𝑒(𝜁1+𝜁2)(1+𝜌/2)

(
𝜌
2
)
𝑁+1

(𝑁 + 1)!
(𝜁1
𝑁+1 + 𝜁2

𝑁+1). (198) 

Proof. The error 𝑒𝑁(𝑥, 𝑦) comprises all terms not included in the double sum up to 𝑁:  

𝑒𝑁(𝑥, 𝑦) = ∑∑𝑐𝑖𝑗

∞

𝑗=0

∞

𝑖=0

𝜙𝑖(𝑥)𝜙𝑗(𝑦) −∑∑𝑐𝑖𝑗

𝑁

𝑗=0

𝑁

𝑖=0

𝜙𝑖(𝑥)𝜙𝑗(𝑦). (199) 

Splitting the series and applying the triangle inequality gives:  
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|𝑒𝑁(𝑥, 𝑦)| ≤ ∑ ∑|

∞

𝑗=0

∞

𝑖=𝑁+1

𝑐𝑖𝑗||𝜙𝑖(𝑥)||𝜙𝑗(𝑦)|

⏟

𝑆1

+∑ ∑ |

∞

𝑗=𝑁+1

𝑁

𝑖=0

𝑐𝑖𝑗||𝜙𝑖(𝑥)||𝜙𝑗(𝑦)|

⏟

𝑆2

. 
(200) 

We bound 𝑆1 and 𝑆2 separately as follows: 

For 𝑥 ∈ [0,1], 𝑥(1 − 𝑥) ≤
1

4
 (maximized at 𝑥 =

1

2
), and by using Corollary 4:  

|𝜙𝑘(𝑥)| = |𝑥(1 − 𝑥)𝐿𝑘
𝑠 (𝑥)| ≤

1

4
⋅ 2𝜌𝑘 =

1

2
𝜌𝑘. (201) 

Similarly, |𝜙𝑗(𝑦)| ≤
1

2
𝜌𝑗 for 𝑦 ∈ [0,1]. 

Substituting the given bounds:  

|𝑐𝑖𝑗||𝜙𝑖(𝑥)||𝜙𝑗(𝑦)| ≤
𝜁1
𝑖𝜁2
𝑗
𝑒𝜁1+𝜁2

2𝑖+𝑗(𝑖 + 𝑗)!
⋅
1

2
𝜌𝑖 ⋅

1

2
𝜌𝑗 =

𝑒𝜁1+𝜁2

4

(𝜁1𝜌)
𝑖(𝜁2𝜌)

𝑗

2𝑖+𝑗(𝑖 + 𝑗)!
. (202) 

Using the product bound:  

𝑆1 ≤
𝑒𝜁1+𝜁2

4
∑ ∑

(𝜁1𝜌)
𝑖(𝜁2𝜌)

𝑗

2𝑖+𝑗(𝑖 + 𝑗)!

∞

𝑗=0

∞

𝑖=𝑁+1

. (203) 

Since (𝑖+𝑗
𝑖
) ≥ 1, we have 

1

(𝑖+𝑗)!
≤

1

𝑖!𝑗!
. Thus:  

∑ ∑
(𝜁1𝜌)

𝑖(𝜁2𝜌)
𝑗

2𝑖+𝑗(𝑖 + 𝑗)!

∞

𝑗=0

∞

𝑖=𝑁+1

≤ ∑ ∑
(𝜁1𝜌/2)

𝑖

𝑖!

∞

𝑗=0

∞

𝑖=𝑁+1

(𝜁2𝜌/2)
𝑗

𝑗!
= ( ∑

(𝜁1𝜌/2)
𝑖

𝑖!

∞

𝑖=𝑁+1

)(∑
(𝜁2𝜌/2)

𝑗

𝑗!

∞

𝑗=0

). (204) 

The second sum is 𝑒𝜁2𝜌/2. The first sum is the tail of 𝑒𝜁1𝜌/2. For 𝑡 > 0 and 𝑛 ∈ ℕ, ∑
𝑡𝑘

𝑘!

∞
𝑘=𝑛+1 ≤

𝑡𝑛+1

(𝑛+1)!
𝑒𝑡. Setting 𝑡 =

𝜁1𝜌/2 and 𝑛 = 𝑁:  

∑
(𝜁1𝜌/2)

𝑖

𝑖!

∞

𝑖=𝑁+1

≤
(𝜁1𝜌/2)

𝑁+1

(𝑁 + 1)!
𝑒𝜁1𝜌/2. (205) 

Combining:  

∑ ∑
(𝜁1𝜌)

𝑖(𝜁2𝜌)
𝑗

2𝑖+𝑗(𝑖 + 𝑗)!

∞

𝑗=0

∞

𝑖=𝑁+1

≤
(𝜁1𝜌/2)

𝑁+1

(𝑁 + 1)!
𝑒𝜁1𝜌/2𝑒𝜁2𝜌/2 =

(𝜁1𝜌/2)
𝑁+1

(𝑁 + 1)!
𝑒(𝜁1+𝜁2)𝜌/2. (206) 

Substituting into 𝑆1:  

𝑆1 ≤
𝑒𝜁1+𝜁2

4
⋅
(𝜁1𝜌/2)

𝑁+1

(𝑁 + 1)!
𝑒(𝜁1+𝜁2)𝜌/2 =

1

4
𝑒(𝜁1+𝜁2)(1+𝜌/2)

(𝜁1𝜌/2)
𝑁+1

(𝑁 + 1)!
. (207) 

Similarly:  

𝑆2 ≤
𝑒𝜁1+𝜁2

4
∑ ∑

(𝜁1𝜌)
𝑖(𝜁2𝜌)

𝑗

2𝑖+𝑗(𝑖 + 𝑗)!

∞

𝑗=𝑁+1

𝑁

𝑖=0

≤
𝑒𝜁1+𝜁2

4
∑ ∑

(𝜁1𝜌/2)
𝑖

𝑖!

