[1] P. J. Chen, M. E. Gurtin, On a theory of heat conduction involving two temperatures, 1968.
[2] P. J. Chen, M. E. Gurtin, W. O. Williams, On the thermodynamics of non-simple elastic materials with two temperatures, Zeitschrift für angewandte Mathematik und Physik ZAMP, Vol. 20, No. 1, pp. 107-112, 1969/01/01, 1969.
[3] H. M. Youssef, Theory of two-temperature-generalized thermoelasticity, IMA Journal of Applied Mathematics, Vol. 71, No. 3, pp. 383-390, 2006.
[4] H. M. Youssef, A. A. El-Bary, Theory of hyperbolic two-temperature generalized thermoelasticity, Mater. Phys. Mech, Vol. 40, No. 2, pp. 158-171, 2018.
[5] A. Hobiny, I. Abbas, M. Marin, The Influences of the Hyperbolic Two-Temperatures Theory on Waves Propagation in a Semiconductor Material Containing Spherical Cavity, Mathematics, Vol. 10, No. 1, pp. 121, 2022.
[6] A. C. Eringen, D. Edelen, On nonlocal elasticity, International journal of engineering science, Vol. 10, No. 3, pp. 233-248, 1972.
[7] A. C. Eringen, Linear theory of micropolar elasticity, Journal of Mathematical Mechanics, Vol. 15, No. 6, pp. 909-923, 1966.
[8] M. Marin, Weak Solutions in Elasticity of Dipolar Porous Materials, Mathematical Problems in Engineering, Vol. 2008, No. 1, pp. 158908, 2008.
[9] K. Sharma, M. Marin, Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, Vol. 22, pp. 151-175, 06/01, 2014.
[10] R. Quintanilla, Moore–Gibson–Thompson thermoelasticity, Mathematics and Mechanics of Solids, Vol. 24, pp. 108128651986200, 07/21, 2019.
[11] M. Marin, On existence and uniqueness in thermoelasticity of micropolar bodies, Comptes rendus de l'Académie des Sciences Paris, Série II, Vol. 321, No. 12, pp. 375-480, 1995.
[12] S. Sharma, S. Khator, Power generation planning with reserve dispatch and weather uncertainties including penetration of renewable sources, International Journal of Smart Grid and Clean Energy, pp. 292-303, 01/01, 2021.
[13] S. Sharma, S. Khator, Micro-Grid Planning with Aggregator’s Role in the Renewable Inclusive Prosumer Market, Journal of Power and Energy Engineering, Vol. 10, No. 4, pp. 47-62, 2022.
[14] M. Marin, On weak solutions in elasticity of dipolar bodies with voids, Journal of Computational and Applied Mathematics, Vol. 82, No. 1, pp. 291-297, 1997/09/15/, 1997.
[15] A. Zeeshan, M. I. Khan, R. Ellahi, M. Marin, Computational Intelligence Approach for Optimising MHD Casson Ternary Hybrid Nanofluid over the Shrinking Sheet with the Effects of Radiation, Applied Sciences, Vol. 13, No. 17, pp. 9510, 2023.
[16] A. E. Abouelregal, S. S. Askar, M. Marin, B. Mohamed, The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod, Scientific Reports, Vol. 13, No. 1, pp. 9052, 2023/06/03, 2023.
[17] S. Sharma, M. Marin, H. Altenbach, Elastodynamic interactions in thermoelastic diffusion including non-local and phase lags, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 105, No. 1, pp. e202401059, 2025.
[18] M. Marin, S. Sharma, R. Kumar, S. Vlase, Fundamental solution and Green's function in orthotropic photothermoelastic media with temperature-dependent properties under the Moore–Gibson–Thompson model, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 105, No. 6, pp. e70124, 2025.
[19] A. C. Eringen, Plane waves in nonlocal micropolar elasticity, International Journal of Engineering Science, Vol. 22, No. 8, pp. 1113-1121, 1984/01/01/, 1984.
[20] R. S. Dhaliwal, A. Singh, 1980, Dynamic Coupled Thermoelasticity, Hindustan Publishing Corporation,