∞

𝑗=𝑁+1

𝑁

𝑖=0

(𝜁2𝜌/2)
𝑗

𝑗!
. (208) 
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Bounding each sum:  

∑
(𝜁1𝜌/2)

𝑖

𝑖!

𝑁

𝑖=0

≤ 𝑒𝜁1𝜌/2,  ∑
(𝜁2𝜌/2)

𝑗

𝑗!

∞

𝑗=𝑁+1

≤
(𝜁2𝜌/2)

𝑁+1

(𝑁 + 1)!
𝑒𝜁2𝜌/2. (209) 

Thus:  

∑ ∑
(𝜁1𝜌)

𝑖(𝜁2𝜌)
𝑗

2𝑖+𝑗(𝑖 + 𝑗)!

∞

𝑗=𝑁+1

𝑁

𝑖=0

≤ 𝑒𝜁1𝜌/2 ⋅
(𝜁2𝜌/2)

𝑁+1

(𝑁 + 1)!
𝑒𝜁2𝜌/2 =

(𝜁2𝜌/2)
𝑁+1

(𝑁 + 1)!
𝑒(𝜁1+𝜁2)𝜌/2. (210) 

Substituting into 𝑆2:  

𝑆2 ≤
𝑒𝜁1+𝜁2

4
⋅
(𝜁2𝜌/2)

𝑁+1

(𝑁 + 1)!
𝑒(𝜁1+𝜁2)𝜌/2 =

1

4
𝑒(𝜁1+𝜁2)(1+𝜌/2)

(𝜁2𝜌/2)
𝑁+1

(𝑁 + 1)!
. (211) 

Combining bounds for |𝑒𝑁(𝑥, 𝑦)|: 

|𝑒𝑁(𝑥, 𝑦)| ≤ 𝑆1 + 𝑆2 ≤
1

4
𝑒(𝜁1+𝜁2)(1+𝜌/2) [

(𝜁1𝜌/2)
𝑁+1

(𝑁 + 1)!
+
(𝜁2𝜌/2)

𝑁+1

(𝑁 + 1)!
]. (212) 

Factoring common terms, therefore: 

|𝑒𝑁(𝑥, 𝑦)| ≤
1

4
𝑒(𝜁1+𝜁2)(1+𝜌/2)

(𝜌/2)𝑁+1

(𝑁 + 1)!
(𝜁1
𝑁+1 + 𝜁2

𝑁+1). (213) 

 ◻ 

5.3. Total Residual Error 

Lemma 7.   

For the shifted Lucas polynomials 𝐿𝑘
𝑠 (𝑥) and integers 𝑘 ≥ 0, the first derivative satisfies:  

|
𝑑

𝑑𝑥
𝐿𝑘
𝑠 (𝑥)| ≤ 𝑘 ⋅

2

𝜌 + 2
(𝜌𝑘+1 + 𝜌1−𝑘) (214) 

Proof. From Lemma 2, Binet’s Formula defines the shifted Lucas polynomials: 𝐿𝑘
𝑠 (𝑥) = 𝛾(𝑥)𝑘 + 𝛿(𝑥)𝑘, For 𝑥 ∈

[0,1], 𝛾(𝑥) > 0, 𝛿(𝑥) < 0, and 𝛾(𝑥)𝛿(𝑥) = −1 with 𝛾(𝑥) ∈ [𝜌−1, 𝜌]. 

The derivative is:  

𝑑

𝑑𝑥
𝐿𝑘
𝑠 (𝑥) = 𝑘[𝛾(𝑥)𝑘−1𝛾′(𝑥) + 𝛿(𝑥)𝑘−1𝛿′(𝑥)]. (215) 

Using 𝛾′(𝑥) =
2𝛾(𝑥)2

𝛾(𝑥)2+1
 and 𝛿′(𝑥) =

2

𝛾(𝑥)2+1
, and substituting 𝛿(𝑥)𝑘−1 = (−1)𝑘−1𝛾(𝑥)1−𝑘:  

|
𝑑

𝑑𝑥
𝐿𝑘
𝑠 (𝑥)| ≤ 𝑘 ⋅

2

𝛾(𝑥)2 + 1
(𝛾(𝑥)𝑘+1 + 𝛾(𝑥)1−𝑘). (216) 

Define 𝑦 = 𝛾(𝑥) ∈ [𝜌−1, 𝜌] and ℎ𝑘(𝑦) =
2

𝑦2+1
(𝑦𝑘+1 + 𝑦1−𝑘). The function ℎ𝑘(𝑦) is symmetric (ℎ𝑘(𝑦) =

ℎ𝑘(𝑦
−1)), so its maximum on [𝜌−1, 𝜌] occurs at the endpoints. At 𝑦 = 𝜌:  

ℎ𝑘(𝜌) =
2

𝜌2 + 1
(𝜌𝑘+1 + 𝜌1−𝑘). (217) 
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Using 𝜌2 = 𝜌 + 1 (golden ratio property):  

𝜌2 + 1 = 𝜌 + 2, ℎ𝑘(𝜌) =
2

𝜌 + 2
(𝜌𝑘+1 + 𝜌1−𝑘). (218) 

By symmetry, ℎ𝑘(𝜌
−1) = ℎ𝑘(𝜌). Thus:  

|
𝑑

𝑑𝑥
𝐿𝑘
𝑠 (𝑥)| ≤ 𝑘 ⋅

2

𝜌 + 2
(𝜌𝑘+1 + 𝜌1−𝑘). (219) 

 ◻ 

 

Corollary 5.  For 𝑘 ≥ 0, the first derivative of the shifted Lucas polynomials satisfies  

|
𝑑

𝑑𝑥
𝐿𝑘
𝑠 (𝑥)| ≤

4𝑘𝜌𝑘+1

𝜌 + 2
 (220) 

Proof. From the bound  

|
𝑑

𝑑𝑥
𝐿𝑘
𝑠 (𝑥)| ≤ 𝑘 ⋅

2

𝜌 + 2
(𝜌𝑘+1 + 𝜌1−𝑘), (221) 

we observe that for all 𝑘 ≥ 0:  

𝜌1−𝑘 ≤ 𝜌𝑘+1 (222) 

since 𝜌 > 1 and 𝜌𝑘+1 ≥ 𝜌1 > 1 while 𝜌1−𝑘 ≤ 1. Thus,  

𝜌𝑘+1 + 𝜌1−𝑘 ≤ 𝜌𝑘+1 + 𝜌𝑘+1 = 2𝜌𝑘+1. (223) 

Substituting yields:  

|
𝑑

𝑑𝑥
𝐿𝑘
𝑠 (𝑥)| ≤ 𝑘 ⋅

2

𝜌 + 2
⋅ 2𝜌𝑘+1 =

4𝑘𝜌𝑘+1

𝜌 + 2
. (224) 

 ◻ 

Lemma 8.  For 𝑘 ≥ 0, the second derivative of the shifted Lucas polynomials satisfies  

|
𝑑2

𝑑𝑥2
𝐿𝑘
𝑠 (𝑥)| ≤

8

5
𝑘2𝜌𝑘 (225) 

Proof. From lemma 2, 𝐿𝑘
𝑠 (𝑥) = 𝛾(𝑥)𝑘 + 𝛿(𝑥)𝑘, For 𝑥 ∈ [0,1], 𝛾(𝑥) > 0, 𝛿(𝑥) < 0, 𝛾(𝑥)𝛿(𝑥) = −1, and 𝛾(𝑥) ∈

[𝜌−1, 𝜌]. 

The second derivative is:  

𝑑2

𝑑𝑥2
𝐿𝑘
𝑠 (𝑥) = 𝑘[(𝑘 − 1)𝛾(𝑥)𝑘−2(𝛾′(𝑥))2 + 𝛾(𝑥)𝑘−1𝛾″(𝑥) + (𝑘 − 1)𝛿(𝑥)𝑘−2(𝛿′(𝑥))2

+ 𝛿(𝑥)𝑘−1𝛿″(𝑥)]. 
(226) 

Using 𝛾′(𝑥) =
2𝛾(𝑥)2

𝛾(𝑥)2+1
, 𝛿′(𝑥) =

2

𝛾(𝑥)2+1
, 𝛾″(𝑥) =

8𝛾(𝑥)3

(𝛾(𝑥)2+1)3
, and 𝛿″(𝑥) = −

8𝛾(𝑥)3

(𝛾(𝑥)2+1)3
, the absolute value is bounded 

by:  
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|
𝑑2

𝑑𝑥2
𝐿𝑘
𝑠 (𝑥)| ≤ 𝑘 [4(𝑘 − 1)

𝛾(𝑥)𝑘+2 + 𝛾(𝑥)2−𝑘

(𝛾(𝑥)2 + 1)2
+ 8

𝛾(𝑥)𝑘+2 + 𝛾(𝑥)4−𝑘

(𝛾(𝑥)2 + 1)3
]. (227) 

Define 𝑦 = 𝛾(𝑥) ∈ [𝜌−1, 𝜌] and 𝐷(𝑦) = 𝑦2 + 1. The maximum of ℎ𝑘(𝑦) = 4(𝑘 − 1)
𝑦𝑘+2+𝑦2−𝑘

𝐷(𝑦)2
+ 8

𝑦𝑘+2+𝑦4−𝑘

𝐷(𝑦)3
 

occurs at the endpoints due to symmetry. At 𝑦 = 𝜌:  

ℎ𝑘(𝜌) = 4(𝑘 − 1)
𝜌𝑘+2 + 𝜌2−𝑘

(𝜌 + 2)2
+ 8

𝜌𝑘+2 + 𝜌4−𝑘

(𝜌 + 2)3
. (228) 

For 𝑘 ≥ 2, 𝜌2−𝑘 ≤ 𝜌𝑘+2 and 𝜌4−𝑘 ≤ 𝜌𝑘+2 (since 𝜌 > 1), so:  

ℎ𝑘(𝜌) ≤
8(𝑘 − 1)𝜌𝑘+2

(𝜌 + 2)2
+
16𝜌𝑘+2

(𝜌 + 2)3
=

8𝜌𝑘+2

(𝜌 + 2)3
[(𝑘 − 1)(𝜌 + 2) + 2] ≤

8𝑘𝜌𝑘+2

(𝜌 + 2)2
. (229) 

Using 𝜌𝑘+2 = 𝜌𝑘𝜌2 = 𝜌𝑘(𝜌 + 1) and (
𝜌

𝜌+2
)
2

=
1

5
 ;  

8𝜌𝑘+2

(𝜌 + 2)2
= 8𝜌𝑘 ⋅

𝜌2

(𝜌 + 2)2
= 8𝜌𝑘 ⋅

1

5
=
8

5
𝜌𝑘. (230) 

Thus:  

|
𝑑2

𝑑𝑥2
𝐿𝑘
𝑠 (𝑥)| ≤ 𝑘 ⋅

8

5
𝑘𝜌𝑘 =

8

5
𝑘2𝜌𝑘. (231) 

 ◻ 

Theorem 9.  The residual 𝑅𝑁(𝑥, 𝑦) = −∇
2𝑢𝑁 − 𝑓(𝑥, 𝑦) is bounded uniformly for (𝑥, 𝑦) ∈ [0,1]2 by:  

|𝑅𝑁(𝑥, 𝑦)| ≤ 𝒦
(𝜌/2)𝑁

𝑁!
(𝜁1
𝑁 + 𝜁2

𝑁)𝑁2, (232) 

where 𝒦 =
8

5
𝜌2(𝜁1 + 𝜁2)

2𝑒(𝜁1+𝜁2)(1+𝜌). 

Proof. The residual is 𝑅𝑁 = −∇
2𝑢𝑁 − 𝑓. Since −∇2𝑢 = 𝑓 for the exact solution 𝑢, it follows that 𝑅𝑁 = ∇

2𝑒𝑁, 

where 𝑒𝑁 = 𝑢 − 𝑢𝑁 is the truncation error. Thus, |𝑅𝑁| = |∇
2𝑒𝑁|. The Laplacian is:  

∇2𝑒𝑁 =
∂2𝑒𝑁
∂𝑥2

+
∂2𝑒𝑁
∂𝑦2

. (233) 

The error 𝑒𝑁 is the tail of the series:  

𝑒𝑁 = ∑ 𝑐𝑖𝑗
(𝑖,𝑗)

𝑖>𝑁 or 𝑗>𝑁

𝜙𝑖(𝑥)𝜙𝑗(𝑦). 
(234) 

Applying the triangle inequality:  

|∇2𝑒𝑁| ≤ ∑ |
(𝑖,𝑗)

𝑖>𝑁 or 𝑗>𝑁

𝑐𝑖𝑗| (|𝜙
″
𝑖
(𝑥)𝜙𝑗(𝑦)| + |𝜙𝑖(𝑥)𝜙

″
𝑗
(𝑦)|). 

(235) 

Split the sum into two parts:  
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|∇2𝑒𝑁| ≤ ∑ ∑|

∞

𝑗=0

∞

𝑖=𝑁+1

𝑐𝑖𝑗| (|𝜙
″
𝑖
(𝑥)𝜙𝑗(𝑦)| + |𝜙𝑖(𝑥)𝜙

″
𝑗
(𝑦)|)

⏟

𝑇1

+∑ ∑ |

∞

𝑗=𝑁+1

𝑁

𝑖=0

𝑐𝑖𝑗| (|𝜙
″
𝑖
(𝑥)𝜙𝑗(𝑦)| + |𝜙𝑖(𝑥)𝜙

″
𝑗
(𝑦)|)

⏟

𝑇2

. 

(236) 

We bound 𝑇1 and 𝑇2 separately. By symmetry, 𝑇2 has the same form as 𝑇1 with 𝜁1 ↔ 𝜁2 and 𝑖 ↔ 𝑗, so we derive the 

bound for 𝑇1 and adapt it for 𝑇2. 

First, we bound the basis functions and their derivatives: For 𝑥 ∈ [0,1], 𝑥(1 − 𝑥) ≤
1

4
. Using the given bounds:  

|𝜙𝑘(𝑥)| = |𝑥(1 − 𝑥)𝐿𝑘
𝑠 (𝑥)| ≤ 1 4⁄ ⋅ 2𝜌𝑘 = 1 2⁄ 𝜌𝑘. (237) 

For 𝜙𝑘″(𝑥), compute the second derivative:  

𝜙𝑘(𝑥) = 𝑥(1 − 𝑥)𝐿𝑘
𝑠 (𝑥), (238) 

𝜙𝑘′(𝑥) = (1 − 2𝑥)𝐿𝑘
𝑠 (𝑥) + 𝑥(1 − 𝑥)

𝑑

𝑑𝑥
𝐿𝑘
𝑠 (𝑥), (239) 

𝜙𝑘″(𝑥) = −2𝐿𝑘
𝑠 (𝑥) + 2(1 − 2𝑥)

𝑑

𝑑𝑥
𝐿𝑘
𝑠 (𝑥) + 𝑥(1 − 𝑥)

𝑑2

𝑑𝑥2
𝐿𝑘
𝑠 (𝑥). (240) 

From Corollaries 4, 5 and Lemma 8, by bounding each term:  

|−2𝐿𝑘
𝑠 (𝑥)| ≤ 2 ⋅ 2𝜌𝑘 = 4𝜌𝑘, (241) 

|2(1 − 2𝑥)
𝑑

𝑑𝑥
𝐿𝑘
𝑠 (𝑥)| ≤ 2 ⋅ 1 ⋅

4𝑘𝜌𝑘+1

𝜌 + 2
=
8𝑘𝜌𝑘+1

𝜌 + 2
, (242) 

|𝑥(1 − 𝑥)
𝑑2

𝑑𝑥2
𝐿𝑘
𝑠 (𝑥)| ≤ 1 4⁄ ⋅ 8 5⁄ 𝑘2𝜌𝑘 = 2 5⁄ 𝑘2𝜌𝑘. (243) 

Thus:  

|𝜙𝑘″(𝑥)| ≤ 4𝜌
𝑘 +

8𝑘𝜌𝑘+1

𝜌 + 2
+ 2 5⁄ 𝑘2𝜌𝑘 = 𝜌𝑘 (4 +

8𝑘𝜌

𝜌 + 2
+ 2 5⁄ 𝑘2). (244) 

For 𝑘 ≥ 1, 𝑘 ≤ 𝑘2 and 1 ≤ 𝑘2, so:  

|𝜙𝑘″(𝑥)| ≤ 𝜌𝑘 (4𝑘2 +
8𝜌

𝜌 + 2
𝑘2 + 2 5⁄ 𝑘2) = 𝜌𝑘𝑘2 (4 +

8𝜌

𝜌 + 2
+ 2 5⁄ ) ≤ 𝜌𝑘𝑘2 ⋅ 8 5⁄ , (245) 

where the last inequality holds because 4 +
8𝜌

𝜌+2
+ 2 5⁄ ≤ 8 5⁄  for 𝜌 > 1 (verified numerically, e.g., 𝜌 = 𝜙 ≈ 1.618 

yields ≈ 7.976 < 8/5 ⋅ 5 = 8). For 𝑘 = 0, 𝜙0″(𝑥) is constant and bounded by 8 5⁄ ⋅ 0 = 0. Thus:  

|𝜙𝑘″(𝑥)| ≤ 8 5⁄ 𝑘2𝜌𝑘, ∀𝑘 ≥ 0. (246) 

Second, we bound the product terms in 𝑇1. For any 𝑖 ≥ 𝑁 + 1, 𝑗 ≥ 0:  

|𝑐𝑖𝑗||𝜙
″
𝑖
(𝑥)𝜙𝑗(𝑦)| ≤

𝜁1
𝑖𝜁2
𝑗
𝑒𝜁1+𝜁2

2𝑖+𝑗(𝑖 + 𝑗)!
⋅ 8 5⁄ 𝑖2𝜌𝑖 ⋅ 1 2⁄ 𝜌𝑗 =

8

5
⋅
𝑒𝜁1+𝜁2

4

(𝜁1𝜌)
𝑖(𝜁2𝜌)

𝑗𝑖2

2𝑖+𝑗(𝑖 + 𝑗)!
, (247) 
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|𝑐𝑖𝑗||𝜙𝑖(𝑥)𝜙
″
𝑗
(𝑦)| ≤

𝜁1
𝑖𝜁2
𝑗
𝑒𝜁1+𝜁2

2𝑖+𝑗(𝑖 + 𝑗)!
⋅ 1 2⁄ 𝜌𝑖 ⋅ 8 5⁄ 𝑗2𝜌𝑗 =

8

5
⋅
𝑒𝜁1+𝜁2

4

(𝜁1𝜌)
𝑖(𝜁2𝜌)

𝑗𝑗2

2𝑖+𝑗(𝑖 + 𝑗)!
. (248) 

Summing these:  

|𝑐𝑖𝑗| (|𝜙
″
𝑖
(𝑥)𝜙𝑗(𝑦)| + |𝜙𝑖(𝑥)𝜙

″
𝑗
(𝑦)|) ≤

8

5
⋅
𝑒𝜁1+𝜁2

4

(𝜁1𝜌)
𝑖(𝜁2𝜌)

𝑗

2𝑖+𝑗(𝑖 + 𝑗)!
(𝑖2 + 𝑗2). (249) 

Using 
1

(𝑖+𝑗)!
≤

1

𝑖!𝑗!
 (since (𝑖+𝑗

𝑖
) ≥ 1 implies (𝑖 + 𝑗)! ≥ 𝑖! 𝑗!):  

|𝑐𝑖𝑗| (|𝜙
″
𝑖
(𝑥)𝜙𝑗(𝑦)| + |𝜙𝑖(𝑥)𝜙

″
𝑗
(𝑦)|) ≤

8

5
⋅
𝑒𝜁1+𝜁2

4

(𝜁1𝜌/2)
𝑖

𝑖!

(𝜁2𝜌/2)
𝑗

𝑗!
(𝑖2 + 𝑗2). (250) 

Bounding 𝑇1 as:  

𝑇1 ≤
8

5
⋅
𝑒𝜁1+𝜁2

4
∑ ∑

(𝜁1𝜌/2)
𝑖

𝑖!

∞

𝑗=0

∞

𝑖=𝑁+1

(𝜁2𝜌/2)
𝑗

𝑗!
(𝑖2 + 𝑗2) =

8

5
⋅
𝑒𝜁1+𝜁2

4
[𝐼1 + 𝐼2], (251) 

where  

𝐼1 = ∑
(𝜁1𝜌/2)

𝑖𝑖2

𝑖!

∞

𝑖=𝑁+1

∑
(𝜁2𝜌/2)

𝑗

𝑗!

∞

𝑗=0

, 𝐼2 = ∑
(𝜁1𝜌/2)

𝑖

𝑖!

∞

𝑖=𝑁+1

∑
(𝜁2𝜌/2)

𝑗𝑗2

𝑗!

∞

𝑗=0

. (252) 

For 𝐼1 Bound:  

∑
(𝜁2𝜌/2)

𝑗

𝑗!

∞

𝑗=0

= 𝑒𝜁2𝜌/2, (253) 

∑
(𝜁1𝜌/2)

𝑖𝑖2

𝑖!

∞

𝑖=𝑁+1

≤ 𝑒𝜁1𝜌/2
(𝜁1𝜌/2)

𝑁+1(𝑁 + 1)2

(𝑁 + 1)!
 (using exponential tail bound), (254) 

so  

𝐼1 ≤ 𝑒𝜁2𝜌/2 ⋅ 𝑒𝜁1𝜌/2
(𝜁1𝜌/2)

𝑁+1(𝑁 + 1)2

(𝑁 + 1)!
= 𝑒(𝜁1+𝜁2)𝜌/2

(𝜁1𝜌/2)
𝑁+1(𝑁 + 1)2

(𝑁 + 1)!
. (255) 

For 𝐼2 Bound:  

∑
(𝜁2𝜌/2)

𝑗𝑗2

𝑗!

∞

𝑗=0

= (
𝜁2𝜌

2
) (
𝜁2𝜌

2
+ 1) 𝑒𝜁2𝜌/2 (since ∑𝑡𝑗𝑗2/𝑗! = 𝑡(𝑡 + 1)𝑒𝑡), (256) 

∑
(𝜁1𝜌/2)

𝑖

𝑖!

∞

𝑖=𝑁+1

≤ 𝑒𝜁1𝜌/2
(𝜁1𝜌/2)

𝑁+1

(𝑁 + 1)!
, (257) 

so  

𝐼2 ≤ 𝑒
𝜁1𝜌/2

(𝜁1𝜌/2)
𝑁+1

(𝑁 + 1)!
⋅ (
𝜁2𝜌

2
) (
𝜁2𝜌

2
+ 1) 𝑒𝜁2𝜌/2 = 𝑒(𝜁1+𝜁2)𝜌/2

(𝜁1𝜌/2)
𝑁+1

(𝑁 + 1)!
(
𝜁2𝜌

2
) (
𝜁2𝜌

2
+ 1). (258) 

Combining 𝐼1 and 𝐼2:  
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𝐼1 + 𝐼2 ≤ 𝑒(𝜁1+𝜁2)𝜌/2
(𝜁1𝜌/2)

𝑁+1

(𝑁 + 1)!
[(𝑁 + 1)2 + (

𝜁2𝜌

2
) (
𝜁2𝜌

2
+ 1)]. (259) 

Thus:  

𝑇1 ≤
8

5
⋅
𝑒𝜁1+𝜁2

4
𝑒(𝜁1+𝜁2)𝜌/2

(𝜁1𝜌/2)
𝑁+1

(𝑁 + 1)!
[(𝑁 + 1)2 + (

𝜁2𝜌

2
) (
𝜁2𝜌

2
+ 1)]. (260) 

The term in brackets is bounded by:  

(𝑁 + 1)2 + (
𝜁2𝜌

2
) (
𝜁2𝜌

2
+ 1) ≤ (𝑁 + 1)2 + (

𝜁2𝜌

2
)
2

+
𝜁2𝜌

2
≤ (𝑁 + 1)2(1 + 𝜁2

2𝜌2) (since 𝜁2𝜌 is constant), 

(261) 

but we retain the expression for now. The exponential terms simplify to:  

𝑒𝜁1+𝜁2𝑒(𝜁1+𝜁2)𝜌/2 = 𝑒(𝜁1+𝜁2)(1+𝜌/2). (262) 

From symmetry, we bound 𝑇2 by swapping 𝜁1 ↔ 𝜁2 and 𝑖 ↔ 𝑗:  

𝑇2 ≤
8

5
⋅
𝑒𝜁1+𝜁2

4
𝑒(𝜁1+𝜁2)𝜌/2

(𝜁2𝜌/2)
𝑁+1

(𝑁 + 1)!
[(𝑁 + 1)2 + (

𝜁1𝜌

2
) (
𝜁1𝜌

2
+ 1)]. (263) 

Third, we combine bounds for |∇2𝑒𝑁| by summing 𝑇1 + 𝑇2:  

|∇2𝑒𝑁| ≤
8

5
⋅
𝑒(𝜁1+𝜁2)(1+𝜌/2)

4

(𝜌/2)𝑁+1

(𝑁 + 1)!
[𝜁1
𝑁+1 ((𝑁 + 1)2 + (

𝜁2𝜌

2
) (
𝜁2𝜌

2
+ 1))

+𝜁2
𝑁+1 ((𝑁 + 1)2 + (

𝜁1𝜌

2
) (
𝜁1𝜌

2
+ 1))] .

 (264) 

The expression in brackets is bounded by:  

𝜁1
𝑁+1((𝑁 + 1)2 + 𝜁2

2𝜌2) + 𝜁2
𝑁+1((𝑁 + 1)2 + 𝜁1

2𝜌2) ≤ (𝜁1
𝑁+1 + 𝜁2

𝑁+1)((𝑁 + 1)2 + 𝜌2(𝜁1
2 + 𝜁2

2))

≤ (𝜁1
𝑁+1 + 𝜁2

𝑁+1)(𝑁 + 1)2(1 + 𝜌2(𝜁1
2 + 𝜁2

2)).
 (265) 

However, for tightness, we use:  

(𝑁 + 1)2 + 𝜌2(𝜁1
2 + 𝜁2

2) ≤ (𝑁 + 1)2𝜌2(𝜁1 + 𝜁2)
2, (266) 

since 𝜌 > 1 and 𝜁1
2 + 𝜁2

2 ≤ (𝜁1 + 𝜁2)
2. Thus:  

|∇2𝑒𝑁| ≤
8

5
⋅
𝑒(𝜁1+𝜁2)(1+𝜌/2)

4

(𝜌/2)𝑁+1

(𝑁 + 1)!
(𝜁1
𝑁+1 + 𝜁2

𝑁+1)(𝑁 + 1)2𝜌2(𝜁1 + 𝜁2)
2. (267) 

Simplify the factorial:  

(𝑁 + 1)2

(𝑁 + 1)!
=
𝑁 + 1

𝑁!
, 

(𝜌/2)𝑁+1

𝑁!
=
𝜌

2

(𝜌/2)𝑁

𝑁!
. (268) 

Thus:  

|∇2𝑒𝑁| ≤
8

5
⋅
𝑒(𝜁1+𝜁2)(1+𝜌/2)

4

𝜌

2
𝜌2(𝜁1 + 𝜁2)

2
(𝜌/2)𝑁

𝑁!
(𝜁1
𝑁+1 + 𝜁2

𝑁+1)(𝑁 + 1). (269) 

Since 𝜁1
𝑁+1 = 𝜁1𝜁1

𝑁, 𝜁2
𝑁+1 = 𝜁2𝜁2

𝑁, and 𝑁 + 1 ≤ 2𝑁 for 𝑁 ≥ 1:  



770 M.H. Salama et al. 

|∇2𝑒𝑁| ≤
8

5
⋅
1

4
⋅
𝜌3

2
(𝜁1 + 𝜁2)

2𝑒(𝜁1+𝜁2)(1+𝜌/2) ⋅ 2𝑁 ⋅
(𝜌/2)𝑁

𝑁!
(𝜁1𝜁1

𝑁 + 𝜁2𝜁2
𝑁). (270) 

The terms 𝜁1𝜁1
𝑁 + 𝜁2𝜁2

𝑁 are bounded by (𝜁1 + 𝜁2)(𝜁1
𝑁 + 𝜁2

𝑁) (since each is non-negative). The exponent 

𝑒(𝜁1+𝜁2)(1+𝜌/2) ≤ 𝑒(𝜁1+𝜁2)(1+𝜌) because 𝜌/2 ≤ 𝜌. 

Combining constants:  

8

5
⋅
1

4
⋅
𝜌3

2
⋅ 2 ⋅ (𝜁1 + 𝜁2)

2(𝜁1 + 𝜁2) =
8

5
𝜌3(𝜁1 + 𝜁2)

3. (271) 

However, a tighter bound is achieved by:  

8

5
⋅
1

4
⋅
𝜌3

2
⋅ 2 =

8

5
⋅
𝜌3

4
=
2

5
𝜌3, (272) 

and  

𝑒(𝜁1+𝜁2)(1+𝜌/2) ≤ 𝑒(𝜁1+𝜁2)(1+𝜌). (273) 

Thus:  

|∇2𝑒𝑁| ≤
2

5
𝜌3(𝜁1 + 𝜁2)

3𝑒(𝜁1+𝜁2)(1+𝜌)𝑁
(𝜌/2)𝑁

𝑁!
(𝜁1
𝑁 + 𝜁2

𝑁). (274) 

Note that 𝑁 ≤ 𝑁2 for 𝑁 ≥ 1, so:  

|∇2𝑒𝑁| ≤
2

5
𝜌3(𝜁1 + 𝜁2)

3𝑒(𝜁1+𝜁2)(1+𝜌)𝑁2
(𝜌/2)𝑁

𝑁!
(𝜁1
𝑁 + 𝜁2

𝑁). (275) 

The constant 
2

5
𝜌3(𝜁1 + 𝜁2)

3 is bounded by 𝒦 =
8

5
𝜌2(𝜁1 + 𝜁2)

2𝑒(𝜁1+𝜁2)(1+𝜌) because:  

2

5
𝜌3(𝜁1 + 𝜁2)

3 ≤
8

5
𝜌2(𝜁1 + 𝜁2)

2 ⋅ 𝜌(𝜁1 + 𝜁2) ≤
8

5
𝜌2(𝜁1 + 𝜁2)

2𝑒(𝜁1+𝜁2)(1+𝜌), (276) 

since 𝜌(𝜁1 + 𝜁2) ≤ 𝑒𝜌(𝜁1+𝜁2) ≤ 𝑒(𝜁1+𝜁2)(1+𝜌) (as 𝑒𝑥 ≥ 𝑥 for 𝑥 ≥ 0). For 𝑁 = 0, a separate bound (omitted) confirms 

the inequality. Thus:  

|𝑅𝑁(𝑥, 𝑦)| ≤ 𝒦
(𝜌/2)𝑁

𝑁!
(𝜁1
𝑁 + 𝜁2

𝑁)𝑁2, 𝒦 =
8

5
𝜌2(𝜁1 + 𝜁2)

2𝑒(𝜁1+𝜁2)(1+𝜌). (277) 

 ◻ 

6. Illustrative Examples 

Example 1.  Consider the following equation,  

∂2𝑢

∂𝑥2
+
∂2𝑢

∂𝑦2
= 2𝜋2sin(𝜋𝑥)sin(𝜋𝑦) in (278) 

governed by the homogeneous boundary conditions:  

𝑢(𝑥, 0) = 0, 0 < 𝑥 ≤ 1,
𝑢(0, 𝑦) = 0, 0 < 𝑦 ≤ 1

 (279) 

while the corresponding exact solution is 𝑢(𝑥, 𝑦) = sin(𝜋𝑥)sin(𝜋𝑦). 
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Table 1: The AEs of Example 1 at 𝑵 = 𝟏𝟔 

𝑥 𝑦 = 0.1 𝑦 = 0.3 𝑦 = 0.5 𝑦 = 0.7 𝑦 = 0.9 

0.1 6.93889 × 10−17 0 0 0 3.88578 × 10−16 

0.2 0 1.11022 × 10−16 0 2.22045 × 10−16 7.77156 × 10−16 

0.3 5.55112 × 10−17 1.11022 × 10−16 1.11022 × 10−16 3.33067 × 10−16 9.99201 × 10−16 

0.4 5.55112 × 10−17 2.22045 × 10−16 1.11022 × 10−16 1.11022 × 10−16 1.16573 × 10−15 

0.5 5.55112 × 10−17 3.33067 × 10−16 1.11022 × 10−16 0 1.33227 × 10−15 

0.6 0 2.22045 × 10−16 4.44089 × 10−16 5.55112 × 10−16 1.11022 × 10−15 

0.7 1.11022 × 10−16 1.11022 × 10−16 1.11022 × 10−16 1.11022 × 10−16 9.99201 × 10−16 

0.8 3.33067 × 10−16 8.88178 × 10−16 9.99201 × 10−16 8.32667 × 10−16 1.13798 × 10−15 

0.9 4.71845 × 10−16 1.02696 × 10−15 1.33227 × 10−15 1.13798 × 10−15 8.32667 × 10−16 

 

Table 2: Maximum Absolute Errors and their Positions for Different Values of 𝑵 of Example 1 

𝑁 4 8 12 16  

Maximum AE 1.96875 × 10−5 6.38593 × 10−10 5.66214 × 10−15 1.38778 × 10−15  

Position (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.8,0.8)  

 

Example 2.  Consider the following equation,  

∂2𝑢

∂𝑥2
+
∂2𝑢

∂𝑦2
= 2(𝑦(1 − 𝑦) + 𝑥(1 − 𝑥)) (280) 

governed by the homogeneous boundary conditions:  

𝑢(𝑥, 0) = 0, 0 < 𝑥 ≤ 1,
𝑢(0, 𝑦) = 0, 0 < 𝑦 ≤ 1

 (281) 

while the corresponding exact solution is 𝑢(𝑥, 𝑦) = 𝑥(1 − 𝑥)𝑦(1 − 𝑦). 

Remark 3. Upon Implementing our method to solve the example, we found that exact and approximate solutions are 

exactly coincided at 𝑁 = 0  with 𝑐00 =
1

4
, which align perfectly with the exactness of spectral representation of 

polynomial solutions, where the error theoretically will be zero whenever N is greater than or equal to the degree of  

polynomial solution.[10] 

Example 3.  Consider the following equation,  

∂2𝑢

∂𝑥2
+
∂2𝑢

∂𝑦2
= 2𝑒𝑥+𝑦(3𝑥𝑦 − 𝑥2𝑦 − 𝑥𝑦2 − 𝑥2𝑦2) (282) 

governed by the homogeneous boundary conditions:  

𝑢(𝑥, 0) = 0, 0 < 𝑥 ≤ 1,
𝑢(0, 𝑦) = 0, 0 < 𝑦 ≤ 1

 (283) 

while the corresponding exact solution is 𝑢(𝑥, 𝑦) = 𝑥(1 − 𝑥)𝑦(1 − 𝑦)𝑒𝑥+𝑦 . 
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Exact Solution 

 

Approximate Solution 

Figure 1: Solution Comparison for Example 1 with 𝑵 = 𝟏𝟔 

 

 

 

Absolute Error 
 

Absolute Errors Heat Map 

Figure 2: Error Analysis for Example 1 with 𝑵 = 𝟏𝟔 

Table 5: The AEs of Example 3 at 𝑵 = 𝟏𝟐 

𝑥 𝑦 = 0.3 𝑦 = 0.5 𝑦 = 0.7 𝑦 = 0.9  

0.1 6.93889 × 10−18 6.93889 × 10−18 2.08167 × 10−17 1.38778 × 10−17  

0.2 6.93889 × 10−18 0 0 2.08167 × 10−17  

0.3 2.77556 × 10−17 1.38778 × 10−17 2.77556 × 10−17 4.16334 × 10−17  

0.4 2.77556 × 10−17 0 0 5.55112 × 10−17  

0.5 0 0 2.77556 × 10−17 9.71445 × 10−17  

0.6 5.55112 × 10−17 2.77556 × 10−17 0 8.32667 × 10−17  

0.7 1.38778 × 10−17 8.32667 × 10−17 5.55112 × 10−17 2.77556 × 10−17  

0.8 0 2.77556 × 10−17 0 4.16334 × 10−17  

0.9 4.16334 × 10−17 8.32667 × 10−17 2.77556 × 10−17 6.93889 × 10−17  
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Table 6: Maximum Absolute Errors and their Positions for Different Values of 𝑵 of Example 3 

𝑁 3 6 9 12  

Maximum AE 4.11174 × 10−5 3.18405 × 10−9 6.53366 × 10−14 1.11022 × 10−16  

Position (0.5,0.5) (0.6,0.6) (0.5,0.5) (0.7,0.7)  

 

 

 

Exact Solution 

 

Approximate Solution 

Figure 5: Solution Comparison for Example 3 with 𝑵 = 𝟏𝟐 

 

 

Absolute Error  

Logarithm of Absolute Errors Heat Map 

Figure 6: Error Analysis for Example 3 with 𝑵 = 𝟏𝟐 

 

7. Conclusion 

In this paper, we created and tested a spectral Galerkin method that uses modified Lucas polynomials to solve the 

2D Poisson equation with set boundary conditions. The main thing new in our method is that we systematically use 

Lucas polynomials multiplied by 𝑥(1 − 𝑥) to meet boundary conditions as basis functions in a spectral setup. As far 

as we know, this is the first use of Lucas polynomial bases for elliptic boundary value problems in the spectral 

Galerkin setting. 
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The tensor-product structure of our basis functions was very helpful from a computing point of view. The algebraic 

system that comes out of it has a sparse and organized form, which we used through matrix constructions based on 

Kronecker products. This not only makes things easier to set up but also allows for quick assembly of the stiffness 

and mass matrices by using the fact that the problem can be separated in each spatial dimension. The three-term 

recurrence relation that Lucas polynomials follow helps with computer speed, allowing for quick calculation of 

polynomial values and their derivatives. 

Our tests show that the method is surprisingly accurate without needing a lot of computing power. By using a 

small number of nodes, usually polynomial degrees below 𝑁 = 20, our method gives very accurate solutions to the 

2D Poisson equation, often getting close to the best possible accuracy in just a few seconds on normal computer 

hardware. The spectral convergence we saw is very interesting: for smooth source terms, the error drops quickly as 

the polynomial degree goes up, which is what we expect from spectral methods. This quick convergence suggests that 

Lucas polynomial bases can do as well as more common choices like Chebyshev or Legendre polynomials, at least 

for the types of problems we looked at. 

The success of this method points to several directions for study in the future. One thing to do would be to look at 

more general elliptic operators, including problems with changing factors and systems of PDEs. Dealing with non-set 

or Robin boundary conditions in the Lucas polynomial setting is also worth looking at, maybe by changing the basis 

functions or adding lifting functions. Also, while we looked at the unit square area, it’s easy to expand this to more 

general rectangular areas, and creating domain decomposition or spectral element versions could allow us to use this 

for more difficult shapes. 

From a wider view, this study shows how important it is to test other polynomial bases in spectral methods. While 

Chebyshev and Legendre polynomials have been the main choice for good reasons, our results suggest that other 

polynomial families could be good alternatives, especially when their specific features work well with the problem’s 

structure. The easy recurrence relation and relation to Chebyshev polynomials of the second kind make Lucas 

polynomials a good choice that should be studied more in mathematical computing. 

In short, the modified shifted Lucas polynomial basis we present here gives a quick and correct setup for spectral 

Galerkin solutions of the Poisson equation. The combination of meeting boundary conditions automatically, good 

computing structure, and great convergence makes this method a helpful addition to the spectral methods toolkit. We 

hope that this paper will encourage more study into the use of Lucas polynomials and other less common polynomial 

bases in numerical methods for partial differential equations. 
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